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Abstract. We investigate analytically and numerically the modulational instability (MI) in a nonlinear
optical fiber. We use a generalized model describing the pulse propagation of waveguiding structure com-
posed of two adjacent waveguides, where the effect of nonlocal nonlinear response as well as stochastic
coefficients are taken into account. Applying the linear stability analysis and stochastic calculus, we show
that the MI gain spectra reads as the maximal eigenvalue of a constant matrix. The generic properties of
the MI gain spectra are then demonstrated for the rectangular response function. We observe that random
inhomogeneities extend the domain of the homogeneous MI gain spectra over the whole spectrum of mod-
ulation, and the nonlocality parameter reduces drastically the growth rate and bandwidth of instability
caused by stochasticity both in anomalous and normal dispersion regimes. We observe also that MI does
not appears for all values of the nonlocal parameter. Numerical simulations of the full stochastic system
of nonlinear Schrödinger equations describing the dynamics of the waves are carried out and lead to the
generation of a train of pulses.

1 Introduction

In the last two decades or so, there has been a considerable interest in wave propagation phenomena that involve
intensity-dependent processes in a host of optical systems. In particular, propagation of intense continuous waves in
dielectric media leads to several major nonlinear phenomena having fundamental interests and practical applications. A
well-known example of those phenomena is the modulational instability (MI), which arises out of the interplay between
the dispersive and nonlinear effects, and which manifests itself in the exponential growth of weak perturbations [1,2].
The gain leads to amplification of sidebands, which break up the otherwise uniform wave and generate fine localized
structures. Thus, it may act as a precursor for the formation of solitons. The phenomenon of MI has been identified and
studied in various physical systems, such as fluids [3], plasma [4], nonlinear optics [5], discrete nonlinear systems [6],
and in quadratic nonlinear lattices [7] to cite a few. It has been shown that MI is strongly affected by mechanisms
such as saturation of nonlinearity [8], coherence properties of optical beams [9], linear and nonlinear gratings [10],
nonlocality of the nonlinearity [11], competing local and nonlocal nonlinearity [12], nonlocal χ(2)- model [13] and
generation of super-continuum spectra [14,15], and so on. Recently, people in fiber-optic sensing have embraced MI as
a novel sensing mechanism, in which the shift in the gain band is tracked versus the change in a given quantity that one
wants to measure. It has been shown that MI allows highly sensitive biosensing [16], refractive index sensing [17], and
even strain sensing [18]. The MI gain in homogeneous medium has been extensively studied for the scalar nonlinear
Schrödinger equation (NLSE) [19], and also for the vector NLSE both in normal [20] and anomalous [21] regimes. It has
been shown that MI depends on the frequency and power of initial modulation . However, in realistic fiber transmission
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links, the chromatic dispersion and nonlinearity are not constant, but can fluctuate stochastically around their mean
values. The inhomogeneity of the medium may be inherent to the medium [22] or induced by other propagating
waves [23]. Recently, it was pointed out that the random inhomogeneities in nonlinear dispersive media may extend
the domain of the homogeneous MI of nonlinear plane waves over the whole spectrum of modulations, even for the
normal dispersion regime. Indeed, previous works have analyzed the MI of electromagnetic waves in nonlinear Kerr
media with random nonlinearity [24] or random group-velocity dispersion [25]. Spatial nonlocality, which is already
an established concept in plasma physics [26,27], means that the response of the medium at a particular point is not
determined solely by the wave intensity at that point (as in local media), but also depends on the wave intensity in
its vicinity. The nonlocal nature often results from a transport process, such as atom diffusion [28], heat transfer [29,
30], or drift of electric charges [31]. In the study of MI, it was shown in [32] that nonlocality changes drastically the
growth rate and bandwidth of instability caused by stochasticity of parameters of a Kerr medium. But this study was
limited to the case of scalar waves. It was demonstrated recently that vector soliton structures exhibit properties that
have no counterpart in the scalar case [33].

Polarized vector solitons, first proposed by Manakov [34], consist of two orthogonally polarized components in a
nonlinear Kerr media in which self-phase modulation is identical to cross-phase modulation. The nonlinear action of
a field component on itself equals the action of one component on the other [34]. The Manakov model can support
different classes of vector soliton pairs, namely, bright-bright [35], dark-dark [36], and bright-dark [36] solitons pairs.
The polarized vector dark-dark solitons have been investigated in local media using the inverse scattering transform
method [36] and the Hirota method [35,37]. However, recent research has shown that nonlocality promotes the stability
of vector solitons and plays an important role in the formation of vector dipole solitons [38], multipole solitons [39],
two-color solitons [40], vortex solitons [41], and necklace solitons [42]. Thus the generation of solitonlike excitations in
nonlocal media is an important and significant subject.

In this work, we focus on the generation of solitonlike excitations in a nonlocal Kerr-type media with stochastic
parameters through the MI. With this aim, using the stochastic calculus and linear stability analysis we derive a
MI gain matrix in which the positive eigenvalue leads to instabilities. The work is organized as follows: In sect. 2,
we presented a model of coupled system in optical fiber. In sect. 3, we study the linear stability analysis of this
model equation. The second-order moments MI is analyzed in sect. 4. Then in sect. 5, we perform a direct numerical
integration of the coupled one-dimensional nonlinear Schrödinger equation to verify the MI numerically for nonlocality
parameter. Section 6 is devoted to the conclusion.

2 The model

The propagation of two orthogonally polarized beams in nonlocal media with random parameters is described by the
two scalar NLS equations given by [43]:
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where, u+ = u+(x, z) and u− = u−(x, z) are the complex envelope amplitudes of two arbitrary but orthogonal polar-
izations. x and z are, respectively, the transverse and propagation coordinates. g12 represent the coupling coefficient
of the two polarizations mode fiber. The dispersion coefficients βj(z), and nonlinearity coefficients γj(z), (j = 1, 2) are
considered as stochastic functions which fluctuate around their mean values β0j and γ0j :

βj(z) = βj0(1 + mβj
(z)),

γj(z) = γj0(1 + mγj
(z)), (2)

mβj
(z) and mγj

(z) are independent zero-mean random processes of the Gaussian white-noise type,

〈mβj
(z)〉 = 〈mγj

(z)〉 = 0,
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(z,)〉 = 2σ2
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(z,)〉 = 2σ2
γj

δijδ(z − z,),

〈mγi
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(z,)〉 = 0. (3)

The angular brackets stand for the expectation with respect to the distribution of the processes mβj
(z) and

mγj
(z). mβj

(z) and mγi
(z) are uncorrelated. The form of the convolution integral represents the nonlocal nonlinear
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response. The actual form of the nonlocal response is determined by the details of the physical process responsible
for the nonlocality. For all diffusion-type nonlinearities [44], for orientational-type nonlinearities (like nematic liquid
crystal) [45], and for the general quadratic nonlinearity describing parametric interaction [46–48], the response function
is an exponential R(x) = (2a)−1 exp(−|x|/a) originating from a Lorentzian in the Fourier domain, with a defining
the degree of nonlocality. Many classes of response functions actually have generic properties in terms of MI, as done
in [49].

For the sake of simplicity and analytical tractability and without loss of generality, however, we consider here the
rectangular profile for the nonlocal response function R(x) [32]:

R(x) =

{
1
2a , −a ≤ x ≤ a,

0, otherwise,
(4)

where normalization condition
∫ +∞
−∞ R(x)dx = 1, is satisfied. In particular, when a = 0, we can get R(x) = δ(x), which

correspond a standard local Kerr media. When a tends to +∞, eq. (1) becomes linear and the solitons are known as
accessible solitons [50]. Although eq. (4) is only a phenomenological model, it also can describe the general properties
of the nonlocal media very well [51].

3 The linear stability analysis

The fundamental framework of MI analysis relies on the linear stability analysis, such that a continuous wave (CW)
solution is perturbed by a small amplitude or phase perturbation satisfying the condition |aj(z, x)|2 � |P0|2, and then
study whether the perturbation amplitude grows or decays with propagation. The symmetric or antisymmetric CW
steady-state solution can be written as

u+(z, x) = P0 exp i
(
P 2

0 + g12P
2
1

) ∫ z

0

γ1(z,)dz,,

u−(z, x) = P1 exp i
(
P 2

1 + g12P
2
0

) ∫ z

0

γ2(z,)dz,, (5)

where, P0 and P1 are the power of plane wave solution of eq. (1). The stability of the steady state can be examined
by introducing a perturbed field by assuming that

u+(z, x) = [P0 + u(z, x)] exp i
(
P 2

0 + g12P
2
1

) ∫ z

0

γ1(z,)dz,,

u−(z, x) = [P1 + v(z, x)] exp i
(
P 2

1 + g12P
2
0

) ∫ z

0

γ2(z,)dz,, (6)

u(z, x) and v(z, x) being a small complex modulation. Substituting eq. (6) into eq. (1) and linearizing about the plane
wave (5), we get a linear equation for u(z, x) and v(z, x):
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Performing the Fourier-transform, û =
∫

u exp(−ikx)dx, v̂ =
∫

v exp(−ikx)dx and using the complex representation,
û = ûr + iûi, v̂ = v̂r + iv̂i, eq. (7) is converted to a system of linear equations:
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If we were dealing with a deterministic system with paramater, β10, β20, γ10, γ20, eq. (8) would be the main object
used to study MI. However, MI induced by random fluctuations is not captured by the analysis of the first moments,
〈ûr〉, 〈v̂r〉, 〈ûi〉, 〈v̂i〉 [52–54]. It is therefore necessary to compute the modulational intensity growth given by the
higher-order moments.



Page 4 of 10 Eur. Phys. J. Plus (2015) 130: 111

Fig. 1. The MI gain G2(k) in local media with nonstochastic parameters. (a) for anomalous dispersion regimes (β01 =
−2.5 ps2/km, β02 = −2.5 ps2/km), (b) normal dispersion regime (β01 = 2.5 ps2/km, β02 = 2.5 ps2/km). Other parameters
are a = 1, σ2

βj
= σ2

γj
= 0.0, j = 1, 2, P0 = P1 = 10 W, γ01 = γ02 = 3 W−1/km.

4 The second-order moment MI gain

We consider the second moments, 〈û2
r〉, 〈v̂2

r〉, 〈û2
i 〉, 〈v̂2

i 〉, 〈ûrv̂r〉, 〈ûiv̂i〉, 〈ûrûi〉, 〈v̂rv̂i〉, 〈ûrv̂i〉, 〈v̂rûi〉, for the vector
X(2). The moments, 〈ûrv̂r〉, 〈ûiv̂i〉, 〈ûrûi〉, 〈v̂rv̂i〉, 〈ûrv̂i〉, 〈v̂rûi〉, are added to close equations for the second-order
moments. Then, we should evaluate the spaces evolution of the vector X(2). Its first component gives

d
dz

〈û2
r〉 =

1
2
k2β10〈ûrûi〉 +

1
2
k2β10〈ûrûimβ10(z)〉. (9)

For decoupling of the means, 〈ûrûimβ10(z)〉, we apply the Furutzu-Novikov formulas [55,56]
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Here, B(z − z′) = δ(z − z′) for a white-noise Gaussian random process. Finally, we obtain the equation of the first
component

d
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〈û2
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In the same way we can evaluate the derivation of the other components of the vector X(2). As a result, we obtain
the system for the second moments which read as a linear system

d
dz

X(2) = M (2)X(2), (12)

where, X(2) and M (2) are defined in appendix. The matrix M (2) has ten eigenvalues which can be positive or negative.
Eigenvalues of M (2) with positive real parts lead to instabilities, and the largest positive value determines the MI
gain G2(k). In the below discussion we will assume that the fluctuations of stochastic parameters are weak, i.e
σ2

βj
� |βj0|, σ2

γj
� |γj0|, j = 1, 2. We recall that in deterministic medium where the nonlinear response is local, the

plotting of MI gain relatively to the wave number k for the situation of anomalous dispersion regime i.e β0j < 0,
(j = 1, 2) shows in fig. 1(a) one conventional sideband. In the case of normal dispersion regime i.e β0j > 0, fig. 1(b)
also shows one conventional band. Figure 2(a) shows for anomalous dispersion case the gain spectra in nonlocal
media with nonstochastic parameters; we can see many non-conventional sidebands which appear for certain values of
nonlocal parameters. The normal dispersion case is shown in fig. 2(b) where we can also observe many non-conventional
sideband. The maximum MI gain is obtained for the higher values of the wave number k. The higher value of the
MI gain decreases with the increasing value of a, thus nonlocality clearly tends to suppress MI. The number of non-
conventional bands increases for the mixture regime (anomalous and normal dispersion regimes) as depicted in fig. 2(c).
While the width of the sideband becomes narrow, the maximum on MI gain induced by nonlocal effect fluctuates.
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Fig. 2. The MI gain G2(k) in nonlocal media with nonstochastic parameters. (a) for anomalous dispersion regime (β01 =
−2.5 ps2/km, β02 = −2.5 ps2/km), (b) normal dispersion regime (β01 = 2.5 ps2/km, β02 = 2.5 ps2/km), (c) mixed regime
(β01 = 2.5 ps2/km, β02 = −2.5 ps2/km). Other parameters are g12 = 1, σ2

βj
= σ2

γj
= 0.0, j = 1, 2, P0 = P1 = 10 W,

γ01 = γ02 = 3W−1/km.

Let us now take into account the both effects (stochasticity and the nonlocal response). Figures 3(a) and 3(b) are
plotted for the anomalous regime. Figures 3(c), 3(d) show, respectively, the MI gain spectrum for normal and mixed
dispersion regimes. One can see that the number of non-conventional sidebands increase for the case of the mixed
regime. We observe also that the amplitude of sidebands is raised for the lower wave numbers and decrease gradually
for the higher wave numbers. The number of side lobes increase in the mixture regime, while the width of the sideband
decreases. We also plot the gain relatively to σβ and we note that the modulation amplitude of the non-conventional
band increases with the growth of k.

5 Numerical simulations in different GVD domains

In this section we perform direct numerical integrations of the CNLSE (1) by using the split-step Fourier [19]. The
numerical simulations have been carried out using various step sizes down to 0.0001 throughout the z-direction with
up to 1024 points along the x-direction. Then, system of eq. (1) is splitted into its linear part,

∂u+

∂z
=

1
2
iβ10[1 + mβ1(z)]

∂2u+

∂x2
,

∂u−
∂z

=
1
2
iβ20[1 + mβ2(z)]

∂2u−
∂x2

, (13)
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Fig. 3. The MI gain G2(k) in nonlocal media with stochastic parameters. (a), (b) for anomalous dispersion regime (β01 =
−2.5 ps2/km, β02 = −2.5 ps2/km), (c) normal dispersion regime (β01 = 2.5 ps2/km, β02 = 2.5 ps2/km), (d) mixed regime
(β01 = 2.5 ps2/km, β02 = −2.5 ps2/km). Other parameters are g12 = 1, σ2

βj
= σ2

γj
= 1.6, j = 1, 2, P0 = P1 = 10 W,

γ01 = γ02 = 3W−1/km.

and its nonlinear part,
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The solution of the linear part is approximated by

u+(x, z + dz) = F−1

{
F [u+(x, z)] exp

[
−0.5β10

(
1 +

mβ1(z)√
dz

)
k2dz

]}
,

u−(x, z + dz) = F−1

{
F [u−(x, z)] exp

[
−0.5β20

(
1 +

mβ2(z)√
dz

)
k2dz

]}
, (15)

where F denotes the Fourier-transform and F−1 its inverse. The solution of the nonlinear part can be approximated
by

u+(x, z + dz) = u+(x, z)F−1exp[N1(z)dz],

u−(x, z + dz) = u−(x, z)F−1exp[N2(z)dz], (16)
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Fig. 4. (a) The MI gain G2(k) in local media with nonstochastic parameters for the anomalous dispersion regimes. Propagation
of the wave in the anomalous dispersion regime showing effects of the fluctuation parameters. Parameters of the system are
β01 = β02 = −2.5 ps2/km, γ01 = γ02 = 3 W−1/km, a = 10, P0 = P1 = 10W. (b) For stable oscillations, σ2

βj
= σ2

γj
= 0.2,

j = 1, 2; and (c) and (d) for instability σ2
βj

= σ2
γj

= 0.28.

where

N1(z) = γ10

[
R̂(|û+|2 + g12|û−|2)

(
1 +

mβ1(z)√
dz

)]
,

N2(z) = γ20

[
R̂(g12|û+|2 + |û−|2)

(
1 +

mβ2(z)√
dz

)]
, (17)

where û+, û− denotes the Fourier transform of u+ and u−. We use the Gaussian-distributed random numbers generated
by a standard Box-Muller algorithm [57] as a model for the random process mβj

and mγj
, j = 1, 2. The initial condition

used is

u+(0, x) =
√

P0(1 + 0.003 cos(0.6πx)),

u−(0, x) =
√

P1(1 + 0.003 cos(0.6πx)). (18)

The instability development depends on the value of nonlocality parameter and the fluctuation coefficients. Figure 4(a)
presents the MI gain spectra. Results from numerical simulations of MI in the anomalous dispersion regime for different
stochastic paramaters are presented in figs. 4(b), 4(c) and 4(d). For σ2

βj
= σ2

γj = 0.2, we obtain that the propagation
of waves remains stable as shown in fig. 4(b). Waves keep their shape and their amplitude remains constant during
the propagation. The pulse can propagate stably in the given distance, even in the presence of the stochastic nonlinear
terms. The evolution of the initial continuous wave up to a distance z = 300m is shown in figs. 4(c) and 4(d) for
(σ2

βj
= σ2

γj
= 0.28). It found that the pulse can propagate stably up to a distance of z = 275m in the anomalous

dispersion regime. Over that distance, the quasi-continuous wave pulse disintegrates during propagation, leading to
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filaments or break-up into pulse trains. This pulse train has the shape of a soliton-like object. MI typically occurs in the
same parameter region where another universal phenomenon, soliton occurrence, is observed. Solitons are stationary
localized wave packets (wave packets that never broaden) that share many features with real particles. Solitons can be
intuitively understood as a result of the balance between the broadening tendency of diffraction (or dispersion) and
nonlinear self-focusing.

In MI zones, the initial continuous wave tends to be disintegrated into a train of solitonlike objects. Attenuation
waves are also observed during the propagation. However, when the modulational wave number is out of the MI
zones, the trains of solitons disappear progressively and form a constant background solution. We have also found
that increasing the stochastic parameters contributes to the MI phenomenon with pulse train which are generated.
The present result, especially the formation of the stable periodic array of localized pulses, may find straightforward
application in nonlinear optics.

6 Conclusion

We have investigated the MI of two orthogonally polarized incoherent beams in nonlocal media with stochastic pa-
rameters. Using the linear stability analysis and random process theory, we have obtained for the white-noise model
of parameter fluctuations, the equations that govern the dependence of the MI gain on the modulation wave number.
We have seen that the MI is not observed for all values of the nonlocal parameter (figs. 2(a), 2(b)). Contrary to the
deterministic media where non-conventional sidebands appear due to fourth-order dispersion, several non-conventional
sidebands appear here, for mixed regime (fig. 2(c)), or due to the presence of both effects of stochasticity and nonlo-
cality (figs. 3(c), 3(d)). We have simulated the full system to determine the outcome of the development of the MI.
It was found that depending on the fluctuation coefficients, the MI leads to a pattern in the form of a periodic pulse
array. But in the random nonlinear case, the MI leads to the generation of a chain of chaotic pulses.

AM acknowleges financial support from the Abdus Salam International Center for Theoretical Physics (ICTP), Trieste, Italy
through the Associate Programme. The work has greatly benefited from rich comments of the referees.

Appendix A.

The matrix elements of eq. (12) are given by
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M (2) = [M1 M2 M3 M4 M5 M6 M7 M8 M9 M10],

with

M1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
2σ2

β1
β2

10k
4

0
1
2σ2

β1
β2

10k
4 + 4σ2

γ1
γ2
10P

4
0 R̂2

4σ2
γ2

g2
12γ

2
20P

2
0 P 2

1 R̂2

0

0

− 1
2β10k

2 + 2γ10P
2
0 R̂

0

2g12γ20P0P1R̂

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, M2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

− 1
2σ2

β2
β2

20k
4

4σ2
γ1

g2
12γ

2
10P

2
0 P 2

1 R̂2

− 1
2σ2

β2
β2

20k
4 + 4σ2

γ2
γ2
20P

4
1 R̂2

0

0

0

− 1
2β20k

2 + 2γ20P
2
1 R̂

0

2g12γ10P0P1R̂

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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M3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2σ2

β1
β2

10k
4

0
− 1

2σ2
β1

β2
10k

4

0
0
0

1
2β10k

2

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, M4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
2σ2

β2
β2

20k
4

0
− 1

2σ2
β2

β2
20k

4

0
0
0

1
2β20k

2

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

8σ2
γ1

g12γ
2
10P

3
0 P1R̂

2

8σ2
γ2

g12γ
2
20P0P

3
1 R̂2

− 1
2σ2

β1
β2

10k
4 − 1

2σ2
β2

β2
20k

4

0
2g12γ10P0P1R̂

2g12γ20P0P1R̂

− 1
2β20k

2 + 2γ20P
2
1 R̂

− 1
2β10k

2 + 2γ10P
2
0 R̂

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, M6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0

− 1
2σ2

β1
β2

10k
4 − 1

2σ2
β2

β2
20k

4

0
0

1
2β10k

2

1
2β20k

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β10k
2

0
−β10k

2 + 2γ10P
2
0 R̂

0
0

2g12γ20P0P1R̂

−σ2
β1

β2
10k

4

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, M8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
β20k

2

0
−β20k

2 + 2γ20P
2
1 R̂

0
2g12γ10P0P1R̂

0
−σ2

β2
β2

20k
4

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M9 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

2g12γ20P0P1R̂

− 1
2β20k

2

− 1
2β10k

2 + 2γ10P
2
0 R̂

0
0

− 1
4σ2

β1
β2

10k
4 − 1

4σ2
β2

β2
20k

4

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, M10 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

2g12γ10P0P1R̂

0
− 1

2β10k
2

− 1
2β20k

2 + 2γ20P
2
1 R̂

0
0
0

− 1
4σ2

β1
β2

10k
4 − 1

4σ2
β2

β2
20k

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

References

1. G.P. Agrawal, Nonlinear Fiber Optics, 4th edition (Academic, 2008).
2. K. Tai, A. Hasegawa, A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
3. T.B. Benjamen, J.E. Feir, J. Fluid. Mech. 27, 417 (1967).
4. A. Hasegawa, Plasma Instabilities and nonlinear Effect (Springer, Heidelberg, 1975).
5. L A. Ostrovskii, Sov. Phys. JETP 24, 797 (1967).
6. Y.S. Kivshar, M. Peyrard, Phys. Rev. A 46, 3198 (1992).



Page 10 of 10 Eur. Phys. J. Plus (2015) 130: 111

7. P.D. Miller, O. Band, Phys. Rev. E 57, 6038 (1998).
8. Y.S. Kivshar, D. Anderson, M. Lisak, Phys. Scr. 47, 679 (1993).
9. M. Soljacic et al., Phys. Rev. Lett. 84, 467 (2000).

10. J.F. Corney, O. Bang, Phys. Rev. Lett. 87, 133901 (2001).
11. W. Krolikowski, O. Bang, J.J Rasmussen, J. Wyller, Phys. Rev. E 64, 016612 (2001).
12. B.K. Esbensen, A. Wlotzka, M. Bache, O. Bang, W. Krolikowski, Phys. Rev. A 84, 053854 (2011).
13. J. Wyller, W. Krolikowski, O. Bang, J.J. Rasmussen, Physica D 227, 8 (2007).
14. N.I. Nikolov, O. Bang, J. Opt. Soc. Am. B 20, 2329 (2003).
15. A. Dermican, U. Bandelow, Opt. Commun. 181, 244 (2005).
16. J.R. Ott, M. Heuck, C. Agger, P.D. Rasmussen, O. Bang, Opt. Express. 16, 25 (2008).
17. M.H. Frosz, A. stefani, O. Bang, Opt. Express 19, 11 (2011).
18. B. Gu, W. Yuan, M.H. Frosz, A.P. Zhang, S. He, O. Bang, Opt. Lett. 37, 5 (2012).
19. G.P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, san Diego, 2001).
20. J.E. Rothenberg, Phys. Rev. Lett. 64, 813 (1987).
21. P. Drummond, T. Kennedy, J. Dudley, Opt. Commun. 78, 137 (1990).
22. Y. Kodama, A. Maruta, A. Hasegawa, Quantum Semiclass. Opt. 6, 463 (1994).
23. G.P. Agrawal, Phys. Rev. Lett. 59, 880 (1989).
24. F.Kh. Abdullaev, S.A. Darmanyan, S. Bischoff, M.P. Sorensen, J. Opt. Soc. Am. B 14, 27 (1997).
25. M. Karisson, J. Opt. Soc. Am. B 15, 2269 (1998).
26. A.G. Litvak et al., Sov. J. Plasma Phys. 1, 31 (1975).
27. H.L. Pecseli, J.J. Rasmussen, Plasma Phys. 22, 421 (1980).
28. D. Suter, T. Blasberg, Phys. Rev. A 48, 4583 (1993).
29. J.P. Gordon et al., J. Appl. Phys. 36, 3 (1965).
30. S. Akhmanov et al., IEEE J. Quantum Electron. 4, 568 (1968).
31. S. Gatz, J. Herrmann, Opt. Lett. 23, 1176 (1998).
32. E.V. Doktorov, M.A. Molchan, Phys. Rev. A 75, 053819 (2007).
33. E.V. Doktorov, M.A. Molchan, Phys. Scr. 76, 558 (2007).
34. S.V. Manakov, Zh. Eksp. Teor. Fiz. 65, 505 (1973) (Sov. Phys. JETP 38, 248 (1974)).
35. R. Radhakrishnan, M. Lakshmanan, J. Phys. A 28, 2683 (1995).
36. B. Prinari, M.J. Ablowitz, G. Biondini, J. Math. Phys. 47, 063508 (2006).
37. R. Radhakrishnan, K. Aravinthan, Phys. Rev. E 75, 066605 (2007).
38. M. Shen, H. Ding, Q. Kong, L. Ruan, S. Pang, J. Shi, Q. Wang, Phys. Rev. A 82, 043815 (2010).
39. Z. Xu, Y.V. Kartashov, L. Torner, Phys. Rev. E 73, 055601(R) (2006).
40. A. Alberucci, M. Peccianti, G. Assanto, A. Dyadyusha, M. Kaczmarek, Phys. Rev. Lett. 97, 153903 (2006).
41. M. Shen, J.-J. Zheng, Q. Kong, Y.-Y. Lin, C.-C. Jeng, R.-K. Lee, W. Krolikowski, Phys. Rev. A 86, 013827 (2012).
42. M. Shen, Q. Kong, C.-C. Jeng, L.-J. Ge, R.-K. Lee, W. Krolikowski, Phys. Rev. A 83, 023825 (2011).
43. W. Chen, Q. Kong, M. Shen, Q. Wang, J. Shi, Phys. Rev. A 87, 013809 (2013).
44. N. Ghofraniha, C. Conti, G. Ruocco, S. Trillo, Phys. Rev. Lett. 99, 043903 (2007).
45. M. Peccianti, K. Brzdakiewicz, G. Assanto, Opt. Lett. 27, 1460 (2002).
46. N.I. Nikolov, D. Neshev, O. Bang, W.Z. Krolikowski, Phys. Rev. E 68, 036614 (2003).
47. P.V. Larsen, M.P. Sorensen, O. Bang, W.Z. Krolikowski, S. Trillo, Phys. Rev. E 73, 036614 (2006).
48. M. Bache, O. Bang, J. Moses, F.W. Wise, Opt. Lett. 32, 2490 (2007); M. Bache, O. Bang, W. Krolikowski, J. Moses, F.W.

Wise, Opt. Express 16, 3273 (2008).
49. J. Wyller, W.Z. Krolikowski, O. Bang, D.E. Peterson, J.J. Rasmussen, Phys. Rev. E 66, 066615 (2002).
50. A.W. Snyder, D.J. Mitchell, Science 276, 1538 (1997).
51. Q. Kong, Q. Wang, O. Bang, W. Krolikowski, Opt. Lett. 35, 2152 (2010); Q. Kong, Q. Wang, O. Bang, W. Krolikowski,

Phys. Rev. A 82, 013826 (2010).
52. J. Garnier, F.Kh. Abdullaev, Physica D 145, 65 (2000).
53. C.G.L. Tiofack, A. Mohamadou, T.C. Kofane, Opt. Commun. 283, 1096 (2010).
54. A. Mohamadou, C.G.L. Tiofack, T.B. Ekogo, J. Atangana, T.C. Kofane, K. Porsezian, J. Mod. Opt. 58, 924 (2011).
55. K. Furutsu, J. Res. Natl. Bur. Stand. Sect. D 67, 303 (1963).
56. E.A. Novikov, Sov. Phys. JETP 20, 1290 (1964).
57. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran: The Art of Scientific Computing

(Cambridge University Press, Cambridge, 1992).


