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Abstract. Off-diagonal vacuum and nonvacuum configurations in the Einstein gravity can mimic physical
effects of modified gravitational theories of f(R, T, RμνT μν) type. To prove this statement, exact and
approximate solutions are constructed in the paper, which encode certain models of covariant Hořava-type
gravity with dynamical Lorentz symmetry breaking. The corresponding FLRW cosmological dynamics with
possible nonholonomic deformations and the reconstruction procedure of certain actions closely related with
the standard ΛCDM universe are studied. Off-diagonal generalizations of de Sitter universes are constructed
which are generated through nonlinear gravitational polarization of fundamental physical constants and
which model interactions with nonconstant exotic fluids and effective matter. The problem of possible
matter instability for such off-diagonal deformations in (modified) gravity theories is briefly discussed.

1 Introduction

There are several motivations for the study of modified gravity theories. At short scales it seems clear that General
Relativity (GR) needs to be modified in order to take into consideration quantum effects, which leads to second- and
higher-order terms in the curvature R, and these same modifications might be also very useful to solve problems at
large scales, as the acceleration of the universe expansion and other, like the nature itself of dark matter (DM) and
dark energy (DE). Not the least, it is an attempt to formulate a self-consistent (in some particular way, possibly)
theory of quantum gravity. Moreover, an increasing amount of more and more accurate and constraining observational
data will help to discriminate among the different, alternative modifications of the gravity theory in the search for a
better description of our universe.

Among the different classes of extensions of general relativity some of the most popular are f(R), f(R, T ), and
f(R, T, F ) —which we will here generically call f(R, . . .)-modified theories, being R the Ricci scalar and T the metric
torsion. In these approaches, the standard Lagrangian for GR, namely as L = R, on a pseudo-Riemannian manifold, V
—where R is the Ricci scalar curvature for the Levi-Civita connection, ∇— is modified by the addition of a functional,
f(R, . . .), of the Ricci scalar only, in the first case, of R and the torsion tensor, Tα

βγ , the energy-momentum tensor for
matter, Tβγ , and/or its trace T = Tα

α (in the second), and of a generalized Ricci scalar R, and a Finsler generating
function, F , in the third case (such values may be defined on the tangent bundle TV ), etc. Classes of modified theories
of these kinds can be successfully constructed, and also the corresponding reconstruction procedures, able to mimic the
ΛCDM model including the dark energy epochs and the transitions between the different main stages of the universe
evolution, thus providing a unified description of the entire cosmological history. For reviews of some of the most
important results along this line, see refs. [1–14].

Several of these model constructions of modified theories are actually related with different forms of the so-called
covariant Hořava gravity associated with a dynamical breaking of Lorentz invariance [15–18], and with further develop-
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ments, as well, including in particular generic off-diagonal solutions, Lagrange-Hamilton-Finsler–like generalizations,
deformation quantization, A-brane models, and gauge-like gravity [19–23]. In some simplified approaches, theories of
this kind can be constructed in a power-counting renormalizable form or as nonholonomic brane configurations which
correspond to power-law versions of actions of type f(R, T,RμνTμν) [24–26]. In general, the spacetime geometries can
be of Finsler type, with commutative and/or noncommutative parameters, and off-diagonal metrics for wapred/trapped
solutions [27–31]. This also includes effects as Lorentz violations, nonlinear dispersion relations and locally anisotropic
re-scaling, and effective polarizations of constants, which provide a deeper understanding of the possible connections
between these f(R, . . .) modified theories, and Hořava-Lifshitz and Finsler theories (see also refs. [32–39], in this
respect).

Field equations for gravitational and matter field interactions in GR and various modified theories of the types
described above usually consist of very sophisticated systems of nonlinear partial differential equations (PDEs). No
wonder they request advanced numeric, analytic and geometric techniques for constructing exact and approximate
solutions. The most important physical solutions, for black hole configurations, observable cosmological scenarios, etc.,
have been therefore constructed with the simplifying diagonalizable ansatz for the corresponding metric (obtained by
appropriate coordinate transformations and frame rotations) with Killing symmetries. After a series of assumptions of
“high symmetry” of the relevant interactions (for spherical, cylindrical or torus ansätze, with a possible additional Lie
group interior symmetry), the systems of resulting nonlinear PDEs are usually transformed into much more simplified
systems of nonlinear ordinary differential equations (ODEs), what is a great advantage, indeed. In such cases, some
classes of exact solutions can be obtained in explicit form (see the monographs [40, 41] for reviews of some results in
GR). Even then, it actually took more than half a century to understand the fundamental physical implications of
these solutions; for instance, of the Schwarzschild and Kerr black hole metrics, and to finally elaborate the Friedmann-
Lemâıtre-Robertson-Walker (FLRW) cosmological scenario. At present, it is already possible to construct more general
classes of exact solutions in (modified) gravity theories depending generically on two or three variables in a “less
symmetric” form for four-dimensional (4-d), and extra-dimensional models using advanced geometric, analytic and
numerical methods. We can provide a plausible physical interpretation when such solutions are defined by certain
symmetry transforms or small deformations of some well-known classes of solutions. However, to derive a new class of
exact solutions of a gravity theory is by itself not of main interest for physicists, neither to applied mathematicians,
unless such construction does result in new and interesting classical or quantum-physical effects, or does provide a
convincing fitting framework to cosmological data coming from the newest surveys.

In a series of works [27–31], the so-called anholonomic frame deformation method (AFDM) for the construction
of exact solutions in gravity has been developed. It provides a general geometric technique which allows to integrate
PDEs for gravitational and matter fields interactions, for generic off-diagonal metrics with generalized connections,
or for the torsionless Levi-Civita one. Such solutions may depend on all spacetime coordinates via various classes
of generating and integration functions, commutative and noncommutative parameters, and so on. In particular, the
corresponding metrics and connections can exhibit anisotropic ellipsoidal or toroidal symmetries, or encode certain
generalized solitonic hierarchies, coming from an effective nonholonomic (with nonintegrable constraints) dynamics
with nontrivial topological configurations. It is furthermore possible to analyze the physical implications of geometric
constructions of this kind, provided they describe certain “small parameter” deformations related to well-defined black
hole objects in cosmological models, or particle physics interactions with broken symmetries.

In brief, the AFDM is based on a quite surprising decoupling property of the vacuum and on certain classes of
nonvacuum fundamental field equations in GR and modified gravities. The main idea is to work with an “auxiliary”
connection when physically important systems of nonlinear PDE decouple in certain classes of nonholonomic frames.
This allows to integrate systems of this kind of very general form. Usually, the auxiliary connection which is needed
involves nontrivial nonholonomically induced torsion, which in GR is determined by certain generic off-diagonal terms
of the metric and corresponding classes of nonholonomic (equivalently, anholonomic, i.e. nonintegrable) constraints
on gravitational and matter field dynamics. A nonholonomically induced torsion is different from that in the Einstein-
Cartan or string gravity theory, where torsion fields are subject to additional algebraic or dynamical field equations.
Having constructed certain general integral varieties of solutions, we can almost generically consider different classes
of constraints where the auxiliary connection transforms into the Levi-Civita one. Here we note that it is important
to impose such zero-torsion constraints after certain classes of generalized solutions are found in general form, but
not before applying the AFDM. Generic off-diagonal solutions for nonlinear systems can be restricted to torsionless
configurations, provided certain nontrivial solutions have been already found. If nonholonomic constraints are imposed
from the very beginning (for instance, spherical symmetries and a simplified diagonal ansatz for the metric), then one
excludes from the analysis more general classes of nonlinear interactions.

The crucial importance of generic off-diagonal solutions in GR and modified theories is determined by a series
of geometric and analytic properties of the associated systems of nonlinear PDEs which are used for elaborating the
cosmological models and for performing the quantization of the associated gravity theories. In this respect we should
emphasize three key issues: 1) A number of physical effects and observed cosmological data can already be explained
in GR or in the context of modified gravity theories (for instance, within f(R) gravity or with nontrivial massive
terms, see [42, 43]) or can alternatively be modelled with the help of off-diagonal interactions in different types of
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modified theories. 2) Generic off-diagonal solutions encode configurations with a nontrivial parametric vacuum and
effective matter field interactions, also with gravitational polarizations of the interaction and a cosmological constant,
and for nontrivial generating and integration functions. For certain well-defined conditions, such models describe
broken fundamental symmetries —as, for instance, locally anisotropic interactions, terms deploying violation of local
Lorentz symmetry, and warped and trapping configurations— which points towards new methods of quantization and
results in alternative scenarios of accelerating and anisotropic cosmological theories, with different solutions for the
dark energy and dark matter physical problems. 3) Considering off-diagonal configurations one can model classical
and quantum f(R) modified gravities and the like, and also Hořava-Lifshitz and Finsler like theories in a suggestive,
unified geometric way [19–22,27–31].

The aim of this paper is to apply the anholonomic frame deformation method for the constructing of exact off-
diagonal solutions corresponding to cosmological models of modified gravity of the general form f(R, T,RμνTμν), and
to study the conditions under which such configurations can be alternatively modeled as effective Einstein spaces with
nontrivial off-diagonal parametric vacuum and nonvacuum configurations. The FLRW cosmological dynamics and a
reconstruction procedure of the ΛCDM universe will be investigated. To be noted is that we will not work with exotic
anisotropic fluid configurations as in [15–18,24–26], but rather with off-diagonal deformations of de Sitter solutions, as
in [19–22]. The problem of matter instabilities in modified and deformed GR theories will be analyzed and solutions
will be obtained for certain classes of nonholonomic configurations.

2 Off-diagonal interactions in modified gravity and cosmology

In this section, we formulate a geometric approach to f(R, T,RμνTμν) gravity and summarize the anholonomic frame
deformation method [27–31]. The geometric constructions will be adapted to nonholonomic distributions with asso-
ciated nonlinear connection (N-connection) structure1. The N-connections formalism will be used for constructing
certain classes of N-adapted frames with respect to which the gravitational and matter field equations decouple in
very general forms (see sect. 3 below). This is possible for metric compatible linear connections with nonholonomically
induced torsions completely defined by metric tensors. Imposing additional constraints, we can generalize zero torsion
configurations for the Levi-Civita connection, ∇.

2.1 Modeling dark energy with off-diagonal metrics

In order to motivate our approach, we discuss simple FLRW cosmology and dark energy and dark matter models
which are extended for generic off-diagonal solutions in GR and modifications. Working in a spatially flat spacetime
with diagonal quadratic form

ds2 = g̊α(t)(duα)2 = å2(t)
[
(dx1)2 + (dx2)2 + (dy3)2

]
− dt2, (1)

for local coordinates uα = (xi, y3, y4 = t), when i = 1, 2, the FLRW equations are

3
κ2

H̊2 = ρ̊ and ρ̊� + 3H̊(ρ̊ + p̊) = 0,

where ρ̊ and p̊ are, respectively, the total energy and pressure of a perfect fluid (pressureless or just radiation),
H̊ := å�/̊a for å� := ∂å/∂t = ∂4̊a = ∂t̊a, and κ2 is related to the gravitational (Newton) constant2. To explain the
observational data of an accelerating universe, and dark energy and matter, various models have been studied (see
reviews and references in [1–14]), with effective or exotic matter with an equation of state (EoS) of phantom kind,
p = �ρ, with � < −1. The simplest model of phantom DE is given by

3
κ2

H2
DE = ρDE and ρ�DE + 3HDE(1 + �)ρDE = 0,

which for � < −1 admits an exact solution

HDE =
2

3(1 + �)(ts − t)
. (2)

1 It should be noted that in generalized Finsler like theories, the N-connection structure is given by a set of three fundamental
geometric objects which, for certain models, is completely defined by the so-called Lagrange/Finsler generating function. We
do not study in this work Finsler like modifications of GR.

2 We use a system of notations different from that in standard cosmology, as this will be convenient for constructing cosmo-
logical models with generic off-diagonal metrics, and also in order to follow the conventions in our previous works.
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This solution has a finite-time future singularity (Big Rip) at t = ts.
Some models have been considered where the Hubble function H(t) is determined by a phantom DE coupled with

DM, via a coupling constant, Q, which results in the conservation law

ρ�DE + 3H(1 + �)ρDE = −QρDE, ρ�DM + 3HρDM = QρDM.

The solutions of these equations can be expressed as

ρDE = 0ρDE e−3(1+�)e−Qt and ρDMa3 = Q 0ρDE

∫ t

dt′e−3�e−Qt,

respectively, where 0ρDE is an integration constant and the EoS is taken to be p = �ρDE. These functions can be used
for the second FLRW equation,

− 1
κ2

(2H� + 3H2) = p.

We have
H = −Q/3(1 + �), (3)

for the exact solution of this equation, which corresponds to the evolution for de Sitter space, a(t) = a0e
−Qt/3(1+�),

where a0 is determined from a
3(1+�)
0 = − 3κ2

Q2 (1+�)2� 0ρDE. The value of H in (3) is positive for � < −1, what does
not mean that the Big Rip singularity in (2) can be avoided, but just shows that the coupling of the phantom DE and
DM gives a possibility that the universe could evolve as a de Sitter phase. More than that, the first FLRW equation,

3
κ2

H2 = ρDE + ρDM, (4)

imposes the relation ρDM = (1 + �)ρDE. Considering a de Sitter solution as an attractor, with � ∼ −4/3, we obtain
−(1+�) ∼ 1/3, which is almost independent from the initial condition, i.e., it solves for free the so-called coincidence
problem3.

Since the DE-DM coupling does not always remove the singularity and there is no such fluid with constant
EoS parameter, models were considered which are proportional to a power of the scalar curvature, for instance,
pfluid ∝ R1+ε, for ε > 0. In that case the total EoS parameter is greater than −1 and a Big Rip does not occur for
large curvature. Two variants of theories have been exploited where this kind of inhomogeneous effective fluid matter
is realized, by a conformal anomaly and other quantum effects or by some modified model of gravity, for instance,
when the gravitational Lagrange density R → f(R) = R + Rκ. In the case 1 < κ < 2, we have that solutions with

Ht ∼ − (κ − 1)(2κ − 1)
κ − 2

and weff ∼ −1 − 2H�/3H2 > −1

do not result in a Big Rip or any other kind of future singularity. Similar classical and quantum arguments were
considered as motivations to study f(R) modified gravity theories [1–18,24–26,42,43].

In a series of works [19–22, 27–31, 44–47], various classes of off-diagonal solutions were studied which can be
constructed by geometric methods in modified gravity theories. We proved that, for instance, certain important effects
and cosmological models related to f(R) modified theories and the like can alternatively be explained by nonlinear
off-diagonal gravitational and matter field interactions with respect to nonholonomic frames. Let us briefly recall the
main ideas supporting such an approach. Off-diagonal ansätze for metrics (see, for instance, (59)),

gαβ =

⎡

⎢
⎢
⎢
⎢
⎣

g1 + ω2(w 2
1 h3 + n 2

1 h4) ω2(w1w2h3 + n1n2h4) ω2w1h3 ω2n1h4

ω2(w1w2h3 + n1n2h4) g2 + ω2(w 2
2 h3 + n 2

2 h4) ω2w2h3 ω2n2h4

ω2w1h3 ω2w2h3 ω2h3 0

ω2n1h4 ω2n2h4 0 ω2h4

⎤

⎥
⎥
⎥
⎥
⎦

, (5)

3 If DE does not couple with DM, we have ρDM ∼ a−3 and ρDE ∼ a−3(1+�), which do not satisfy the observed 1/3 ratio of
DE and DM and does result in a coincidence problem.
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where the coefficients are parameterized by functions of the type g1 = g2 ∼ eψ(xi) and ni(xk) (we can fix certain
constants for corresponding classes of generating, Φ(xk, t), and integration functions), thus ha[Φ(xk, t)] ∼ ha(t), [for a =
3, 4], wi[Φ(xk, t)] ∼ wi(t) and ω(xk, t) ∼ ω(t), were found to generate exact (in general, nonhomogeneous) cosmological
solutions in modified gravity theories. Such generic off-diagonal metrics4 can be represented in the form

ds2 = a2(t)[(e1)2 + (e2)2] + a2(t)ĥ3(t)(ê
3)2 + (ê 4)2, (6)

with respect to so-called N-adapted frames (eqs. (12) and (13) are used, in general)

ê 3 = dy3 + ni dxi, ê 4 = dt + wi(t)dxi.

For certain well-defined conditions (see sect. 3), we can consider off-diagonal deformations g̊α(t) → gαβ(xk, t) ∼
gαβ(t) defining new classes of cosmological models which mimic contributions from f(R) modified gravity encoded into
the data for ω(t), wi(t), etc. The corresponding formulas are nonlinear functionals relating generating functions to the
(effective) matter sources. Such off-diagonal configurations are equivalently modeled as solutions of some effective field
equations Řα

β = Λ̌δα
β . In this way, various classes of cosmological solutions of modified gravities can be alternatively

modeled by metrics of the type (6), when the scaling factor a(t) is nonlinearly determined by the coefficients wi(t) and
ha(t) via a generating function Φ(t) and an effective source Υ (t). We can model ΛCDM cosmology and analogously DE
and DM effects with ρDE + ρDM encoded into Φ(t) and Υ (t), but with respect to the adapted frames êa(t). Solutions
with off-diagonal metrics may be interpreted in accordance with observational data if a(t) is chosen to determine, for
instance, an effective H(t) (3) with cosmological evolution from a spacetime background encoding f(R)-modifications.
To prove such results in a rigorous mathematical way we need to apply advanced methods from the geometry of
nonholonomic manifolds. For our purposes, such manifolds can be considered as usual pseudo-Riemannian spacetimes,
endowed with additional nonintegrable distributions and frame structures.

Both classes of metrics (1) and (6) can be characterized, respectively, by scaling factors å(t) and a(t). Let us
suppose that we have found a cosmological solution of type (6) in a given theory of modified gravity and analyze how
this metric can be formally diagonalized for deformations of a small real parameter ε (when 0 ≤ ε � 1). We can
consider “homogeneous” approximations of type ĥ3(t) ≈ 1 + εχ̂3(t), wi(t) ∼ εw̌i(t) and ni ∼ εňi

5. In explicit form,
such a metric, with small off-diagonal deformations on ε and rescaling å(t) → a(t), can be written as

ds2 = a2(t)
[
(e1)2 + (e2)2

]
+ a2(t) [1 + εχ̂3(t)]

(
dy3 + εňidxi

)2
+
(
dt + εw̌i(t)dxi

)2
. (7)

See below how it is possible to construct subclasses of off-diagonal configurations in a f̂(R̂, . . .) gravity where Υ̂ (32)
goes into Λ̌ (33), and Φ̌2 = Λ̌−1[Φ̂2|Υ̂ |+

∫
dζ Φ̂2∂ζ |Υ̂ |] (61) results in f̂ → f̌ = Ř, an effective Řα

β = Λ̌δα
β which admits

LC solutions with zero torsion. We will be able to reproduce the ΛCDM model provided the metric (7) defines certain
classes of solutions constructed for a corresponding effective action in GR, namely

S =
1
κ2

∫
δ4u
√
|εgαβ |( εŘ − 2Λ̌ + mL(εgαβ , mΨ)). (8)

In this action, the Ricci scalar εŘ = Ř(a, ε) is constructed for εgαβ with coefficients of (7), Λ̌ is an effective cos-
mological constant used for nonholonomic deformations, and mL is considered for certain effective matter fields with
certain pressure mp and energy density mρ. The EoS are chosen, for simplicity, to correspond to an effective de Sitter
configuration determined by Λ̌, where �̌ := p̌Λ/ρ̌Λ = −1, with pressure p̌Λ and energy density ρ̌Λ.

We can describe the theories determined by (8) and (7) with respect to nonholonomic (nonintegrable) dual frames
êα = (ei, ê a), which is convenient for constructing off-diagonal solutions, or to redefine the constructions with respect
to local coordinate coframes duα = (dxi,dya), where certain analog of the FLRW metric and ΛCDM like theories can
be analyzed. For ε → 0, the metric (7) transforms into

ds2 = a2(t)
[
(e1)2 + (e2)2 + (dy3)

]2
+ dt2, (9)

which is just (1) but with a rescaled factor because of the nonholonomic transformations Υ̂ → Λ̌ and Φ̂ → Φ̌.
4 Which cannot be diagonalized by coordinate transformations.
5 For information on inhomogeneity effects in cosmology, see [48]. In a more general context, it is possible to consider also

“small” local anisotropic deformations depending on space-like coordinates when bχ3(x
k, t), wi(t) ∼ εw̌i(x

k, t) and ni ∼ εňi(x
k).

Some amount of anisotropy is compatible with observational data in various gravity and cosmological theories. See [49,50], for
reviews of various approaches related to GR and generalizations of Bianchi, Kasner and Gödel type configurations, refs. [44–47],

for off-diagonal configurations and ref. [51] for f(R)-modified gravity theories. We note also that the approximation bh3(t) ≈
1 + εbχ3(t) can be very restrictive —one can consider more general classes of solutions with arbitrary bh3(t).
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The corresponding Einstein equations with respect to the nonholonomic frames are

3H2 = κ2
mρ + Λ̌,

2H� = −κ2(mρ + mP + Λ̌), (10)

where H� := a�/a. We can express εŘ + mL = aŘ + 0
mL + ε 1

mL, where aŘ and 0
mL are computed for the metric (9)

and 1
mL include all ε-deformations in (8). Such 1

mL results in the effective splitting mρ = 0
mρ + ε 1

mρ and mp =
0
mp+ ε 1

mp. In this way, we can encode the off-diagonal components as certain additional terms into the matter source,
or either consider them as a polarization of the effective cosmological constant Λ := Λ̌ + ε 1Λ̌6. We also note that
possible small inhomogeneous and locally anisotropic contributions, and concordance with observational data, can be
estimated similarly to those presented, e.g., in [51]. This could be a ground for further investigations of such “slightly”
f(R)-modified off-diagonal cosmological models. In this subsection we provide only a few qualitative estimations, in
order to demonstrate that “realistic” ΛCDM like cosmological theories can be equivalently modeled both in terms of
nonholononomic frames and of coordinate frames, if small off-diagonal deformations are considered, only, and then the
limit ε → 0 is taken.

In coordinate frames, eqs. (10) are written as

3H2 = κ2 0
mρ + Λ,

2H� = −κ2(0mρ + 0
mP + Λ).

For ε → 0, the diagonalized solutions are determined by a (and not by å in (1)) and can be parameterized to define
and effective ΛCDM like model where a = ace

Hct, for a positive constant ac. Thus, modified gravities with equivalent
off-diagonal encodings of f(R)-modified gravity seem to result in realistic cosmological models, at least for small
parametric ε-deformations.

The main goal of this work is to study possible nonlinear gravitational and matter field interactions which result in
the encoding of modified gravities into generic off-diagonal metrics defining effective Einstein spaces, without certain
special assumptions on the linearization of some associated systems of PDEs and their solutions. Surprisingly enough,
the AFDM allows us to find such “nonperturbative” solutions in explicit form, by using geometrical methods. The
values a(t), ĥ3(t), wi(t) and ni are nonlinearly determined by generating functions and sources of type Φ(t) and Υ (t). In
general, such nonlinear modifications of a “prime” å(t) are not small. Even if we can introduce an effective scaling factor
a(t), this value describes a nonlinear and inhomogeneous evolution with respect to nonholonomic (nonintegrable) dual
frames êα = (ei, êa). All generic off-diagonal cosmological models can be also redefined with respect to local coordinate
coframes duα = (dxi,dya). In local coordinate form, we are not able to analyze common and different properties of
diagonalizable and nondiagonalizable models only by comparing the evolutions of a(t) and å(t). From the physical
point of view, we can consider the Universe as an aether with a complex vacuum and nonvacuum nonlinear structure
determined by possible f(R)-modifications. An observer acquires experimental/observational data with respect to a
local comoving frame êα = (ei, êa) where generic off-diagonal gravitational and matter field interactions are taken into
consideration. For certain parametric resonant dependencies, even the smallest nonlinearities can result in substantial
polarizations of the gravitational vacuum aether, with possible Lie group or solitonic symmetries, or without any
anisotropic symmetry prescribed in advance. Such cosmological models are described by more sophisticate geometries
than the FLRW cosmology (for references, see [48,50]).

The key idea of our work is that, within certain assumptions, various possible f(R)-nonlinear modifications can
be encoded into off-diagonal terms and some effective a(t), ĥ3(t), wi(t) via nonlinear interactions. This can be done
for more general classes of cosmological solutions with nonlinear gravitational interactions restructuring the spacetime
aether before considering certain small ε-parameters. Such nonlinear cosmological evolution is determined by three
functions of a time like variable, t, characterizing a more complex model then the FLRW one. We get, indeed: 1) a
scaling factor a(t); 2) a diagonal inhomogeneity function ĥ3(t); and 3) off-diagonal deformations via wi(t). Having
constructed a class of off-diagonal solutions then, with certain additional assumptions for the effective linearization in
terms of ε, one can study possible observable ε-small inhomogeneous or locally anisotropic contributions. The physical
effects of small ε-deformations can be compared, for instance, with those for a scaling factor å(t), although this will not
be the aim of this paper. The main results and conclusions of it (see sects. 4 and 5) will have to do with certain special
properties of off-diagonal nonlinear systems with nonintegrable constraints and with the exact solutions. Even for the
physical interpretations of observable cosmological data at a fixed time t = t0, we can take the limit ε → 0, where
ĥ3(t) → 1, and wi and ni may vanish or result in a nonholonomic frame structure; a generalized nonlinear cosmological
evolution by such generalized solutions may result in a modified scaling factor a(t) encoding both f(R)-modifications
and off-diagonal nonlinear interactions for t < t0.

6 We do not provide here explicit formulas for the corrections proportional to ε because, in the end, we shall take smooth
limits ε → 0. The main constructions for nonholonomic off-diagonal transforms are based on rescaling å(t) → a2(t) generated

by the solutions with bΥ → Λ̌ and bΦ → Φ̌.
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2.2 Conventions and geometric preliminaries

2.2.1 Nonlinear connections and N-adapted frames

Let us consider a pseudo-Riemannian manifold V , dim V = n + m, (n,m ≥ 2). A Whitney sum N is defined for its
tangent space TV ,

N : TV = hTV ⊕ vTV. (11)

Conventionally, this states a nonholonomic (equivalently, nonintegrable, or anholonomic) horizontal (h) and vertical
(v) splitting, or a nonlinear connection (N-connection) structure. In local form, it is determined by its coefficients
N = {Na

i (u)}, when N = Na
i (x, y)dxi ⊗ ∂/∂ya for certain local coordinates u = (x, y), or uα = (xi, ya), and h-indices

i, j, . . . = 1, 2, . . . n and v-indices a, b, . . . = n + 1, n + 2, . . . , n + m7. Such a h-v decomposition can be naturally
associated with some N-adapted frame or, respectively, dual frame structures, eν = (ei, ea) and eμ = (ei, ea),

ei = ∂/∂xi − Na
i (u)∂/∂ya, ea = ∂a = ∂/∂ya, (12)

and
ei = dxi, ea = dya + Na

i (u)dxi. (13)

The nonholonomy relations hold
[eα, eβ ] = eαeβ − eβeα = W γ

αβeγ , (14)

with nontrivial anholonomy coefficients W b
ia = ∂aN b

i , W a
ji = Ωa

ij = ej(Na
i ) − ei(Na

j ). The coefficients Ωa
ij define the

N-connection curvature.

2.2.2 Distinguished metric structures

Any metric structure g on V (for physical applications, we consider pseudo-Euclidean signatures of type (+,+,+,−))
can be written in two equivalent ways: 1) with respect to a dual local coordinate basis,

g = g
αβ

duα ⊗ duβ , (15)

where

g
αβ

=

[
gij + Na

i N b
j gab Ne

j gae

Ne
i gbe gab

]

, (16)

or 2) as a distinguished metric (in brief, d-metric), i.e. in N-adapted form,

g = gα(u)eα ⊗ eβ = gi(xk)dxi ⊗ dxi + ga(xk, yb)ea ⊗ ea. (17)

To prove the decoupling of fundamental gravitational equations in modified gravity is possible for d-metrics and
working with respect to N-adapted frames.

2.2.3 Distinguished connections

A linear connection is called distinguished, d-connection, D = (hD, vD), if it preserves under parallelism a prescribed
N-connection splitting (11). Any D defines an operator of covariant derivation, DXY, for a d-vector field Y in
the direction of a d-vector X. We note that any vector Y (u) ∈ TV can be parameterized as a d-vector, Y =
Yαeα = Yiei + Yaea, or Y = (hY, vY ), with hY = {Yi} and vY = {Ya}, where the N-adapted base vectors and
duals, or covectors, are chosen in N-adapted form (12) and (13). The local coefficients of DXY can be computed for
D = {Γ γ

αβ = (Li
jk, La

bk, Ci
jc, C

a
bc)} and h-v components of Deα

eβ := Dαeβ using X = eα and Y = eβ
8. We can

characterize a d-connection by three fundamental geometric objects: the d-torsion, T , the nonmetricity, Q, and the
d-curvature, R, respectively, defined by

T (X,Y) := DXY − DYX − [X,Y], Q(X) := DXg,

R(X,Y) := DXDY − DYDX − D[X,Y]. (18)

7 The Einstein rule on index summation will be applied if the contrary is not stated. For convenience, “primed” and “un-
derlined” indices will be used, and boldface letters to emphasize that an N-connection spitting is considered on a spacetime
manifold V = (V,N).

8 We shall use the terms d-vector, d-tensor, etc., for any vector, tensor valued with coefficients defined in a N-adapted form
with respect to the necessary types of tensor products of bases, (12) and (13), and necessary h-v decompositions.
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The N-adapted coefficients,

T = {Tγ
αβ =

(
T i

jk, T i
ja, T a

ji, T
a
bi, T

a
bc

)
}, Q = {Qγ

αβ},
R = {Rα

βγδ =
(
Ri

hjk, Ra
bjk, Ri

hja, Rc
bja, Ri

hba, Rc
bea

)
},

of such fundamental geometric objects are computed by introducing X = eα and Y = eβ , and D = {Γ γ
αβ} into the

formulas above (see [27–31] for details).

2.2.4 Preferred d-metric and d-connection structures

A d-connection D is compatible with a d-metric g if and only if Q = Dg = 0. Any metric structure g on V is
characterized by a unique metric compatible and torsionless linear connection called the Levi-Civita (LC) connection,
∇. It should be noted that ∇ is not a d-connection because it does not preserve under parallelism the N-connection
splitting (11). Nevertheless, such a h-v decomposition allows us to define N-adapted distortions of any d-connection D,

D = ∇ + Z, (19)

with respective conventional “nonboldface” and “boldface” symbols for the coefficients: ∇ = {Γ α
βγ} and, for the

distortion d-tensor, Z = {Zα
βγ}.

This stands for any prescribed N and g = hg + vg, but alternatively to ∇, on V, we can work with the so-called
canonical d-connection, D̂, when

(g,N) →
∇ : ∇g = 0; ∇T = 0;

D̂ : D̂g = 0; hT̂ = 0, vT̂ = 0, hvT̂ = 0;

are completely defined by the same metric structure. The canonical distortion d-tensor Ẑ in the distortion relation of
type (11), D̂ = ∇+Ẑ, is an algebraic combination of the coefficients of the corresponding torsion d-tensor T̂ = {T̂α

βγ}.
The respective coefficients of the torsions, T̂ and ∇T = 0, and curvatures, R̂ = {R̂α

βγδ} and ∇R = {Rα
βγδ}, of D̂ and

∇ can be defined and computed using formulas similar to (18). We note that the coefficients T̂α
βγ are not trivial but

nonholonomically induced by anholonomy coefficients W γ
αβ (14) and certain off-diagonal coefficients of the metric (16)9.

The Ricci tensors of D̂ and ∇ are computed in the standard form,

R̂ic =
{
R̂ βγ := R̂γ

αβγ

}
and Ric =

{
R βγ := Rγ

αβγ

}
.

With respect to N-adapted coframes (13), the Ricci d-tensor R̂ic is characterized by four h-v N-adapted coefficients

R̂αβ =
{

R̂ij := R̂k
ijk, R̂ia := −R̂k

ika, R̂ai := R̂b
aib, R̂ab := R̂c

abc

}
, (20)

and (an alternative to the LC-scalar curvature, R := gαβRαβ) scalar curvature,

R̂ := gαβR̂αβ = gijR̂ij + gabR̂ab. (21)

We emphasize that any (pseudo) Riemannian geometry can be equivalently described by both geometric data
(g,∇) and (g,N, D̂). For instance, there are canonical distortion relations

R̂ = ∇R+ ∇Z and R̂ic = Ric + Ẑic,

where the respective distortion d-tensors ∇Z and Ẑic are computed by introducing D̂ = ∇+ Ẑ into the corresponding
formulas (18) and (20). The canonical data (g,N, D̂) provide an example of nonholonomic (pseudo-) Riemannian
manifold which is a standard one but enabled with a nonholonomic distribution determined by (g,N). If the coefficients
Ωa

ij = 0, such a distribution is holonomic, i.e. integrable.

9 In the Riemann-Cartan geometry, such a torsion is for a general metric compatible linear connection, D, which is not
necessarily completely defined by the data (g,N).
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Nevertheless, physical theories formulated in terms of data as (g,∇), or (g,N, D̂), are not equivalent if certain
additional conditions are not imposed. Let us consider an explicit example. We can introduce the Einstein d-tensor
of D̂,

Êαβ := R̂αβ − 1
2
gαβ R̂, (22)

and construct a N-adapted energy momentum tensor for a Lagrange density mL of the matter fields, T̂αβ :=

− 2√
|gμν |

δ(
√

|gμν | m
bL)

δgαβ , performing a N-adapted variational calculus with respect to N-elongated (co) frames (12)

and (13), and consider that D̂ is used as covariant derivative instead of ∇. In this way a nonholonomic deforma-
tion of Einstein’s gravity is constructed, being ∇ → D̂ = ∇ + Ẑ, with gravitational field equations

R̂αβ = κ2

(
T̂αβ − 1

2
gαβT̂

)
, (23)

for a conventional gravitational constant κ2 and T̂ := gμνT̂μν . Such equations are different from the standard Einstein

equations in GR because, in general, R̂αβ = Rαβ and T̂αβ = Tαβ , where Tαβ := − 2√
|gμν |

δ(
√

|gμν | mL)

δgαβ for mL[gαβ ,∇] =
mL̂[gαβ , D̂].

LC-configurations can be extracted from certain classes of solutions of eqs. (23) if additional conditions are imposed,
resulting in zero values for the canonical d-torsion, T̂ = 0. In N-adapted coefficient form, such condition is equivalent to

T̂ i
jk = L̂i

jk − L̂i
kj , T̂ i

ja = Ĉi
jb, T̂ a

ji = −Ωa
ji, T̂ c

aj = L̂c
aj − ea(N c

j ), T̂ a
bc = Ĉa

bc − Ĉa
cb. (24)

It should be emphasized that we are able to find generic off-diagonal solutions of the Einstein equations in GR
depending on three and more coordinates for D̂ → ∇, when R̂αβ → Rαβ and T̂αβ → Tαβ , if the nonholonomic
constraints (24) are imposed after certain classes of solutions were found for D̂ = ∇. But we are not able to decouple
such systems of nonlinear PDEs if the zero torsion condition for ∇ is imposed from the very beginning.

2.3 Nonholonomic structures in f(R, . . .)-modified gravity theories

In general, different models of modified gravity are formulated for independent metric and linear connection fields
with a corresponding Palatini-type variational formulation (see [1–14]). The gravitational and matter field equations
in modified gravities consist in very sophisticate systems of nonlinear PDEs for which finding exact solutions is a very
difficult technical task, even for the simplest diagonal ansätze with the coefficients of the metrics and connections
depending on just one (time or space) variable. Nevertheless, the anholonomic frame deformation method [27–31]
seems to work efficiently and allows to construct off-diagonal solutions in modified gravity theories [44–47].

2.3.1 Equivalent modeling of modified gravity

Consider three classes of equivalent theories of modified gravity defined for the same metric field g = {gμν} but with
different actions (and related functionals) for gravity, gS, and matter, mS, fields,

S = gS + mS =
1

2κ2

∫
f(R, T,RαβTαβ)

√
|g|d4u +

∫
mL
√

|g|d4u

= gŜ + mŜ =
1

2κ2

∫
f̂(R̂, T̂, R̂αβT̂αβ)

√
|ĝ|d4u +

∫
mL̂
√

|ĝ|d4u

= gŠ + mŠ =
1

2κ2

∫
Ř
√
|ǧ|d4u + Λ̌

∫ √
|ǧ|d4u. (25)

Here, we use boldface d4u in order to emphasize that the integration volume is for N-elongated partial derivatives (13),
κ2 is the gravitational coupling constant, the values with “ˆ” are computed for a canonical d-connection D̂ and the
values with “∨” for re-defined geometric data (ǧ, Ň, Ď) for certain nonholonomic frame transforms and nonholonomic
deformations gαβ ∼ ĝαβ ∼ ǧαβ

10. For simplicity, we consider matter actions which only depend on the coefficients of
a metric field and not on their derivatives,

T̂αβ = mL̂ ĝαβ + 2δ(mL̂)/δĝαβ .

10 We shall give details in sects. 3.1.3 and 3.2.
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Such variations can be performed with respect to coordinate frames for gμν or in various N-adapted forms for ĝμν and
ǧμν .

2.3.2 Off-diagonal deformations of FLRW metrics

We assume that the matter content of the universe can be approximated by a perfect (pressureless) fluid, where

T̂αβ = pĝαβ + (ρ + p)v̂αv̂β (26)

is defined for certain (effective) energy and pressure densities, respectively, v̂α being the four-velocity of the fluid
for which v̂αv̂α = −1 and v̂α = (0, 0, 0, 1) in N-adapted comoving frames/coordinates. Here frame deforma-
tions/transforms of metrics of type ĝαβ = eα′

αeβ′

β g̊α′β′ , will be studied, being the FLRW diagonalized element

d̊s2 = g̊α′β′duα′
duβ′

= å2(t)
[
dr2 + r2dθ2 + r2 sin2 θdϕ2

]
− dt2,

= å2(t)
[
dx2 + dy2 + dz2

]
− dt2, (27)

where the scale factor å(t) (we use also the value H̊ := å/̊a, for å� := d̊a/dt) with signature (+,+,+,−), and a
parametrization of coordinates in the form uα′

= (x1′
= r, x2′

= θ, y3′
= ϕ, y4′

= t), or as Cartesian coordinates
(x1′

= x, x2′
= y, y3′

= z, y4′
= t). For such cosmological metrics, the main issues of the Einstein and modified

Universes are encoded into energy-momentum tensor T̊αβ = p̊̊gαβ + (ρ̊ + p̊)̊vαv̊β (we omit primes or other distinctions
in the coordinate indices if there is no ambiguity) arising from a matter Lagrangian mL̊ through

T̊ (t) = T̊α
α = −ρ̊, P̊ (t) = R̊αβT̊αβ = R̊44T̊

44 = −3ρ̊(H̊2 + H̊�), (28)

for T̊α
β = diag[0, 0, 0,−ρ̊].

We will consider nonhomogeneous and locally anisotropic cosmological solutions of type (16) and/or (17) generated
by off-diagonal deformations of (27)

gi = gi(xk) = ηi(xk, y4)̊gi(xk, y4) = eψ(xk),

ga = ω2(xk, y4)ha(xk, y4) = ω2(xk, y4)ηa(xk, y4)̊ga(xk, y4),

N3
i = ni(xk), N4

i = wi(xk, y4). (29)

In eqs. (29) there is no summation on repeated indices, ηα = (ηi, ηa) are polarization functions, the N-connection
coefficients are determined by ni and wi, the vertical conformal factor ω may depend on all spacetime coordinates and
g̊α = (̊gi, g̊a) define the “prime” diagonal metric if ηα = 1 and Na

i = 0. The “target” off-diagonal metrics are with
Killing symmetry on ∂/∂y3 when the coefficients (29) do not depend on y3 11,

ds2 = a2(xk, t)[η1(xk, t)(dx1)2 + η2(xk, t)(dx2)2] + a2(xk, t)ĥ3(xk, t)(ê3)2

+ω2(xk, t)h4(xk, t)(ê 4)2, (30)

when a2(xk, t)ηi(xk, t) = eψ(xk), for i = 1, 2; a2 ĥ3 = ω2(xk, t)h3(xk, t), and

ê 3 = dy3 + ni(xk)dxi, ê 4 = dy4 + wi(xk, t)dxi.

Functions ηi, ηa, a, ψ, ω, ni, wi will be found such that, via nonholonomic transforms (29), when g̊α′β′(t) (27) →
ĝαβ(xk, t) (30), off-diagonal nonhomogeneous cosmological solutions are generated in a model of modified gravity (25).
We can consider subclasses of off-diagonal cosmological solutions but with deformed symmetries when certain nontrivial
limits ĝαβ(xk, t) → ĝαβ(t) can be found and define viable cosmological models.

11 We can consider nonholonomic deformations with non-Killing symmetries when, for instance, ω(xk, y4) → ω(xk, y3, y4),
which results in a more cumbersome calculus and geometric techniques. For simplicity, we do not study such generalizations in
this work (see examples in [27–30]).
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2.3.3 Field equations for nonholonomic modified gravities and FLRW cosmology

Applying an N-adapted variational procedure with respect to a nonholonomic basis (12) and (13) for the action
S = gŜ + mŜ, which is similar to that in [24–26] but for ∇ → D̂ and matter source T̂αβ (26), we obtain the field
equations for the corresponding modified gravity theory

R̂αβ
1f̂ − 1

2
ĝαβ f̂ + (ĝαβD̂μD̂μ − D̂αD̂β) 1f̂ + (T̂αβ + Θαβ) 2f̂

+ Ξαβ
3f̂ +

1
2
(D̂μD̂μT̂αβ

3f̂ + ĝαβD̂μD̂νT̂μν 3f̂) − D̂νD̂(αT̂ ν
β)

3f̂ = κ2 T̂αβ , (31)

for
Θαβ = p ĝαβ − 2T̂αβ , Ξαβ = 2 Êν

(αT̂β)ν − p Êαβ − 1
2
R̂T̂αβ ,

with respective d-tensors defined by eqs. (20), (21) and (22), where 1f̂ := ∂ f̂/∂R̂, 2f̂ := ∂ f̂/∂T̂ and 3f̂ := ∂ f̂/∂P̂, when
P̂ = R̂αβT̂αβ and (αβ) denotes symmetrization of the indices.

In general, the divergence with D̂ and/or ∇ of eqs. (31) is not zero. Also eqs. (23) have a similar property. In
the last case, we can obtain the continuity equations as in GR and then deform them by using the distortions (19),
which for the canonical d-connections are completely determined by the metric structure. There are certain types of
conservation laws for matter fields with additional nonholonomic constraints. We can consider the field equations (31)
and the equations derived by taking the divergence with D̂ as nonholonomic distortions of similar systems of nonlinear
functional PDEs considered in [24–26] for ∇. Remarkably, such sophisticate nonholonomic and nonlinear systems can be
solved in very general off-diagonal forms, by applying the anholonomic frame deformation method. In order to compare
these results and to find possible applications in modern cosmology, we will consider a particular equation of state
(EoS) p = �ρ with � = const, and study the cosmology of off-diagonal distortions of certain FLRW models considered
in the framework of GR and its modifications. In both cases, by exploring some particular classes of solutions, the
dynamics of the matter sector of generalized f(R, T,RμνTμν) gravity (with respect to N-adapted frames) may lead to
similar cosmological scenarios as GR, but with nonholonomic constraints and deformations.

3 The anholonomic frame deformation method and exact solutions in modfied gravities

A surprising property of eqs. (23) and (31) is that they can be integrated in very general form with generic off-diagonal
metrics when their coefficients depend on all spacetime coordinates via various classes of generating and integration
functions and constants. In particular, we can consider such generating and integration functions when ĝαβ(xk, t) (30)
result in off-diagonal metrics of type ĝαβ(t) depending on the parameters and possible (non)commutative Lie algebra
or algebroid symmetries.

3.1 Off-diagonal FLRW-like cosmological models

We shall study cosmological models with sources of type (26) when the four-velocity v̂α is reparameterized in a way
that for some frame transforms as

Ŷαβ := κ2

(
T̂αβ − 1

2
gαβT̂

)

→ diag
[
Υ1 = Υ2, Υ2 = hΥ (xi), Υ3 = Υ4, Υ4 = vΥ (xi, t)

]
(32)

→ Λ̂gαβ (redefining the generating functions and sources), (33)

for effective h- and v-polarized sources, respectively, hΥ (xi) and Υ4 = vΥ (xi, t), or an effective cosmological constant
Λ̂. For simplicity, we can consider effective matter sources and “prime” metrics with Killing symmetry on ∂/∂3, i.e.
when the effective matter sources and d-metrics do not depend on the coordinate y3 12. In brief, the partial derivatives
∂α = ∂/∂uα on a 4-d manifold will be written as s• = ∂s/∂x1, s′ = ∂s/∂x2, s∗ = ∂s/∂y3, s� = ∂s/∂y4.

12 The method can be extended to account for y3 dependence and non-Killing configurations (see [27–30]). In this paper the
local coordinates and ansätze for d-metrics are parameterized in different forms than in previous works, what is more convenient
for the study of cosmological models.
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The nontrivial components of the Ricci d-tensor (20) and nonholonomic Einstein equations (22), with source (32)
parameterized with respect to N-adapted bases (12) and (13), for a d-metric ansätze (17) with coefficients (29), are

−R̂1
1 = −R̂2

2 =
1

2g1g2

[
g••2 − g•1g•2

2g1
− (g•2)2

2g2
+ g′′1 − g′1g

′
2

2g2
− (g′1)

2

2g1

]
= hΥ, (34)

−R̂3
3 = −R̂4

4 =
1

2h3h4

[
h��

3 − (h�
3)

2

2h3
− h�

3h
�
4

2h4

]
= vΥ, (35)

R̂3k =
h3

2h4
n��

k +
(

h3

h4
h�

4 −
3
2
h�

3

)
n�

k

2h4
= 0, (36)

R̂4k =
wk

2h3

[
h��

3 − (h�
3)

2

2h3
− h�

3h
�
4

2h4

]
+

h�
3

4h3

(
∂kh3

h3
+

∂kh4

h4

)
− ∂kh�

3

2h3
= 0, (37)

where R̂α
β are computed for ω = 1 and then the formulas are generalized for ω = 1 via v-conformal transforms (see

refs. [24–26] for details),
eiω = ∂iω − ni ω∗ − wiω

� = 0. (38)

The d-torsion (24) vanishes if the (Levi-Civita, LC) conditions L̂c
aj = ea(N c

j ), Ĉi
jb = 0, Ωa

ji = 0, are satisfied for

w�
i = (∂i − wi∂4) ln

√
|h4|, (∂i − wi∂4) ln

√
|h3| = 0,

∂kwi = ∂iwk, n�
i = 0, ∂ink = ∂kni. (39)

The above system of equations can be integrated in very general situations, for instance, for d-metrics with Killing
symmetry on ∂3.

3.1.1 Decoupling of PDEs for inhomogeneous cosmological metrics

The system of equations (34)–(38) has an important decoupling property. To show this explicitly, we rewrite it as
nonlinear PDE which posses an important decoupling property, allowing integration step by step of such equations.
For h�

a = 0, hΥ , vΥ = 0, Killing symmetry on ∂3 and parameterizations (29), these equations can be written as

ψ•• + ψ′′ = 2 hΥ (40)
φ�h�

3 = 2h3h4
vΥ (41)

n��
i + γn�

i = 0, (42)
βwi − αi = 0, (43)

∂iω − (∂iφ/φ�)ω� = 0, (44)

for
αi = h�

3∂iφ, β = h�
3 φ�, γ =

(
ln |h3|3/2/|h4|

)�
, (45)

where
φ = ln |h�

3/
√

|h3h4||, and/or Φ := eφ, (46)

is considered as a generating function. Equation (44) is just eq. (38) for a nontrivial solution of (43) with coeffi-
cients (45), when

wi = ∂iφ/φ�. (47)

The decoupling property of the above system of equations follows from the facts that: 1) integrating the 2-d Laplace
equation (40) one finds solutions for the h-coefficients of the d-metric, and 2) the solutions for the coefficients of the
d-metric can be found from (41) and (46). 3) Then the N-connection coefficients wi and ni can be found from (42)
and (43), respectively.

3.1.2 Cosmological solutions with nonholonomically induced torsion

Equations (40) and (43) can be solved, respectively, for any source hΥ (xk) and generating function φ(xk, t). The
system (41) and (46) can be written under the form

h3h4 = φ�h�
3/2 vΥ and |h3h4| = (h�

3)
2e−2φ,
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for any nontrivial source vΥ (xi, t) in (41). Introducing the first equation into the second, one finds |h�
3| = (e2φ)�

4| vΥ | = Φ�Φ
2| vΥ | ,

i.e. h3 = 0h3(xk) + ε3ε4
4

∫
dt (Φ2)�

vΥ , where 0h3(xk) and ε3, ε4 = ±1. Using again the first equation, we obtain

h4 =
φ�(ln

√
|h3|)�

2 vΥ
=

1
2 vΥ

Φ�

Φ

h�
3

h3
. (48)

We can simplify such formulas for h3 and h4 if we redefine the generating function, Φ → Φ̂, where (Φ2)�/| vΥ | =

(Φ̂
2
)�/Λ, i.e.

Φ2 = Λ−1

[
Φ̂2| vΥ | +

∫
dt Φ̂2| vΥ |�

]
, (49)

for an effective cosmological constant Λ which may take positive or negative values. We can integrate on t, include the
integration function 0h3(xk) in Φ̂ and write

h3[Φ̂] = Φ̂2/4Λ. (50)

Introducing this formula and (49) into (48), we compute

h4[Φ̂] =
(ln |Φ|)�
4| vΥ | =

(Φ̂2)�

8

[
Φ̂2| vΥ | +

∫
dt Φ̂2| vΥ |�

]−1

. (51)

As next step, we need solve eq. (42) by integrating on t twice. We obtain

nk = 1nk + 2nk

∫
dt h4/(

√
|h3|)3, (52)

where 1nk(xi), 2nk(xi) are integration functions and ha[Φ̂] are given by formulas (50) and (51). If we fix 2nk = 0, we
shall be able to find nk = 1nk(xi) which have zero torsion limits (see examples in subsect. 3.1.3).

The solutions of (43) are given by (47), which for different types of generating functions are parameterized as

wi =
∂iΦ

Φ� =
∂i(Φ2)
(Φ2)�

, (53)

where the integral functional Φ[Φ̂, vΥ ] is given by (49).
We can introduce certain polarization functions ηα in order to write the d-metric of such solutions in the form (30).

Let us fix ω2 = |h4|−1 to satisfy the condition (44), which for a generating function Φ[φ] is equivalent to

Φ�∂ih4 − ∂iΦh�
4 = 0. (54)

These first order PDE equations impose certain conditions on the class of generating function Φ and source vΥ . For
instance, we can choose such a system of coordinates where vΥ = 1

4 (e−φ)� which transforms eq. (51) into h4 = Φ, i.e.
this coefficient of the d-metric is considered as a generating function, and eqs. (54) are solved. In general, the integral
varieties of such equations cannot be expressed in explicit holonomic form.

A modification of the scale factor å(t) → a(xk, t), for the FLRW metric (27) (with for g̊1 = g̊2 = g̊3 = å2,
g̊4 = −1), has to be chosen in order to explain observational cosmological data. For any prescribed functions a(xk, t)
and ω2 = |h4|−1 and solutions eψ(xk), (see (40)) and ha[Φ̂], nk(xi), wi[Φ̂] (given, respectively, by formulas (50)–(53)),
we can compute the polarization functions ηi = a−2eψ, η3 = å−2h3, η4 = 1 and function ĥ3 = h3/a2|h4|. Such
coefficients (see the data (29)), define off-diagonal metrics of type (30),

ds2 = a2(xk, t)
[
η1(xk, t)(dx1)2 + η2(xk, t)(dx2)2

]
+ a2(xk, t)ĥ3(xk, t)

[
dy3 + ni(xk)dxi

]2 −
[

dt +
∂iΦ[Φ̂, vΥ ]

Φ�[Φ̂, vΥ ]
dxi

]2

.

(55)
Choosing any generating functions a2(xk, t), ψ(xi) and Φ[Φ̂, vΥ ] and integration functions ni(xk), we generate a
nonhomogeneous cosmological model with nonholonomically induced torsion (24). More general torsions can be induced
if ni(xk, t) is taken with two types of integration functions 1ni(xk) and 2ni(xk) (see eqs. (52)). Having constructed this
solution, we can now consider certain subclasses of generating and integration functions where a(xk, t) → a(t) = å(t),
wi → wi(t), ni → const, etc. In this way generic off-diagonal cosmological metrics are generated (because there are
nontrivial anholonomy coefficients W b

ia in (14)).
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3.1.3 Levi-Civita off-diagonal cosmological configurations

The LC-conditions (39) are given by a set of nonholonomic constraints which cannot be solved in explicit form
for arbitrary data (Φ, Υ ) and integration functions 1nk and 2nk. However, some subclasses of off-diagonal solutions
can still be constructed where via frame and coordinate transforms we can chose 2nk = 0 and 1nk = ∂kn with a
function n = n(xk). It should be noted that (∂i − wi∂4)Φ ≡ 0 for any Φ(xk, y4) if wi is defined by (53). Introducing
a new functional B(Φ), we find that (∂i − wi∂4)B = ∂B

∂Φ (∂i − wi∂4)Φ = 0. Using eq. (50) for functionals of type
h3 = B(|Φ̃(Φ)|), we solve eqs. (∂i −wi∂4)h3 = 0, what is equivalent to the second system of equations in (39), because
(∂i − wi∂4) ln

√
|h3| ∼ (∂i − wi∂4)h3.

We can use a subclass of generating functions Φ = Φ̌ for which

(∂iΦ̌)� = ∂iΦ̌
� (56)

and get for the left part of the second equation in (39), (∂i −wi∂4) ln
√
|h3| = 0. The first system of equations in (39)

can be solved in explicit form if wi are determined by formulas (53), and h3[Φ̃] and h4[Φ̃, Φ̃�] are chosen respectively
for any Υ → Λ. We can consider Φ̃ = Φ̃(ln

√
|h4|) for a functional dependence h4[Φ̃[Φ̌]]. This allows us to obtain

wi = ∂i|Φ̃|/|Φ̃|� = ∂i| ln
√
|h4||/| ln

√
|h4||�. Taking the derivative ∂4 on both sides of these equations, we get

w�
i =

(∂i| ln
√
|h4||)�

| ln
√
|h4||�

− wi
| ln
√
|h4||

�

| ln
√
|h4||�

.

If the mentioned conditions are satisfied, we can construct in explicit form generic off-diagonal configurations with
w

�

i = (∂i − wi∂4) ln
√
|h4|, which is necessary for the zero torsion conditions.

We need als solve for the conditions ∂kwi = ∂iwk from the second line in (39). We find in explicit form the solutions
for such coefficients if

w̌i = ∂iΦ̌/Φ̌
�

= ∂iÃ, (57)

with a nontrivial function Ã(xk, y4) depending functionally on the generating function Φ̌.
Finally, we conclude that we generate LC-configurations for a class of off-diagonal cosmological metric type (17)

for Υ = Ῠ = Λ, Φ = Φ̌ = Φ̃ and 2nk = 0 in (52) which are parameterized by quadratic elements

ds2 = eψ(xk)
[
(dx1)2 + (dx2)2

]
+

Φ̌2

4|Λ|
[
dy3 + (∂kn(xi))dxk

]2 − (Φ̌
�
)2

|Λ|Φ̌2

[
dt + (∂iÃ[Φ̌])dxi

]2
. (58)

We can re-write such solutions in the form (55), which provides us a general procedure of off-diagonal deformations
with å(t) → a(xk, t) (see the FLRW metric (27)), resulting in nonhomogeneous cosmological metrics in GR. Prescribing
a function a(xk, t), a generating function Φ̌(xk, t) satisfying the condition (56) and a solution eψ(xk) (see (40)), we,
respectively, compute the v-conformal factor and the polarization functions for

ĥ3 = h3/a2|h4| = Φ̌4/4a2(Φ̌
�
)2, ω2 = |h4|−1 = |Λ|Φ̌2/(Φ̌

�
)2,

ηi = a−2eψ, η3 = å−2h3 = Φ̌2/4|Λ|̊a2, η4 = 1.

Such coefficients (see data (29)) transform the off-diagonal cosmological solutions (58) into metrics of type (30),

ds2 = a2(xk, t){[η1(xk, t)(dx1)2 + η2(xk, t)(dx2)2] + ĥ3(xk, t)[dy3 + (∂kn(xi))dxk]2} − [dt + (∂iÃ[Φ̌])dxi]2. (59)

The dependence on the source Λ is contained in explicit form in the polarization η3, for instance. This class of
effective Einstein off-diagonal metrics gαβ(xk, t) define new nonhomogeneous cosmological solutions in GR as off-
diagonal deformations of the FLRW cosmology. For certain well-defined conditions, one can find limits gαβ →
gαβ(t, a(t), ĥ3(t), Φ̌(t), ηi(t)). This provides explicit geometric models of nonlinear off-diagonal anisotropic cosmological
evolution which, with respect to N-adapted frames, describe a(t) with modified rescaling factors.

3.2 Effective FLRW cosmology for f-modified gravity

The anholonomic frame deformation method outlined in previous subsections can be applied for the generation of off-
diagonal cosmological solutions of field equations of modified gravities, see (31). Redefining the generating functions
via the transforms (49) and (56), Φ → Φ̌ → Φ̃, we can generate off-diagonal cosmological configurations with R̂ = 4Λ,
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see (32) and (33). Such parameterizations of geometric data and sources are possible for certain general conditions via
transforms of N-adapted frames when the action functional functionally depends on Λ and on the effective sources,
f̂ [R̂(Λ), T̂(Λ), P̂], with P̂(t) = R̂αβT̂αβ = −3ρ̊(H2 + H�) and H = a�/a with scaling factor a(t) taken for some limits
of a solution (55), or (59). It should be noted that in the variables corresponding to the Levi-Civita connection ∇ the
functional f̂ → f(R, T,RμνTμν) describe very general modifications of GR which in our approach are encoded into a
very sophisticated off-diagonal effective vacuum structure with nontrivial vacuum constants.

We assume that the density of matter ρ = ρ̊ in T̂αβ (26) is the same as for a standard FLRW metric (27) and does
not change under off-diagonal deformations with respect to N-adapted frames. For such configurations, the functions
Θαβ and Ξαβ are parameterized, respectively, as

Θα
β = (p − 2Λ)δα

β , Ξα
β =

(
2Λ2 − p Λ − 1

2
4Λ2

)
δα

β = −pΛδα
β ,

where terms with Λ2 compensate each other in 4-d. We can write D̂μT̂αβ = 0, D̂μ
1f̂ ∼ ∂2f̂/∂R̂2

... eμΛ ∼ 0, and
(similarly) D̂μ

2f̂ ∼ 0, D̂μ
3f̂ ∼ 0, for R̂αβ ∼ T̂αβ ∼ Λδαβ , Λ = const, with respect to corresponding classes

of N-adapted frames. Equations (31) transform into a system of nonholonomic nonlinear PDEs of type (34)–(37),
R̂α

β = Υ̂ δα
β , with effective diagonalized source

Υ̂ =
Λ

1f̂
+

f̂

2 1f̂
+ (2Λ − κ−2Λ − p)

2f̂
1f̂

+ pΛ
3f̂
1f̂

, (60)

which can be parameterized with dependencies on (xi, t), or on t. These equations can be solved for very general
off-diagonal forms, depending on generating and integration functions, following the procedure outlined in previous
subsections. Redefining the generation function as in (49), when an effective cosmological constant Λ̌ is generated from
Υ̂ (xi, t), one has

Φ̌2 = Λ̌−1

[
Φ̂2| Υ̂ | +

∫
dt Φ̂2| Υ̂ |�

]
. (61)

Such a generating function defines off-diagonal cosmological solutions of type (55), or (58), as solutions of field equa-
tions for an effective (nonholonomic) Einstein space Řα

β = Λ̌δα
β . In this way, a geometric method is provided when

the (effective or modified) matter sources transform as Υ̂ (32) → Λ̌ (33) and the gravitational field equations in
modified gravity can be effectively expressed as nonholonomic Einstein spaces when the d-metric coefficients encode
the contributions of f̂ , 1f̂ , 2f̂ and 3f̂ and of the matter sources.

We can consider inverse transforms with Λ̌ → Υ̂ for (61) and state that for certain well-defined conditions of
type (56) and (57) we can mimic both f -functional contributions and/or massive gravitational theories [44–47]. Here
we emphasize that off-diagonal configurations (of vacuum and nonvacuum types) are possible even if the effective
sources from modified gravity are constrained to be zero.

4 Off-diagonal modeling of cosmological modified gravity theories

This section has three goals. The first is to provide a reconstruction procedure for off-diagonal effective Einstein and
modified gravity cosmological scenarios. The second is to apply these methods in practice and provide explicit examples
related to f(R) gravity and cosmology. The third goal is to analyze how matter stability problems for f(R)-theories
can be solved by nonholonomic frame transforms and deformations and imposing nonintegrable constraints.

4.1 Reconstructing nonholonomic general f(R)-models

Let us construct an effective Einstein space which models a quite general modified gravity theory with f(R, T,
RαβTαβ) = R+F (RαβTαβ)+G(T ). This theory admits a reconstruction procedure which does not affect the observa-
tional constraints when a realistic evolution is studied [24–26]. Following the anholonomic frame deformation method
with an auxiliary canonical d-connection D̂, the modified gravity (31) is formulated for

f̂(R̂, T̂, R̂αβT̂αβ) = R̂ + F̂(P̂) + Ĝ(T̂). (62)

We can self-consistently embed this model into a nonholonomic background determined by N-adapted frames (12)
and (13) for a generic off-diagonal solution (59) with limits D̂ → ∇ and gαβ → gαβ(t, a(t), ĥ3(t), Φ̌(t), ηi(t)). With
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respect to such frames, the nonholonomic FLRW equations are similar to those found in sect. III B of [24–26] (see the
second paper for details on methods of constructing solutions and speculations on the problem of matter instability)13.

4.1.1 f -modified off-diagonal FLRW equations

The effective function a(t) defines in our case off-diagonal cosmological evolution scenarios which are different from
those where å(t) stands for a standard diagonal FLRW cosmology. For H := a�/a, 1Ĝ := dĜ/dT̂ and 1F̂ := dF̂/dP̂,
we have

3H2 +
1
2

[
f̂ + Ĝ − 3(3H2 − H�) ρ 1F̂

]
− ρ(κ2 − 1Ĝ) = 0,

− 3H2 − 2H� − 1
2

[
f̂ + Ĝ −

(
ρ 1F̂

)��
− 4H

(
ρ 1F̂

)�
−
(
3H2 + H�) ρ 1F̂

]
= 0. (63)

An observer is here in a nonholonomic basis determined by Na
i = {ni, wi(t)} for a nontrivial off-diagonal vacuum with

effective polarizations ηα(t), and can test cosmological scenarios in terms of the redshift 1 + z = a−1(t) for P = P (z)
and T = T (z), with a new “shift” derivative when (for instance, for a function s(t)) s� = −(1 + z)H∂z.

The system of two equations (63) simplifies by extending it to a set of three equations for four unknown functions
{f̂(z), Ĝ(z), ρ(z), ς(z)} with a new variable ς(z) := ρ 1F̂,

3H2 +
1
2
[̂f(z) + Ĝ(z)] − 3

2
[3H2 − (1 + z)H(∂zH)] ς(z)

3
2
H2(1 + z)∂zς(z) − κ2ρ(z) = 0,

− 3H2 + (1 + z)H(∂zH) − 1
2

{
f̂(z) + Ĝ(z) − [3H2 − (1 + z)H(∂zH)]ς(z)

+ [3(1 + z)H2 − (1 + z)H(∂zH)]∂zς(z) + (1 + z)2∂2
zzς(z)

}
= 0,

(∂z
1F̂) ς(z) − ρ(z) (∂z f̂) = 0. (64)

Here, by rescaling the generating function, we have fixed the condition ∂z
1Ĝ(z) = 0. Such a nontrivial term must

be considered if one wants to transform f̂ into a standard theory f(R, T,RαβTαβ). The functional Ĝ(T̂), in both
holonomic and nonholonomic forms, encodes a new degree of freedom for the evolution of the energy density of type

ρ = ρ0a
−3(1+�) = ρ0(1 + z)a3(1+�), (65)

which is taken for the dust matter approximation � when the evolution reduces to ρ ∼ (1 + z)3. For the assumption
that such an evolution can be considered with respect to N-adapted frames, the solutions of (64) are determined by
data {f̂(z), Ĝ(z), ς(z)} by replacing the second and third equations into the first one and obtaining a single fourth-order
equation for f̂(z).

4.1.2 Reconstructing f̂ -models and effective Einstein spaces

The reconstruction procedure is restricted to fluids without pressure when such approximation is considered locally
with N-adapted frames and the expressions (28) for (̊a, H̊, ρ̊) are re-defined in terms of (a,H, ρ); data are written
with a script “0” if z = z0, with ξ = κ2ρ0/3H2

0 . One should not confused, e.g., H̊ and H0, because these values are
computed for different FLRW solutions, with å(z) determined for a diagonal configuration and a(z) for an off-diagonal
one, respectively. We can express

T̂ = T̂α
α = −ξ

3H2
0

κ2
(1 + z)3 and P̂ = R̂αβ T̂αβ = −3ξ

3H2
0

κ2
(1 + z)3[H2 − (1 + z)H(∂zH)].

Following the approach outlined in sect. III B of [24–26], we introduce the parameterizations

F̂(P̂) = H2
0 F̌(P̌) and Ĝ(T̂) = H2

0Ǧ(Ť), (66)

13 In sect. III A of that work, a model with G(T ) = 0 was investigated in detail. The conclusion was that in order to elaborate

a realistic evolution it is necessary to consider nontrivial values for G(T ). In nonholonomic variables, such term bG(bT) allows to
encode f(R) modified theories and related into certain off-diagonal configurations in GR, which simplifies the solution of the
problem of matter instability (see subsect. 4.3).
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where P̌ = P̂/P0 and Ť = T̂/T0, for P0 = −9H4
0 ξ/κ2 and T0 = −3H2

0 ξ/κ2. In correspondingly N-adapted variables, the
off-diagonal cosmological solutions can be associated with a class of de Sitter (dS) solutions with effective cosmological
constant Λ̌ (see (61)), where H(z) = Ȟ0 results in P̌ = Ť = (1 + z)3 for the energy-density (65). In these variables,
the solutions of (64) can be written as

F̌ = c1P̌b1 + P̌b2/3

[
c2 cos

(
b3

3
ln P̌

)
+ c3 sin

(
b3

3
ln P̌

)]
+ c4 + 3ξP̌,

Ǧ = c̃1Ťb1 + Ťb2/3

[
c̃2 cos

(
b3

3
ln Ť

)
+ c̃3 sin

(
b3

3
ln P̌

)]
+ c̃4 − 3ξŤ, (67)

being the constants b1 = −1.327, b2 = 3.414 and b3 = 1.38. The values c1, c2, c3 and c4 are integration constants, and
the second set of constants c̃1, c̃2, c̃3 and c̃4 can be expressed via such integration constants, and b1, b2 and b3. We omit
explicit formulas because for general solutions they can be included in certain generating or integration functions for
the modified gravity equations and ultimately related to real observation data for the associated cosmological models.

For off-diagonal configurations, the f̂(R̂, T̂, R̂αβT̂αβ) gravity positively allows for dS solutions in presence of non-
constant fluids, not only due to the term P̂ = R̂αβT̂αβ in (25), and respective gravitational field and cosmological
equations. This is possible also because of the off-diagonal nonlinear gravitational interactions in the effective gravi-
tational models. It should be emphasized that the reconstruction procedure elaborated in [24–26], see also references
therein, can be extended to more general classes of modified gravity theories, to Finsler-like theories and the ensuing
cosmological models [44–46]. Introducing (67) and (66) into (62), we reconstruct a function f̂ = R̂ + F̂(P̂) + Ĝ(T̂).
As a result, we can associate an effective matter source Υ̂ (60), which allows the definition of a corresponding gen-
erating function Φ̌ (61) (see also Φ and (49)). Finally, we can reconstruct an off-diagonal cosmological solution with
nonholonomically induced torsion of type (55) or to model a similar cosmological metric for LC configurations (58)
(equivalently, (59)).

4.2 How specific f(R) gravities and the FLRW cosmology are encoded in nonholonomic deformations?

It is well known that any FLRW cosmology can be realized in a specific f(R) gravity (see refs. [52,53] and, for further
generalizations, [24–26])14. In this subsection we analyze two examples of reconstruction of f(R)-gravities where the
“e-folding” variable ζ := ln a/a0 = − ln(1 + z) is used instead of the cosmological time t and in related nonholonomic
off-diagonal deformations. For such models, we consider f̂ = f̂(R̂) in (25), use Υ̂ (xi, ζ) = Λ/1f̂ + f̂/2 1f̂ instead of (60)
and introduce these values in eq. (61), which can be parameterized with dependencies on (xi, ζ) (in particular, only
on ζ), Φ̌2 = Λ̌−1[Φ̂2| Υ̂ | +

∫
dζ Φ̂2∂ζ | Υ̂ |], when ∂ζ = ∂/∂ζ with s� = H∂ζs for any function s. The matter energy

density ρ is taken as in (64).
We restrict ourselves to N-adapted frames, (12) and (13), determined by an off-diagonal cosmological solution

of the (modified) gravitational field equations, and can repeat all computations leading to eqs. (2)–(7) in [52, 53]
and prove that a modified gravity with f̂(R̂) realizes the FLRW cosmological model. Such solutions depend on the
above source type Υ̂ (xi, ζ) and generating function Φ̌(xi, ζ); also the nonholonomic background can be modeled to be
nonhomogeneous (via wi and ni depending, respectively, on xi and ζ, or only on ζ). The off-diagonal analog of the
field equation corresponding to the first FLRW equation is

f̂(R̂) = (H2 + H ∂ζH)∂ζ [̂f(R̂)] − 36H2
[
4H + (∂ζH)2 + H∂2

ζζH
]
∂2

ζζ [̂f(R̂)] + κ2ρ.

In terms of an effective quadratic Hubble rate, q(ζ) := H2(ζ), and considering that ζ = ζ(R̂) for certain parameteri-
zations, this equation yields

f̂(R̂) = −18q(ζ(R̂))
[
∂2

ζζq(ζ(R̂)) + 4∂ζq(ζ(R̂))
] d2f̂(R̂)

dR̂2

+ 6
[
q(ζ(R̂)) +

1
2
∂ζq(ζ(R̂))

]
df̂(R̂)

dR̂
+ 2ρ0a

−3(1+�)
0 a−3(1+�)ζ(bR). (68)

We can construct an off-diagonal cosmological model with metrics of type (55) and nonholonomically induced torsion
(when t → ζ) if a solution f̂(R̂) is used for computing Υ̂ and Φ̌. Modeling such nonlinear systems we can consider

14 We use a system of notations different from that article; here, e.g., N in used for the N-connection and we work with
nonholonomic geometric objects.
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solutions of the field equations for an effective (nonholonomic) Einstein space Řα
β = Λ̌δα

β , when certain terms of
type df̂(Ř)/dŘ and higher derivatives vanish for a functional dependence f̂(Λ̌) with ∂ζΛ̌ = 0. The nonholonomic
cosmological evolution is determined by off-diagonal coefficients of the metrics and by certain nonexplicit relations for
the functionals variables, like q(ζ(R̂(Λ̌))) and (effective/modified) matter sources transform as Υ̂ (32) → Λ̌ (33).

LC-configurations can be modeled by off-diagonal cosmological metrics of type (58) when the zero torsion condi-
tions (39) are satisfied. We obtain a standard expression (see [52,53]) for the curvature of ∇,

R = 3∂ζq(ζ) + 12q(ζ), (69)

if the polarization or generating functions for (58) and the solutions of (68) are taken for diagonal configurations.

4.2.1 Off-diagonal encoding of f(R) gravity and reproduction of the ΛCDM era

We here provide an example of reconstruction of models of f(R) gravity and nonholonomically deformed GR when
both reproduce the ΛCDM era. For simplicity, we do not consider a real matter source (if such a source exists, it can
be easily encoded into a nontrivial vacuum structure with generic off-diagonal contributions).

With respect to correspondingly N-adapted frames and for a(ζ) and H(ζ) determined by an off-diagonal solu-
tion (55), with nonholonomically induced torsion, or (59), for LC-configurations, the FLRW equation for ΛCDM
cosmology is given by

3κ−2H2 = 3κ−2H2
0 + ρ0a

−3 = 3κ−2H2
0 + ρ0a

−3
0 e−3ζ . (70)

This equation looks similar to the one for Einstein gravity for diagonal configurations but contains values determined,
in general, for other classes of models with off-diagonal interactions. Thus, H0 and ρ0 are fixed to be certain constant
values, after the coefficients of off-diagonal solutions are found, and for an approximation were the dependencies
on (xi, ζ) are changed into dependencies on ζ (via a corresponding redefinition of the generating functions and the
effective sources). We can relate the first term on the rhs to an effective cosmological constant Λ (33), which in our
approach appears via a redefinition (49). The second term in the formula describes, in general, an inhomogeneous
distribution of cold dark mater (CDM) with respect to N-adapted frames. In order to keep the similarity with the
diagonalizable cosmological models in GR we can choose these integration constants for Λ = 12H2

0 to survive in the
limit wi, ni → 0. It should be noted that such limit must be computed for “nonlinear” nonholonomic constraints via
generating functions and effective sources.

Using (70), the effective quadratic Hubble rate and the modified scalar curvature, R̂, are computed to be, respec-
tively,

q(ζ) := H2
0 + κ2ρ0a

−3
0 e−3ζ and R̂ = 3∂ζq(ζ) + 12q(ζ) = 12H2

0 + κ2ρ0a
−3
0 e−3ζ .

These functional formulas can be used for the dependencies on R̂ if a necessary re-definition of the generation functions,
or an approximation (xi, ζ) → ζ is performed. Expressing

3ζ = − ln
[
κ−2ρ−1

0 a3
0(R̂ − 12H2

0 )
]

and X := −3 + R̂/3H2
0 ,

we obtain from eq. (68)

X(1 − X)
d2f̂
dX2

+ [χ3 − (χ1 + χ2 + 1)X]
df̂
dX

− χ1χ2f̂ = 0, (71)

for certain constants, for which χ1 + χ2 = χ1χ2 = −1/6 and χ3 = −1/2. The solutions of this equation with constant
coefficients and for R (69) were found in [52, 53] as Gauss hypergeometric function, denoted there by f̂ = F (X) :=
F (χ1, χ2, χ3;X), as (for some constants A and B)

F (X) = AF (χ1, χ2, χ3;X) + BX1−χ3F (χ1 − χ3 + 1, χ2 − χ3 + 1, 2 − χ3;X).

This provides a proof of the statement that f(R) gravity can indeed describe ΛCDM scenarios without the need of an
effective cosmological constant. Working with auxiliary connections of the type D̂, we can generalize the constructions
to off-diagonal configurations and various classes of modified gravity theories, where A, B and χ1, χ2, χ3 are appropriate
functions of the h coordinates. For instance, reconstruction procedures for Finsler like theories and cosmology models
on tangent and Lorentz bundles, and bi-metric/massive gravity models are given in [42–47].

Having chosen f̂ = F (X) for a modified gravity, we can go further and mimic an off-diagonal configuration when
f̂ = f̂(R̂) is introduced in (25) and the source Υ̂ (xi, ζ) = Λ/1f̂ + f̂/2 1f̂ is considered instead of (60) and (61) for
Φ̌2 = Λ̌−1[Φ̂2| Υ̂ |+

∫
dζ Φ̂2∂ζ | Υ̂ |]. Nevertheless, recovering nonhomogeneous modified cosmological models cannot be
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completed for general re-parameterized dependencies on (xi, ζ) (in particular, on ζ only). This distinguishes explicitly
the modified gravity theories of type f(R) from those generated by nonholonomic deformations. For certain homo-
geneity conditions, we can state an equivalence of some classes of gravities and cosmological models, or analyze their
alternative physical implications. But a complete recovering is only possible if all generating and integration functions
and the effective sources are correlated with certain observable cosmological effects and further approximations and
redefinitions in terms of constant parameters and functionals depending on a time-like coordinate can be effectively
performed.

In general, a modified gravity theory is not transformed completely into a nonholonomic off-diagonal Einstein
manifold; an overlap between certain classes of solutions and cosmological and quantum gravity models may exist
(see the constructions and discussion in [19–22], related to [15–18]). A rigorous theoretical analysis of various types of
classical and quantum corrected solutions is necessary and new experimental data are compulsory in order to conclude
that an orthodox paradigm with nonholonomic off-diagonal sophisticate (non)vacuum configurations in GR may be
enough for elaborating a final, viable cosmological model and to perform a variant of the effective covariant anisotropic
quantization, what is indeed missing, up to now. In a more radical case, we will have to modify substantially the GR
theory and a number of additional issues may arise on the status of off-diagonal solutions, on methods of quantization
and the recovering formalism, on stability issues and some other, in the search for a matching solution.

4.2.2 Nonholonomic configurations mimicking phantom and nonphantom matter in f(R) gravity

The anholonomic frame deformation method allows to reconstruct off-diagonal configurations modeling f(R) gravity
and cosmology with nonphantom or phantom matter in GR. With respect to N-adapted frames in an off-diagonal
(modified, or not) gravitational background, the FLRW equations can be written as

3κ−2H2 = sρ(xk)a−c(xk) + pρ(xk)ac(xk), (72)

where a(xk, ζ) and H(xk, ζ) are determined by a solution (55), or (59). For reparameterizations or approximations
with (xi, ζ) → ζ, we assume that the positive functions sρ(xk), pρ(xk) and c(xk) can be considered. The first term on
the rhs dominates for small a in the early universe, as in GR with nonphantom matter described by an EoS parameter
w = −1+c/3 > −1. Introducing q(xk, ζ) := H2(xk, ζ) and the respective functionals sq := κ2

3 sρa−c
0 and pq := κ2

3 pρac
0,

for q = sqe
−cζ + pqe

cζ , in R̂ = 3∂ζq(ζ) + 12q(ζ), we find

ecζ =

⎧
⎪⎨

⎪⎩

[
R̂ ±

√
R̂2 − 4(144 − 9c2)

]/
6(4 + c), for c = 4;

R̂/24, for c = 4.

. (73)

The nonphantom matter may correspond to the case c = 4 in (73), including radiation with w = 1/3. eq. (72)
transform into a functional equation on Y determined by changing the functional variable R̂2 = −576 sq pq Y ,
4Y (1 − Y ) d2

bf
dY 2 + (3 + Y ) dbf

dY − 2f̂ = 0. This is again a functional variant (if we consider dependencies on xk) of the
generating Gauss’ hypergeometric function, similarly to (71), which can be solved in explicit form.

For the case c = 4 in (73), we come to models with phantom-like dominant components. A similar procedure as
for deriving eqs. (22) and (23) in [52,53], results in a functional generalization of the Euler equation, namely

R̂2 d2f̂(R̂)

dR̂2
+ AR̂

df̂(R̂)

dR̂
+ Bf̂(R̂) = 0,

for some coefficients A = −H0(1 + H0) and B = (1 + 2H0)/2, for H0 = 1/3(1 + phw). Here we consider, for simplicity,
homogenous limits and approximations H2(t) = κ2

3 ph
ρ for the phantom EoS fluid-like states, php = phw phρ, with

phw < −1. In both cases, with a trivial or a nontrivial nonholonomically induced torsion, there are solutions of
the nonholonomic Euler equations above which can be expressed in the form f̂(R̂) = C+R̂m+ + C−R̂m− , for some
integration constants C± and 2m± = 1−A±

√
(1 − A)2 − 4B. This reproduces with respect to N-adapted frames the

phantom dark energy cosmology with a behavior of the type a(t) = a0(ts − t)−H0 , where ts is the so-called Rip time.
If the generating functions for the off-diagonal cosmological solutions are chosen in a way such that the N-connection
coefficients wi and ni transform to zero, the solutions describe universes which end at a Big Rip singularity during ts.
Additionally to the former result that in the f(R) theory no phantom fluid is needed, we conclude that for off-diagonal
configurations we can effectively model such locally anisotropic cosmological configurations.
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4.2.3 On nonholonomic constraints and nonconservation of the effective energy-momentum tensor

One can encode and effectively model various types of cosmological solutions for modified gravity theories with f(R)
and/or f(R, T,RαβTαβ) functionals and their nonholonomic deformations. The cosmological reconstruction procedures
can be elaborated for various types of viable modified gravity which may pass, or not, local gravitational tests and
explain observational data for accelerating cosmology, dark energy and dark matter interactions [24–26,42–47,52,53].
Nevertheless, these theories exhibit certain specific problems as nonconservation of the energy-momentum tensors for
the effective or physical matter fields.

Let us discuss the “nonconservation” issue which is related to the nonholonomic deformations of GR. Even in
the case ∇ → D̂ = ∇ + Ẑ, we have the condition D̂γT̂αβ = 0, which is a typical one for nonholonomic (subjected
to nonintegrable constraints) mechanical or classical field theories. In Lagrange mechanics, for instance, the issue of
nonholonomic restrictions is solved by introducing additional integration constants. In such cases, the conservation
laws should be re-considered by taking into account various classes of nondynamical functions. Because the distortion
tensor Ẑ is completely defined by the data (ĝ,N), we can compute in unique form the value D̂γT̂αβ and relate this
to the fact that, in general, R̂αβ is not symmetric. This is a consequence of a nonholonomically induced torsion. It is
convenient to work with such nonholonomic variables (ĝ,N, D̂) in order to apply the anholonomic frame deformation
method and decouple certain modified gravitational equations and generate off-diagonal solutions of (23). After this
general, integral variety of solutions has been found, one can redefine the generating functions and sources in order to
generate LC-configurations, as was shown in sect. 3.1.3. This way, the problem of “nonconservation” of effective and
physical T̂αβ can be solved by encoding into generic off-diagonal configurations with effective conservation laws which
are similar to GR.

In explicit form, we explain how the “nonconservation” problem can be solved for off-diagonal solutions with one
Killing symmetry in the framework of f(R, T ) theories generalizing certain constructions from [54]. Following a similar
procedure as in sect. II of that work, but using the operator D̂ instead of ∇, for f̂ = f̂(R̂, T̂), and considering an
N-adapted parametrization of the effective source Υ̂ = const, we prove that

(
1 +

κ2

2f̂

)
D̂αT̂αβ =

1
2
gαβD̂αT̂ − (T̂αβ + Θ̂αβ)D̂α ln(2f̂) − D̂αΘ̂αβ . (74)

In these equations the values 2f̂ := ∂ f̂/∂T̂ and Θ̂αβ = −2T̂αβ − pgαβ are used, with an energy-momentum tensor (26)
for nonholonomic flows of a perfect fluid. In general, D̂αT̂αβ = 0 even for nonholonomic deformations of GR. Nev-
ertheless, we can consider a subclass of off-diagonal configurations in f̂(R̂, T̂) gravity when Υ̂ (32) → Λ̌ (33) and
Φ̌2 = Λ̌−1[Φ̂2| Υ̂ | +

∫
dζ Φ̂2∂ζ | Υ̂ |] (61) result in f̂ → f̌ = Ř and effective Řα

β = Λ̌δα
β which admit LC-solutions

with zero torsion. For such nonholonomic distributions with D̂ → ∇, D̂αT̂αβ → ∇̌Λ̌ = 0 and all terms on the lhs
of (74) vanish, because they are nonholonomically equivalent to functionals of the effective cosmological constant Λ̌.
Such conditions are satisfied in correspondingly N-adapted frames and for canonical d-connections. Equations (74)
generalize to nonholonomic forms the similar ones derived for the Levi-Civita connection ∇ (see eq. (10) in ref. [54]).

The already mentioned problem of “nonconservation” becomes worse for general f(R, T,RαβTαβ) theories. Even
if there are certain special cases where it can be solved [24–26, 52, 53], it is the case that no solution can be found
in general form. Surprisingly, the anholonomic frame deformation method also suggests a procedure for selecting
off-diagonal configurations which can mimic modified gravity theories in a self-consistent way, admitting effective
torsions completely determined by observational data (f̂ , Υ̂ , ĝ,N, D̂), and/or by constraints to LC-configurations. By
redefining the generating functions in the form Υ̂ (32) → Λ̌ (33), we get the possibility to consider effective sources
and off-diagonal Einstein spaces for which the divergence and nonconservation problem become similar to those in
GR or (for more geometrically complex configurations) to those in viable f(R) models. Finally, we emphasize the fact
that in this way we do not find a general solution for all f(R, . . .)-modified theories but only for those models which
admit an encoding in an effective GR system and a general decoupling via the nonholonomic deformations.

4.3 Nonholonomic constraints and matter instability

There is another serious problem in modified gravities which is related to possible matter instabilities related to
modifications of the gravitational actions. Even tiny modifications of GR may make the new model to posses unstable
interior solutions (see, e.g., [55,56]). It was demonstrated however that there are viable f(R) theories (with appropriated
choices of the functional) where such instabilities may not occur [1–14,57]. In this section, we apply the anholonomic
frame deformation method to more general f(R, T,RαβTαβ) theories. The corresponding field equations are very
difficult to solve even in a linear approximation [24–26], if we work in coordinate frames and general functionals. In the
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nonholonomic variable formalism, the gravitational field equations in modified gravity theories posses the decoupling
property exhibited above, which allows to encode f(R, . . .)-modifications into off-diagonal nonholonomic configurations
for the effective Einstein manifolds.

For a stability analysis, the trace equations where (31) are multiplied by gμν are to be considered, namely

−2f̂ + (R̂ + 3D̂μD̂μ) 1f̂ + (T̂ + Θ) 2f̂ +
(

1
2
D̂μD̂μT̂ + D̂μD̂νT̂μν + Ξ

)
3f̂ = κ2 T̂, (75)

where 1f̂ := ∂ f̂/∂R̂, 2f̂ := ∂ f̂/∂T̂ and 3f̂ := ∂ f̂/∂P̂, when P̂ = R̂αβT̂αβ . Let us envisage a trace configuration in
the interior of a celestial body, when T̂ = T̂0 and −2f̂ + R̂0 (1f̂) = κ2 T̂0. Imposing nonholonomic constraints, we
parameterize a LC-configuration in GR and model an interior solution in the presence of some gravitational objects
(for instance, the Sun or the Earth). The f -modifications (in general with strong coupling for the curvature and the
energy-momentum tensor) may result in a worsening of the stability problems and may prevent T̂0 to be a solution
of any suitable background equation. It is difficult to find solutions of (75) even for very much simplified cases in the
nonlinear situation if we work in coordinate frames for the connection D̂ = ∇.

A rigorous study of the problem of matter instability for f(R) and more generally f(R, T,RαβTαβ) gravities,
for certain illustrative cases when 1f̂ = R, and for restrictive conditions where there is a qualitative description via
additional functionals on T and P shows that the appearance of a large instability can actually be avoided. Using
the anholonomic frame deformation method, we can consider modified gravity theories with f -modifications which are
effectively described by Řα

β = Λ̌δα
β when the modifications are encoded into polarization functions and N-coefficients.

For models generated by
f̂(R̂, T̂, R̂αβT̂αβ) = f̂1(R̂) + F̂(P̂) + Ĝ(T̂),

we take a constant interior solution with T̂0 = const and P̂0 = const, and denote by f̂ (s)
1 := ∂sf̂1/∂R̂s and F̂(s) :=

∂sF̂/∂P̂s for s = 1, 2, . . . We can repeat, with respect to the N-frames (12) and (13), the computations presented in
detail for eqs. (45)–(48) in [24–26] (see also references therein), and prove that eqs. (75) for linear pertubations can
be written in the form

[

ĎμĎμ + 2
Ťμν

0

Ť0

ĎμĎν + 2
Ξ0

Ť0

+ 4
P̌0

Ť0

f̂ (1)
1

F̂(2)

]

δP̌ =

[
2
Ť0

f̂ (1)
1

F̂(2)
− P̌0

Ť0

F̂(1)

F̂(2)

(
2 mL̂ − Ť0

)
]

δŘ.

The values of type δP̂ and δR̂ are considered for a small perturbations in the curvature where R̂ = R̂0 + δR̂ and
P̂ = P̂0 + δP̂. No instability appears if δP̌ = δŘ = 0 which is a particular solution of the above equation. We can in
fact model a damped oscillator with additional nonholonomic constraints if Ξ0 + 2P̌0f̂

(1)
1 /F̂(2) ≥ Ť0, which allows to

avoid large instabilities in the interior of a spherical body. For some specific functionals f(R) and appropriate G(T ),
the same behavior as in GR results (with mass stability in the cosmological context), although there are possible
large perturbations δR and δP remaining. The ideas how to circumvent the mass instability problem for holonomic
configurations has been studied in [58–64]. Redefining the generating functions and sources in a f -modified model into
an effective Einsteinian theory, with S[Ř, Λ̌], one can consider a nonholonomically deformed Hilbert-Einstein action
with f̂ → f̌ = Ř. In such cases, δR̂ = δŘ = 0 and instabilities are not produced, indeed, if we impose the zero torsion
conditions (see (24)), we get back to the GR theory. Even if eq. (75) involves not only perturbations of the Ricci scalar
R̂ but also of the Ricci d-tensor R̂αβ (through δP̂), via nonholonomic transforms to effective Řα

β = Λ̌δα
β , the stability

of the system is obtained via off-diagonal interactions and the nonholonomic constraints used for an effective modeling
of a subclass of f̂ -theories to certain nonholonomic deformations of the Einstein equations with effective cosmological
constant Λ̌. This is indeed a remarkable result.

5 Effective field theory for off-diagonal cosmological configurations

Both in particle and condensed matter physics, effective field theory (EFT) methods have proven so far to provide a
quick and economic way in order to connect experimental data and phenomenological results with certain fundamental
theories (see the reviews [65, 66]). Recently methods of that sort have been applied in cosmology, in particular to
inflation [67–69], late-time acceleration [70–72] and dark energy physics [73, 74] (details and references can be found
in [75, 76]). The goal of this section is to construct an EFT describing perturbations both over diagonal and off-
diagonal cosmological background solutions in modified gravities, in cases where an effective Einsteinian manifold can
be associated, and when the matter sector obeys the weak equivalence principle and all modifications of gravity and
the matter fields can be encoded into an effective cosmological constant.



Page 22 of 31 Eur. Phys. J. Plus (2015) 130: 119

5.1 Off-diagonal background evolution and ΛCDM

We shall consider here configurations with redefined generating functions and sources and where the third effective
action in (25) is taken to be of the form

S = gS + mS =
∫ [

1
2κ2 Ω(t)R + Λ̂(t) − c(t)δg44

]√
|g|d4u + mS[gαβ ]. (76)

This is related to a background FLRW solution constrained, on its turn, by observation to be in close agreement with
ΛCDM15. In this formula, the value δg44 is the perturbation of the time-time like component of the d-metric, and
the Ricci scalar R is defined by a canonical d-connection D which can be obtained by a finite chain of redefinitions,
resulting in [ĝ, N̂, D̂, Υ̂ ] → [g,N,D,Tαβ , Λ̂(t)] where Λ̂(t) takes a constant value Λ/2κ2 for the h-equations while it
is a function of t for the v-equations. The energy-momentum tensor Tαβ determined by mS[gαβ ] does not satisfy, in
general, the condition DαTαβ = 0, but ∇αTαβ → 0 for Dα → ∇α. For simplicity, effective matter is treated as a
perfect fluid, which in the N-adapted model is described by a time dependent average energy density ρ(t) and pressure
p(t). For LC-configurations one has the usual continuity equation

ρ � + 3H(ρ + p) = 0,

where H is determined by a scaling factor a(t) for a generic off-diagonal solution of type (55), or (59). We note that
in this section ρ � is the derivative with respect to the physical time (the formalism works also in conformal time).
The function a(t) can be considered as the limiting result for ε → 0 of an integration in a metric of type (7) (where
nonlinear interactions are encoded by f-modifications), as we explained before for that formula.

5.1.1 Off-diagonal background evolution

The background evolution is in general off-diagonal (values ε ≈ 10−20 do not contradict present experimental data [51]).
For simplicity, we can consider a diagonal background with a FLRW metric with zero spatial curvature. We can chose
a(t), ρ(t) and p(t) to be close to ΛCDM evolution if ε → 0. As in standard (diagonal) cosmology we can use the
Friedmann equations to eliminate the functions Λ̂(t) and c(t) (which can again be considered as a redefinition of the
generating functions in our approach) but keep Ω(t) as a free function, similarly to [75, 76] and [77]. For diagonal
configurations, such theory can be formulated in the Jordan frame and dealt with a nonminimal coupling between
an effective scalar field and metric. In the Einstein frame, we get a coupling of matter to the effective scalar field.
Nevertheless, the scaling factor a(t) has some “memory” of the genuine nonholonomic redefinition of the integration
functions and corresponding contributions of the modified gravity theory.

Varying (76) with respect to N-adapted frames, we get an effective Friedman equation, which allows to express

−2c(t) = ρ + p + (2ΩH� + Ω��/2 − HΩ�)/κ2

−Λ̂(t) = p + (3ΩH2 + 2ΩH + Ω�� + HΩ�)/κ2

for any given data (Ω, a, ρ, p)16. These equations describe how the background energy and pressure of the DE compo-
nent evolve over cosmological history, corresponding to the evolution of the N-coefficients wi(t).

5.1.2 N-adapted perturbations

Assuming that for D → ∇ the weak equivalence principle is true, one can always introduce a conformal (Jordan)
frame, when the matter fields couples only to the d-metric gαβ and not to the scalar field.

15 In effective field theories the mass scale m2 = κ−2 can be different from the Plank mass of GR. It is used to render Ω
dimensionless.
16 This can be rewritten in a more conventional form in terms of the dark energy density, ρDE, and pressure, pDE (cf. (4)),
when

3ΩH2 = κ2(ρDE + ρ) and 2ΩH� = −κ2(ρDE + pDE + ρ + p),

for 2c(t) = ρDE + pDE + (HΩ� − Ω��)/κ2 and bΛ(t) = pDE − (HΩ� + Ω��)/κ2.
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Starting from an N-adapted form for (76), a procedure similar to that for the construction of effective field theories
(see eq. (2.1) of [75,76]) leads to the general effectively unitary gauge action

S =
∫ √

|g|d4u

[
1

2κ2 Ω(t)R + Λ̂(t) − c(t)δg44 +
M4

2 (t)
2

(δg44)2 +
M4

3 (t)
2

(δg44)3 + . . .

− M
3

1(t)
2

δg44 δKα
α − M

2

2(t)
2

(δKα
α)2 − M

2

3(t)
2

δKα
βδKβ

α + . . . + 1λ(t)(δR)2 + 2λ(t)δRαβ δRαβ

+ 1γ(t)CμνσλCμνσλ + 2γ(t)εμνσλC
αβ

μν Cσλαβ + . . .

+ 1m2(t)nμnν(eμg44)(eνg44) + 2m2(t)(gμν + nμnν)(eμg44)(eνg44) + . . .

]
+ mS[gαβ ]. (77)

The value Cμνσλ is the Weyl tensor determined by D, while nμ is the vector normal to the surfaces of constant
time. Each term in (77) can have a time-dependent coefficient because the background solutions is, in general, off-
diagonal and breaks time translation symmetry. The matter action mS[gαβ ] can be arbitrary, with sources to be
redefined by integration functions. We will fix below the quantities δg44, δR, δRαβ and δKαβ as perturbations, the
dots corresponding to various terms which we do not specify of quadratic and higher-order perturbations. N-elongated
partial derivatives eμ (12) are used instead of ∂μ.

We involve and additional 3 + 1 splitting (the variant 2 + 2 is convenient for constructing off-diagonal, exact
solutions), where the Ricci d-tensor of D decomposes as

Rαβnαnβ = KαβKαβ − K β
α K α

β + Dα (nγDγ nα) − Dα (nαDγ nγ).

As a result of the N-adapted construction, the value nαδKαβ , where δKαβ = Kαβ − 0Kαβ := Kαβ + 3H(gμν +nμnν)
vanishes.

5.1.3 Effective field theory in terms of Stückelberg d-fields

In effective field theories and cosmological models, the Stükelberg technique [67–69, 75, 76] is used when explicit
functions of time are modified according to

ϕ(t) → ϕ(t + π(uα)) (78)
and then Taylor-expanded in π(uα). Such procedure is applied to the action (77) when the ansatz for off-diagonal
solutions (55), or (59), is reparameterized as a 3 + 1 form,

ds2 = g
αβ

duα duβ = a2(g̃i j + ςi j)dx̃ i dx̃ j − dt̃
2
, synchronous gauge,

= a2(g̃i j + ς̃i j)dẽ
i dẽ j − (δt̃)2, N-adapted synchronous gauge, (79)

ds2 = a2(1 − 2φ̃)g̃i j dx̃ i dx̃ j − (1 + 2ψ)dt̃
2
, Newtonian gauge,

= a2(1 − 2φ̃)g̃i j dẽ i dẽ j − (1 + 2ψ)(δt̃ )2, N-adapted Newtonian gauge, (80)

where dẽ i = (dx̃ i, δẽ3 = dy3 + ñi dx̃i) and δt̃ = dt̃ + w̃i dx̃i, see (13). The basic premise for this is that we can
perform coordinate transformations t̃ = t + π(uα), x̃i = xi, were the convention for indices is i, j, . . . = 1, 2, 3 and
the coordinates uα = (xi, y3, t) → ũα = (x̃ i, t̃). We consider g̃i j to be a time-independent background metric but
a(t̃) and ςi j [Na

i , gi, ha] are certain nonlinear functionals determined by a cosmological off-diagonal solution in the
modified theory. The metric (79) is written in a form which allows to describe perturbations in a synchronous gauge.
This parametrization can be obtained for any d-metric (17) which with respect to coordinate frames is rewritten in
the form (15) with coefficients (16). In the synchronous gauge, the coordinate transforms uα → ũα are chosen in
a for to be satisfied the conditions δg44 = g4i = 0 (we note that here we do not use boldface symbols because, in
general, such conditions can be imposed for not N-adapted frames). It will be convenient to discuss some phenomena
in the Newtonian gauge (80). For small ε-deformations (see (7)), off-diagonal extensions of cosmological metrics can be
treated as effective fluctuations which may be nonholonomically constrained, or not, to be parameterized in N-adapted
form. In both cases, we can use the formulas derived in [75,76] but keeping in mind that we work with a d-connection
D which only at the end will be additionally constrained, when D → ∇17.
17 For simplicity, we do not dub, in an N-adapted form, the proofs from those works but use directly the synchronous gauge
representation which is more convenient for studying both perturbations and ε-deformations all included in a term ςi j(ε, x

i, t);
we omit the tilde on spacetime coordinates when this does not result in ambiguities, and use in brief the term perturbations both
for ε-deformations and for fluctuations; in a more general context, perturbations with respect to a fixed N-adapted background
can be considered.
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We can decompose

ςi j =
ς

3
g̃i j +

(
D̃iD̃j −

g̃i j

3
D̃2

)
η and ς̃i j =

ς̃

3
g̃i j +

(
D̃iD̃j −

g̃i j

3
D̃2

)
η̃, (81)

where tildes refer to quantities associated with the spatial metric, and express the metric determinant
√
|g| =

a3
√

|g̃|(1+ς/2) and
√
|g| = a3

√
|g̃|(1+ς̃/2). It is convenient to use a definition in momentum space kα = (

−→
k , k̃), where

η
(−→

k , t
)

= −k−2
[
ς
(−→

k , t
)

+ 6η̊
(−→

k , t
)]

(82)

(see details on similar conventions in [75,76]), where the effective field constructions are also performed in the massive
case.

5.2 Linking off-diagonal perturbations to observations

The goal is here to identify and study the full set of perturbations which result in off-diagonal deformations of the
FRW background. Linearized equations of motion for certain effective scalar perturbations will be considered, which
will allow to determine: 1) the speed of sound; 2) Poisson’s equation; 3) the anisotropic stress; 4) the effective Newton
constant; and 5) Caldwell’s parameter [78]. Reparametrizations of the metric in the respective forms (79) and (80) allow
for this association with the standard phenomenological functions and parameters appearing in literature, connecting
in this way observational features with the off-diagonal cosmological solutions, for different modified gravities and
effective Einstein spaces. In what follows, and as a hint to explicitly show these possibilities, we will consider in brief
1), 4) and 5) above, as obtained for certain classes of cosmological models.

5.2.1 Effective speed of sound in off-diagonal media

The data π, ς and η̊ defined by eqs. (78), (81) and (82) are used for writing the so-called π-equation of motion along
with the time-time and space-space trace components of the Einstein equation (in our case, modified in terms of
∇ → D) via the kinetic matrix γX,Y (namely, the coefficient of Y in the X equation of motion). In its turn, this allows
to compute the speed of sound of scalar perturbations in the sub-horizon limit using the synchronous gauge for this
calculation. The differential operators are transformed into matrix components by changing z� → −iω. This allows to
compute the coefficients of (77), following the same procedure as in table 1 and appendix D (see also eqs. (4.1)–(4.5))
of [75,76], where the determinant of the kinetic matrix is set to be zero. Such equations are parameterized in the form

⎛

⎝
γπ,π γπ,ς γπ,η̊

γ
etet,π γ

etet,ς γ
etet,η̊

γss,π γss,ς γss,η̊

⎞

⎠

⎛

⎝
π

ς

η̊

⎞

⎠ = 0.

The resulting expression yields, in general, a number of nonlinear dispersion relations. For instance, the presence of
the operator M4

2 (t) results in the dispersion formula for the speed of sound, c,

c−2
s = 1 + 2M4

2

[
c +

3(Ω�)2

4κ2Ω

]−1

.

The value c is linked to various stability issues, as analyzed in [73,74], where it was concluded that ghost-free conditions
are satisfied if

2
[
c +

3(Ω�)2

4κ2Ω

]
= ρDE + pDE + κ−2

[
HΩ� +

3
2

(Ω�)2

Ω
− Ω��

]
> 0.

For certain off-diagonal configurations, the effective EoS of DE can become of phantom type, wDE < −1, even if the
nonholonomic deformations/perturbations do not seem to host one (it may depend on the choice of generating function
Ω(t)).

5.2.2 The effective gravitational constant and Caldwell’s parameter

In the Newtonian limit, we look at off-diagonal deformations and modified theories of gravity that share the horizon
k2/a2 � H2. Such a horizon is indeed shared by different types of solutions in different models, and may show up,
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for instance, in ε-deformed nonholonomic backgrounds. Similar considerations as for subsect.4.4 in [75,76] result in an
expression for the effective Newton constant 4π effG := effκ/2 (note here π is the mathematical constant, and not the
function π(uα) from (78))

effκ2 = κ2Ω−1

[
1 + (Ω�)2/4Ω

(
cκ2 +

3
4

(Ω�)2

Ω
+ a2 κ2

k2
M2

)]
.

This expression becomes more complicated if more terms, in addition to M2, are included. There are modifications of
effG even if Ω� = 0. We note here the explicit dependence on a2, which can be considered as the generating function
for off-diagonal solutions.

Let us now consider the parameter c� considered by Caldwell et al. [78] as the cosmological analog of Eddington’s
PPN parameter γ, when c� ≈ 1 − γ (we use here a notation which differs from those in other works on the subject,
in order not to interfere with � from eq. (3), etc.)18. Using background terms, one obtains

c� =
(Ω�)2

2Ω

[
cκ2 +

(Ω�)2

2Ω
+ a2 κ2

k2
M2

]−1

.

Such formula becomes more complicated if further terms are included. In both cases of this and the previous formulas,
only the terms M3 and M̂2 = δg44δR(3) (for perturbations of the spacial scalar curvature R(3) of D) contribute,
if Ω� = 0. Both effκ2(a) and c�(a) are functionals of the generating functions. In GR, effκ2 = 1/mP and c� = 0.
Nevertheless, these values are nonzero if the configurations are off-diagonal with an effective cosmological constant. A
kind of nonlinear classical polarization of the gravitational constant is there obtained at certain scales.

5.2.3 Confronting an off-diagonal cosmology which encodes modified gravity with actual observational results

In sect. 4.6 of [75,76] (see, in particular, tables 4 and 5 there), the contributions from various operators in a generalized
model with an effective field theory action were calculated. We will here combine this knowledge on the dark energy
models (in our case with off-diagonal interactions modeling the ΛCDM, f(R), and Hořava-Lifshitz [79] theories) for
the nontrivial N-adapted coefficients in (77):

Operator Ω Λ c M
2

2
2m2

MGTs R δg44 (δKα
α)2 a−2gi j(eig44)(ejg44)

ΛCDM 1 � 0 – –
f(R) � � 0 – –

Hořava-Lifshitz 1 � 0 � �

In the above matrix, the symbols for the respective operators mean that � is necessary, the – is not included, and 1,
0 is for unity or exactly vanishing, respectively.

We conclude that off-diagonal modeling of modified gravities can be performed as small perturbations of ΛCDM,
when dark energy exists in the form of a cosmological constant. The off-diagonal redefinitions of generating functions
result in a modification of a(t) which is different from that in diagonal cosmological models. Nevertheless, even very
small values of ε-off-diagonal deformations may introduce a certain speed of sound and clumping of DE (this is different
from diagonal configurations in when such effects are zero and the effective Newtonian constant is just that for GR).
Nevertheless, the models can be characterized by different physical values if the off-diagonal modeling is performed
for different modified gravities, indeed:

Operator Ω M
2

2
2m2

MGTs R (δKα
α)2 a−2gi j(eig44)(ejg44)

Speed of sound 1 � + k4 ∗
Effective Newtonian constant � � + k2 �

Caldwell’s parameter c� � � –

18 There are bounds of the type c� = 0.02± 0.07(2σ), for scales of about 10 Kpc, and = 0.03± 0.10(2σ), for hundreds of Kpc,
but as of now there are not known limits at the Mpc scale yet.
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Here additional labels have been used, for instance, � + k4 is for a new scale dependence, and ∗ is set for an operator
behaving unusually.

Finally, we note that the effective field theory can be generalized in a form which allows to describe dark energy
and modified gravities in the late universe when off-diagonal nonlinear parametric gravitational interactions encode
contributions of such modified theories. The action for perturbations (77) of the effective models (76) includes positive
small ε-deformations of the ΛCDM models with nonholonomically constrained fluctuations which contribute to the
background cosmological evolution. A systematic investigation of the physical effects of N-adapted operators was
undertaken which emphasizes the importance of off-diagonal effects when modeling modified gravities with the aim to
constrain the possible nature of DE.

6 Short summary of new geometric ideas and methods for the construction of off-diagonal
solutions

In the modern era of precision cosmology, a series of evidences have been found pointing towards deviations from the
standard big bang cosmology. The universe may be slightly nonhomogeneous and anisotropic at very large scales and
the accelerating expansion phases are determined by dark energy and dark matter effects. A number of alternative
modifications of gravity have been proposed already, with the aim to elaborate realistic cosmological models. Some
of the most intensively exploited are the so-called f(R, . . .)-modified gravity theories [1–14]. The gravitational field
equations in GR and the modified gravities consist of very involved systems of nonlinear PDE. A rigorous study
of the cosmological evolution in the frames of the different theories requires new analytic, geometric and numerical
methods for constructing exact and approximate solutions, reconstructing procedures and effective field models. In
scenarios closely related to the standard ΛCDM universe, the ansatz for the alternative metric is usually taken of
FLRW diagonal type and the interactions are modeled by effective matter, exotic fluids and modifications of GR. The
advantage of the anholonomic frame deformation method, AFDM, [24–26] is that it provides a geometric formalism
for constructing exact generic off-diagonal solutions encoding nonlinear parametric effects which mimic scenarios of
anisotropic cosmology via generating and integration functions. Such nonlinear gravitational interactions, and the
possible cosmological implications thereof, are not considered if we fix from the very beginning the diagonal ansatz,
which results in a system of ordinary differential equations. For generic off-diagonal configurations, we can always
derive an effective field theory and confront cosmological theories with existing observational data as we showed in
sect. 5.

For the equivalent modeling of exact solutions and cosmological scenarios in different classes of modified and
GR theories, we consider three different parametrization of the action for gravitational and matter fields (25), with
respective Lagrange functionals

L = gL[f(R, T,RαβTαβ)] + mL[gαβ ,∇, mϕ] (83)

= gL̂[̂f(R̂, T̂, R̂αβT̂αβ)] + mL̂[ĝαβ , D̂, mϕ̂] (84)

= gĽ + mĽ = Ř + Λ̌. (85)

In these formulas, mϕ are some (effective) matter fields, which can be approximated by the components of perfect
(pressureless) fluids, for instance, with an energy-momentum tensor of the type (26), and the linear connections ∇,
D̂ and Ď are related via distortion relations of the type (19), which are completely determined by the metric field
gαβ � ĝαβ � ǧαβ up to frame transformations. The functionals gL[f(. . .)] and mL[. . .] determine the corresponding
model of f -modified theory of gravity. The Lagrange densities are written in different geometric variables because of
this allows us to find exact solutions and model physical effects by means the same solutions but in different theories
of gravity.

6.1 Decoupling of the generalized Einstein equations and modified cosmological solutions

We can decouple the gravitational and matter field equations (31) in a modified theory of gravity, derived from a
Lagrangian density (83), and construct generic off-diagonal solutions depending (in general) on all spacetime variables,
if we work with geometric data (ĝ, D̂, N̂). The generalized Einstein equations are written in the N-adapted form
R̂αβ = Υ̂αβ with an effective source Υ̂αβ = diag[hΥ, vΥ ] determined by the matter fields and the nonholonomic
and f -deformations. For a very general off-diagonal ansatz for metrics with one Killing, or non-Killing, symmetries,
the gravitational field equations transform into a system of nonlinear PDEs (40)–(44), which can be solved in their
general form for nonhomogeneous and locally anisotropic cosmological configurations (55). In the coordinate frame
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uα = (xk, y3, y4 = t) (where t is the time-like coordinate and k = 1, 2), such metrics ds2 = gαβduαduβ are of the
type (5), or (29), and can be written in a form involving a generalized scaling factor a2(xk, t),

gαβ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a2η1 + ω2[(n1)2a2ĥ3 − (w1)2] ω2[n1n2a
2ĥ3 − w1w2] ω2n1a

2ĥ3 ω2w1

ω2[n1n2a
2ĥ3 − w1w2] a2η2 + (n2)2a2ĥ3 − (w2)2 ω2n2a

2ĥ3 ω2w2

ω2n1a
2ĥ3 ω2n2a

2ĥ3 ω2a2ĥ3 0

ω2w1 ω2w2 0 −ω2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (86)

By fixing the data for the generating functions: Φ̂(xk, t), Φ̂� = ∂tΦ̂ = 0; ω2(xk, y3, t) as a solution of ∂iω−(∂iΦ/Φ�)ω� =
0; eψ(xi) = a2(xk, t)η1(xk, t) = a2(xk, t)η2(xk, t) as a solution of ψ•• + ψ′′ = 2 hΥ , for the nontrivial sources
hΥ (xk), vΥ (xk, t) and for the effective cosmological constant Λ = 0, we can then express the coefficients of this metric
in a certain general form. One further obtains (see the related formulas (50), (51), (52) and (53)) ĥ3 = h3/a2|h4|, with

h3(xk, t) = Φ̂2/4Λ, h4 = a−2(xk, t) =
(Φ̂2)�

8

[
Φ̂2| vΥ | +

∫
dt Φ̂2| vΥ |�

]−1

,

wi(xk, t) = ∂iΦ[Φ̂, vΥ ]/Φ�[Φ̂, vΥ ], nk = 1nk + 2nk

∫
dt h4/(

√
|h3|)3,

where 1nk(xi), 2nk(xi) are integration functions. The solutions (86) include, in general, a nonholonomically induced
torsion (24), which is important for constructing exact solutions in modified theories with nontrivial torsion fields.

We can always put additional zero-torsion constraints (39) and construct Levi-Civita configurations. Such solutions
are extracted by choosing 2nk = 0 and 1nk = ∂kn with a function n = n(xk) and for a subclass of generating functions
Φ = Φ̌(xk, t) for which (∂iΦ̌)� = ∂iΦ̌

�, see the details for eq. (56). One finds w̌i = ∂iΦ̌/Φ̌
�

= ∂iÃ for a nontrivial
function Ã(xk, y4) taken to be a solution of a first order PDE with effective a sources depending functionally on Φ̌.
The v-components of geometric and physical object are generated by couples of data (Φ, vΥ ) and (Φ̂, Λ), or related by
formulas of the type (49), or (for zero torsion), of the type (61), for a fixed value of the effective cosmological constant
Λ = Λ̌, with

Λ̌Φ̌2 = Φ̂2| vΥ | +
∫

dt Φ̂2| vΥ |�. (87)

For the data (Φ̌[Φ̂, vΥ ], Λ̌), a metric (86) is equivalent to the d-metric (59)19.
The fact that the AFDM setting allows us to integrate in this general, off-diagonal (with Killing or non-Killing

symmetries), both the gravitational field equations of GR and of modified theories, is certainly a very important
result in mathematical relativity. This result has also fundamental physical implications for modern standard and
modified gravity theories, particle physics and cosmology. The first one is that off-diagonal solutions of (generalized)
Einstein equations, depending generically on three or four spacetime coordinates, can be generated by general classes
of generating and integration functions. This reflects a specific property of nonlinear and nonholonomic off-diagonal
gravitational interactions, where re-definitions of generating functions (for instance, of type (87)) of modified gravity
theories with sources Ŷαβ (see (32) and (33)), allow us to describe a large class of these modified gravity interactions
as effective Einstein spaces. The effective equations Řα

β = Λ̌δα
β are derived for the gravitational Lagrangian (85)

with a correspondingly nonholonomically deformed linear connection Ď. We have found that we can mimic certain
classes of solutions of modified theories as off-diagonal configurations in ordinary GR, and inversely, but using different
nonholonomic variables and deformed geometric/physical objects. Such constructions cannot be realized at all if we
chose from the very beginning the ubiquitous diagonal ansatz for the metric and consider holonomic configurations.
It is not clear yet how to prove the stability of the solution for f -modified theories, with the exception of some vary
special cases. Nevertheless, for a very general class of such nonlinear nonholonomic systems redefined as f̂ -theories in
terms of Řα

β and Ř, the stability can be proven indeed, as for the Einstein spacetime manifolds (see sect. 4.3).
Another important physical implication is that, for correspondingly fixed data, for generating and integration

functions solutions of the type gαβ(xk, t) (86) determine new classes of nonhomogeneous cosmological metrics in
GR as off-diagonal deformations of the FLRW cosmology, in the limit gαβ → gαβ(t, a(t), ĥ3(t), Φ̌(t), ηi(t)). We can
model accelerating cosmology and dark energy and dark matter effects via nonlinear off-diagonal interactions and
nonholonomic constraints induced by corresponding transforms of type (87) and modified re-scaling factor a(t) as in

19 We emphasize that such locally anisotropic cosmological solutions are generically off-diagonal (because, in general, the
anholonomy coefficients W b

ia, see (14), are nonzero). Some of the six independent coefficients of the metric depend on all
spacetime coordinates. If we fix ω2 = 1, we generate solutions with Killing symmetry on ∂3
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d-metrics (55), or (59). The possibility to mimic modified gravities as analogous models in GR via nonlinear transfor-
mations of generating functions and sources (87) reflects a fundamental property of the class of off-diagonal solutions of
the gravitational field equations. This property holds true for solutions with one Killing symmetry and/or non-Killing
symmetries when metrics are generically off-diagonal and depend (in 4 dimensions) on three/four spacetime coordi-
nates. It reflects a specific nonlinear dynamics of the gravitational and matter fields when off-diagonal interactions
are taken into consideration for maximally possible six degrees of freedom of the metric and with certain classes of
nonholonomic constraints imposed. Working only with diagonalizable, two Killing symmetries and stationary configu-
rations, such nonlinear gravitational physics and cosmologycal effects cannot be encountered. A radically “orthodox”
interpretation of this class of nonlinear and nonholonomic configurations and cosmological evolution scenarios is that
they may explain the bulk of accelerating cosmology data and related dark energy and dark matter effects. It might
be the case that, in order to understand the observed Universe it is not enough to modify GR in a simplistic way
but, rather, to bring into consideration, within the standard GR theory, of a richer class of off-diagonal solutions
and then take convenient limits leading to effective theories, in the end. This issue still need rigorous theoretical and
observational consideration.

6.2 Small off-diagonal f-deformations and effective FLRW-like cosmologies

We can consider the subclass of generating functions, effective sources and cosmological constant (Φ̌[Φ̂, vΥ ], Λ̌) as
in (87), where the cosmological evolution of spacetime regions is approximated by off-diagonal deformations with
polarization functions ηα � 1 + εχα(xk, t) and the N-coefficients ni(xk) and wi(xk, t) are proportional to a small
parameter ε when 0 ≤ ε � 1. This is motivated by the fact that although possible anisotropic cosmological effects are
very small, the modifications of the scale factor å(t) → a(xk, t) (for a FLRW metric (27) with for g̊1 = g̊2 = g̊3 = å2,
g̊4 = −1) can be substantial for some intervals of time when the generating functions are of type (87). Prescribing
any a(xk, t) and the solution eψ(xk) compatible with the observations, and fixing, for simplicity, ω2 = 1, as for the
d-metric (59), when the polarization functions can be approximated as 1+εχi = a−2eψ, arbitrary χ3(xk, t) but χ4 = 1,
and the function ĥ3 = η3/a2, we obtain, up to ε2,

gαβ =

⎡

⎢
⎢
⎢
⎣

a2(1 + εχ1) + ε2[(n1)2a2 − (w1)2] ε2[n1n2a
2 − w1w2] εn1a

2 εw1

ε2[n1n2a
2 − w1w2] a2(1 + εχ2) + ε2[(n2)2a2ĥ3 − (w2)2] εn2a

2 εw2

εn1a
2 εn2a

2 a2 0
εw1 εw2 0 −1

⎤

⎥
⎥
⎥
⎦

. (88)

This class of locally anisotropic metrics is of type (86), with Killing symmetry on ∂3 and small off-diagonal deformations
on an anisotropy parameter ε which has to be fixed by experimental data. We can consider the limit ε → 0 in (88)
but even in such cases we have an anisotropic scaling factor a(xk, t), or a(t), which is different from the standard
å(t) FLRW one. This is a consequence of the nonlinear off-diagonal and nonholonomic gravitational interactions, with
generating functions and possible modified gravity sources related by transforms (87).

Having constructed a class of LC configurations (88), we can extract certain subclasses of cosmological evolution
scenarios with generating and integration functions when a(xk, t) → a(t) = å(t), wi → wi(t), ni → const, etc. In
this way we reproduce an effective FLRW like cosmology when the scaling factor a(t) is defined not by exotic dark
matter and dark energy interactions but by certain off-diagonal gravitational interactions which mimic contributions
of the modified gravity type. In a more general context, metrics of type (88) may encode certain nonholonomic torsion
configurations if the LC-constraints (39) are not imposed. Such solutions also contain a small parameter ε but a scaling
factor a(xk, t) → a(t) = å(t) is generated by data (Φ[Φ̂, vΥ ], Λ) related by formula (49) instead of (87).

7 Concluding remarks and discussion

We have proven in this paper that a wide class of f(R, . . .) modified gravity theories can be encoded into effective
off-diagonal Einstein spaces if nonholonomic deformations and constraints are considered for the nonlinear dynamics
of gravity and matter fields. Special attention has been paid to a new version of modified gravity which includes strong
coupling of the fields [24–26]. Such modified gravity theories have physical motivations from the covariant Hořava-
Lifshitz like gravity models, with dynamical breaking of the Lorentz invariance [15–18], which provides also an example
of a covariant, power-counting renormalizable theory and is represented by a simplest power-law f(R, T,RαβTαβ)
gravity.

We have demonstrated that the gravitational field equations in such modified gravity theories admit a decoupling
property with respect to certain classes of nonholonomic frames, which allows us to generate exact solutions for
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very general off-diagonal forms. The corresponding integral varieties of solutions are parameterized by generating
and integration functions and various classes of commutative and noncommutative symmetry parameters. For certain
nonholonomic configurations, it is possible to redefine the generating functions and effective sources of matter fields
in such a way that the f(R)-terms are equivalently encoded into effective Einstein spaces with complex parametric
nonlinear structure for the gravitational vacuum. We argue that certain nonholonomic configurations model also
covariant gravity theories with nice ultraviolet behaviors and seem to be (super-)renormalizable in the sense of Hořava-
Lifshitz gravity [15–22,44–47].

Notwithstanding the fact that the various f(R) modified theories and general relativity are actually very different
theories, the off-diagonal configurations and nonlinear parametric interactions considered in GR may encode various
classes of such modified gravity effects and explain alternatively observational data for accelerating cosmology and
certain effects in dark energy and dark matter physics. In both cases, it is possible to find cosmological solutions
and reconstruct the corresponding action. In the already mentioned classes of modified gravity theories with f -
modifications [1–18, 24–26], the dynamics of the matter sector is modeled by a perfect fluid. This is necessary to
satisfy the continuity equation and guarantee an evolution which is similar to that in GR. For the alternative models
with nonholonomic configurations [19–22, 27–31, 44–47], the behavior of modified gravity theories is determined by
the off-diagonal terms and nonintegrable constraints. In general, we cannot distinguish the effects of f -modifications
from the off-diagonal ones because nonholonomic frame transforms mix different classes of nonlinear interactions and
parametric constraints. Nevertheless, for certain well-defined parameterizations, we can work with effective a(ζ) and
H(ζ) which, with respect to N-adapted frames and for appropriate types of nonholonomic constraints, mimic ΛCDM
cosmology when the gravitational background is generically off-diagonal and with a nontrivial gravitational vacuum
structure (which may be a nonholonomically induced torsion) with an effective cosmological constant.

Off-diagonal cosmological solutions can be described by a realistic Hubble parameter but with an anomalous
behavior for the barionic dark matter as it is shown in the first subsection of sect. 4. This kind of nonlinear parametric
evolution allows to reproduce de Sitter like universes modeled on nonholonomic backgrounds of certain forms, encoding
f(R, T,RαβTαβ) gravity. For a corresponding class of generating functions, we can model nonholonomic deformations
of the ΛCDM universe with a standard evolution for dust matter. It is possible to distinguish corrections with f(T )
and/or f(RαβTαβ) terms. The priority of the anholonomic frame deformation method (AFDM) is that in such way we
can generate analytical and exact formulas for the field and cosmological evolution equations, to formulate equivalent
modeling criteria, etc.

Another priority of the AFDM is that we can study the issue of matter instability with various classes of modified
gravity theories using geometric methods. The equations for the perturbations are complicated fourth-order differential
equations involving linear perturbations of the Ricci scalar and tensor for different classes of linear connections.
Nevertheless, we were able to consider specific nonholonomic transforms and constraints which allowed us to avoid
matter instabilities. In this approach, some viable effective off-diagonal Einstein models and f(R) gravities could be
elaborated to encode the f(RαβTαβ) contributions.

An effective field theory approach to off-diagonal cosmological configurations can be elaborated in terms of Stückel-
berg fields adapted to nonlinear connection structures, see sect. 5. The constructions for generic off-diagonal pertur-
bations of MGTs (in terms of effective speed of sound, gravitational constant, Caldwell’s parameter, etc.) are linked
and confronted with actual observational data.

We note, finally, that modified gravity theories in general contain ghosts, due to the higher-derivative terms in the
action. However, we can select certain ghost-free configurations determined by corresponding classes of nonholonomic
deformations or constraints. Such models of bi-metric and massive graviton gravities were recently studied in [42–47].
Together with the results in [15–22], the conclusion is reached that some f(R, T,RαβTαβ) models, and their off-
diagonal nonholonomic equivalents, may possess nice ultraviolet properties and that interesting connections can be
established with viable theories of quantum gravity.
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