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Abstract. This article aims to study the unsteady convection flow of nanofluids induced by free convection
and the oscillating plate condition. The fluid is confined to the region over an infinite vertical flat plate
with ramped wall temperature. Five different types of water-based nanofluids containing copper (Cu), silver
(Ag), copper oxide (CuO), alumina (Al2O3) and titanium oxide (TiO2) are chosen for this analysis. The
Laplace transform technique is applied to obtain exact solutions of velocity and temperature for both cases
of ramp and isothermal plate conditions. Ramp and isothermal solutions are compared graphically and it
is found that the ramp velocity and the temperature are smaller in magnitude than isothermal velocity
and temperature. Corresponding expressions for skin-friction and Nusselt number are also evaluated. The
results are plotted for various physical parameters contained in the governing equations and discussed in
details. Comparison with earlier results provides an excellent agreement.

1 Introduction

The convection flow arises in many physical situations such as in the food industry. Convection is divided into three
main types, namely free, mixed and force. Amongst them free convection is of great significance. Apart from its several
engineering applications, free convection is found in many physical phenomenons, for example, when hot surfaces, such
as retorts with or without insulation, are exposed to colder ambient air. It also occurs when food is placed inside a
chiller or freezer store in which circulation is not assisted by fans. Natural convection is also useful when material is
placed in ovens without fans and afterwards when the cooked material is removed to cool in air. Some recent studies
containing the free convection phenomenon can be found in refs. [1–5] and references therein. Besides that, the work
on free convection for nanofluids when exact solutions are needed is limited.

On the other hand, the conventional heat transfer fluids such as oil, water, and ethylene glycol mixtures are poor
heat transfer fluids due to their poor thermal conductivity. As the scientists believe, low thermal conductivity is one
of the basic limitations in the development of energy-efficient heat transfer fluids that are required in many industrial
applications. Therefore, many attempts have been made by researchers to enhance the thermal conductivity of these
fluids. This work was pioneered by Choi [6], where he pointed out that an innovative new class of heat transfer fluids
can be engineered by suspending metallic nanoparticles in conventional heat transfer fluids. The resulting fluids known
as nanofluids are expected to exhibit high thermal conductivities compared to those of currently used heat transfer
fluids. The nanoparticles used in nanofluids are made of metals (Al, Cu), carbides, metal oxides, nitrides or non-metals
(graphite, carbon nano-tubes) and the base fluid is usually liquid such as water or ethylene glycol [7]. After the seminal
work of Choi [6], many investigators studied nanofluids including the important work of Eastman [8,9], Das et al. [10,
11] and Boungiorno [12,13].

Ahmed and Pop [14] analysed the steady mixed convection boundary layer flow past a vertical flat plate embedded
in a porous medium filled with nanofluid. Hamad et al. [15] studied the magnetic field effects on free convection flow
of a nanofluid past a vertical semi-infinite flat plate followed by Hamad [16], where he obtained analytical solution
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for natural convection flow of nanofluids over a linearly stretching sheet in the presence of a magnetic field. The
conjugate phenomenon of heat and mass transfer of nanofluids over a moving permeable surface with convective
boundary conditions has been analysed by Qasim et al. [17]. Few other problems on nanofluids studied through
different approaches are given in some recent attempts [18–27]. All these studies are performed either using numerical
or any approximate scheme. Exact solutions for nanofluids are very rare. The first exact solution for nanofluids is that
obtained by Loganathan et al. [28]. They carried out an exact analysis to study the influence of thermal radiation
on the unsteady natural convection flow of a nanofluid past an impulsively started infinite vertical plate using the
Laplace transform method. After his seminal work, Turkyilmazoglu [29] observed the unsteady convection flow of some
nanofluids past a moving vertical flat plate with heat transfer. The governing equations are solved for exact solutions
using two types of boundary conditions, namely, prescribed uniform wall temperature (PST) and prescribed uniform
heat flux (PHF).

All the above investigations are carried out under continuous and well-defined conditions for velocity and tem-
perature at the interface of the plate. However, there exist several problems of physical interest, which may require
ramped wall conditions. Taking into account this fact, several researchers investigated the problems of free convection
from a vertical plate with ramped wall temperature. In the earlier studies on free convection with discontinuous wall
temperature, include the work of Hayday et al. [30], Kelleher [31] and Kao [32].

After the seminal work of Schetz and Eichhorm [33], Chandran et al. [34] seem to be the first who studied the
unsteady natural convection flow of a viscous fluid past a vertical plate with ramped wall temperature. By considering
the fluid to be at rest all the time, they obtained exact solutions for velocity and temperature for both cases of ramped
and isothermal plate conditions. Seth et al. [35] explored the magnetohydrodynamics (MHD) natural convection flow
with radiative heat transfer past an impulsively moving plate in a porous medium with ramped wall temperature.
Narahari et al. [36] analyzed radiation effects on the free convection flow past an impulsively started infinite vertical
plate with ramped wall temperature and constant mass diffusion. The unsteady hydromagnetic radiative flow of a
nanofluid past a flat plate suddenly started in motion with ramped wall temperature was examined by Nandkeolyar et
al. [37]. MHD free convection flow in a porous medium with thermal diffusion and ramped wall temperature has been
investigated by Samiulhaq et al. [38]. In the subsequent year, Samiulhaq et al. [39] extended their idea from viscous
fluid to non-Newtonian second grade fluid and studied the effects of MHD and porosity on free convection flow near
an infinite vertical flat plate with ramped wall temperature. Ismail et al. [40] studied MHD and radiation effects on
natural convection flow in a porous medium past an infinite inclined plate with ramped wall temperature.

The purpose of present study is to investigate the unsteady free convection flow of nanofluids over an infinite
vertically oscillating flat plate with ramped wall temperature. Four different types of water-based nanofluids, Al2O3,
Cu, TiO2, and Ag, are chosen for the analysis. Exact solutions for velocity and temperature are obtained for both
cases of ramp and isothermal plate conditions. Expressions for skin friction and Nusselt are also evaluated. Results are
plotted for physical parameters of interest and discussed. The present study is significant due to two main reasons. Its
immediate application is found in those processes which are highly affected with heat enhancement concept. Secondly,
exact solutions obtained here can be used to discover some hidden physical properties of widespread nanofluids. More
exactly, these solutions can be used as a check of correctness for other nanofluids studies obtained via experimental,
numerical or approximate schemes.

The rest of the paper is arranged as follows. The problem is formulated in sect. 2. Sections 3 and 4 include the
solution of the problem. Special cases, Nusselt number and skin friction, and limiting cases are described in sects. 5, 6
and 7, respectively. Section 8 contains the plotted results and related discussion. This paper is concluded in sect. 9.

2 Mathematical formulation of the problem

Let us consider an incompressible, nanofluid of constant kinematic viscosity νnf occupying a semi-finite space y > 0,
with the y-axis in the vertical direction, bounded by an impermeable wall at y = 0. The half space plate is embedded
in a medium saturated with water-based nanofluids. The base fluid and the nanoparticles are assumed to be in thermal
equilibrium and no slip occurs between them. Initially, at time t = 0, both the fluid and the plate are at rest with
constant temperature T∞. At time t = 0+, the plate is subjected to sinusoidal oscillations so that the x velocity on
the wall is given by V = UH(t) cos(ωt) or U sin(ωt), resulting in the induced nanofluid flow. More exactly, the plate
begins to oscillate in its plane (y = 0) according to

V = UH(t) cos(ωt)i; or V = U sin(ωt)i; t > 0, (1)

where the constant U is the amplitude of the motion, H(t) is the unit step function, i is the unit vector in the vertical
flow direction and ω is the frequency of oscillation of the plate. At the same time t = 0+, the temperature of the plate
is raised or lowered to T∞ + (Tw − T∞)t/t0 when t ≤ t0, and thereafter, for t > t0, is maintained at the constant
temperature Tw. The velocity decays to zero and temperature approaches constant value T∞ as y → ∞. (See fig. 1.)
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Fig. 1. Physical model and coordinate system.

Our main purpose here is to study the convection flow resulting from the buoyancy force and oscillating bounding
plate with ramped wall temperature. Under these conditions along with the assumptions of usual Boussinesq approx-
imation and that the viscous dissipation term in the energy equation is neglected, the governing equations can be
written in the following form:

ρnf
∂u

∂t
= μnf

∂2u

∂y2
+ g(ρβ)nf(T − T∞), (2)

(ρcp)nf
∂T

∂t
= knf

∂2T

∂y2
, (3)

subjected to the following initial and boundary conditions

u∗(y, 0) = 0, T ∗(y, 0) = T∞; y ≥ 0,

u(0, t) = UH(t) cos(ωt) or U sin(ωt), T = Tw,

T ∗(0, t) = T∞ + (Tw − T∞)
t∗

t0
, 0 < t∗ ≤ t0,

T ∗(0, t) = Tw, t∗ ≥ t0,

u(y, t) → 0, T ∗(y, t) → T∞ as y → ∞ and t∗ ≥ 0, (4)

where u is the x-component of velocity, T is the temperature of nanofluid, Tw is the constant plate temperature with
Tw > T∞ (temperature far away from the plate), U is the representative velocity, ω is the frequency of the oscillation
at the wall, g is gravitational acceleration, knf is the thermal conductivity of nanofluid, μnf is the dynamic viscosity of
the nanofluid, (ρcp)nf is the heat capacitance of the nanofluid, βnf is the thermal expansion coefficient of the nanofluid.
For nanofluids, the expressions of μnf , ρβnf , (ρcp)nf are given by [22]

μnf =
μf

(1 − φ)2.5
, ρnf = (1 − φ)ρf + φρs,

knf

kf
=

(ks + 2kf) − 2φ(kf − ks)
(ks + 2kf) + φ(kf − ks)

,

(ρcp)nf = (1 − φ)(ρcp)f + φ(ρcp)s, (5)

where φ is the nanoparticle volume fraction, ρf is the density of the base fluid, ρs is the density of the solid particle, cp

is the specific heat at constant pressure. As pointed out by Turkyilmazoglu [27], the expressions in eq. (5) are restricted
to spherical nanoparticles. For other shapes of nanoparticles with different thermal conductivity and dynamic viscosity,
the reader is referred to table 1 [22].

For dimensionless analysis, we introduce the non-dimensional quantities defined by

u =
u∗

U
, y =

y∗
√

vt0
, t =

t∗

t0
,

T =
T ∗ − T∞
Tw − T∞

, t0 =
( √

v

gβ(T ∗
w − T ∗

∞)

)2/3

. (6)
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Table 1. Thermophysical properties of water and nanoparticles [22].

ρ (Kg m−3) cp (Kg−1K−1) k (Wm−1K−1) β × 10−5 (K−1)

H2O 997.1 4179 0.613 21

Al2O3 3970 765 40 0.85

Cu 8933 385 401 1.67

TiO2 4250 686.2 8.9528 0.9

Ag 10500 235 429 1.89

The dimensionless problem is, therefore, given as

∂u

∂t
=

1
Re

∂2u

∂y2
+ φ1Gr T, (7)

Pr
∂T

∂t
=

1
φ2

∂2T

∂y2
, (8)

u(y, 0) = 0, T (y, 0) = T∞; y ≥ 0,

u(0, t) = H(t) cos(ωt) or sin(ωt), T = Tw,

T (0, t) =
{

t, 0 < t ≤ 1
1, t > 1 = tH(t) − (t − 1)H(t − 1)

u(y, t) → 0, T (y, t) → 0 as y → ∞ and t ≥ 0, (9)

where Re = (1−φ)2.5{(1−φ)+φ(ρs
ρf

)} is the Reynolds number, Pr = (μcp)f
kf

is the Prandtl number, Gr = gβ(Tw−T∞)t0
u

is the Grashof number and φ1 = { (1−φ)ρf+φρs(
βs
βf

)

ρnf
}, φ2 = {(1 − φ) + φ

(ρcp)s
(ρcp)f

} are functions depending upon the
thermophysical properties of the base fluid and nanoparticles.

3 Exact solutions

In order to find exact solutions of the system of eqs. (7) and (8), we use the Laplace transform technique. Thus by
taking the Laplace transforms of eqs. (7) and (8), using initial and boundary conditions (9), we get the following
solutions in the transformed (y, q) plane:

u(y, q) =
[

q

q2 + ω2
+ a

(1 − e−q)
q3

]
e−y

√
Re q − a

(1 − e−q)
q3

e−y
√

bq, (10)

T (y, q) =
(

1 − e−q

q2

)
e−y

√
bq, (11)

where

a =
Re φ1Gr

Pr−1
and b = φ2 Pr .

The inverse Laplace transforms of eqs. (10) and (11) are obtained as follows:

Tramp(y, t) = T1(y, t) − T1(y, t − 1)H(t − 1), (12)

T1(y, t) =

[(
t +

by2

2

)
erf c

(
y

2

√
b

t

)
− y

√
b

√
t

π
e−

by2

4t

]
, (13)

uc(ramp)(y, t) = u1(y, t) + u2(y, t) + [u3(y, t) − u3(y, t − 1)H(t − 1)] − [u4(y, t) − u4(y, t − 1)H(t − 1)], (14)

us(ramp)(y, t) = −iu1(y, t) − iu2(y, t) + [u3(y, t) − u3(y, t − 1)H(t − 1)] − [u4(y, t) − u4(y, t − 1)H(t − 1)], (15)
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where the subscripts c and s correspond to cosine and sine oscillations of the plate, respectively, the component
velocities ui(i = 1, . . . , 4) are defined as

u1(y, t) =
H(t)

4
e−iωt

[
e−y

√
−Re iωerf c

(
y

2

√
Re
t

−
√
−iωt

)
+ ey

√
−Re iωerf c

(
y

2

√
Re
t

+
√
−iωt

)]
, (16)

u2(y, t) =
H(t)

4
eiωt

[
e−y

√
Re iωerf c

(
y

2

√
Re
t

−
√

iωt

)
+ ey

√
Re iωerf c

(
y

2

√
Re
t

+
√

iωt

)]
, (17)

u3(y, t) =
a

2

[((
Re2y4

12
+ Re y2t + t2

)
erf c

(
y

2

√
Re
t

)
− y

√
Re

6

√
t

π

(
Re y2 + 5t

2

)
e−

Re y2

4t

)]
, (18)

u4(y, t) =
a

2

[((
b2y4

12
+ by2t + t2

)
erf c

(
y

2

√
b

t

)
−

√
by

6

√
t

π

(
by2 + 5t

2

)
e−

by2

4t

)]
. (19)

4 Solution for isothermal plate

It is important to note that solutions (12), (14) and (15) are obtained for velocity and temperature when the oscillating
plate admits the ramped wall condition. In order to highlight the effects of ramped temperature of the plate on the
fluid flow, it is worthwhile to compare such a flow with the one near a moving plate with uniform temperature. Taking
into accounts the constraints imposed on the fluid motion in sect. 2, the solutions for the fluid temperature and velocity
for free convection flow near an oscillating plate with isothermal condition are obtained, and presented in the following
forms:

Tiso(y, t) = T2(y, t), (20)

T2(y, t) = erfc

(
y

2

√
b

t

)
,

uc(iso)(y, t) = u1(y, t) + u2(y, t) + u5(y, t) − u6(y, t), (21)

us(iso)(y, t) = −iu1(y, t) − iu2(y, t) + u5(y, t) − u6(y, t), (22)

u5(y, t) = a

[(
t +

Re y2

2

)
erf c

(
y

2

√
Re
t

)
− y

√
Re

√
t

π
e−

Re y2

4t

]
,

u6(y, t) = a

[(
t +

by2

2

)
erf c

(
y

2

√
b

t

)
− y

√
b

√
t

π
e−

by2

4t

]
.

5 Special cases

We can see that the solution for the velocity given by eqs. (14), (15), (21) and (22) are not valid for fluid with Prandtl
number Pr = 1. On the other hand, the Prandtl number measures the ratio of viscous diffusion rate to thermal
diffusion rate and is of great physical significance. The Prandlt number, as unity, physically corresponds to the case
when thermal and momentum boundary layer thicknesses are of the same order of magnitude. It is easy to show that
the temperature solution T (y, t) is similar to eq. (12) when we replace Pr = 1. However, the solution of velocity has to
be derived again starting from eq. (7) using conditions (9). Thus the corresponding solutions for the cosine and sine
oscillations of the plate when Pr = 1 are given by

uc(ramp)(y, t) = u1(y, t) + u2(y, t) + u0(y, t) − u0(y, t − 1)H(t − 1), (23)
us(ramp)(y, t) = −iu1(y, t) − iu2(y, t) + u0(y, t) − u0(y, t − 1)H(t − 1), (24)

with

u0(y, t) =
Gr

√
φ2y

2

[
2

√
t

π
e−

φ2y2

4t −
√

φ2yerf c

(√
φ2y

2
√

t

)]
. (25)
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Following a similar procedure, the solutions obtained for isothermal plate conditions when Pr = 1, are given by

uc(iso)(y, t) = u1(y, t) + u2(y, t) + u0(y, t), (26)

us(iso)(y, t) = −iu1(y, t) − iu2(y, t) + u0(y, t). (27)

6 Nusselt number and skin friction

The expressions of the Nusselt number and skin friction for ramp and isothermal conditions are determined from
eqs. (12), (20), (14), (15), (26) and (27) given by

Nu =
∂T

∂y

∣∣∣∣
y=0

,

Nuiso =

√
b

πt
, (28)

Nuramp = −μ[Nu1(y, t) − Nu1(y, t − 1)H(t − 1)], (29)

where

N1(t) =
1
2
[erfc

√
bt − erf

√
b(t − 1)H(t − 1)],

τ =
∂u

∂y

∣∣∣∣
y=0

,

τiso =
1

2
√

π

[
e−itω

[
−H

√
Re

√
π
√
−Re iω erf(

√
−itω) −

[
2

{
H
√

Re

√
1
t

+ a
(√

t −
(
−1 +

√
b
)√

t

−
√

b

t
t

) ]}
+ e−itωH

√
Re

√
π
√

Re iωerf(
√

itω)

]]
, (30)

τramp(y, t) = −μ[τ1(y, t) − τ1(y, t − 1)H(t − 1)], (31)

τ1(y, t) =
1

12
√

π
√

t
e−iωt

[
−6H

√
Reeiωt + eiωt

[
−6H

√
Re + a

{
5
√

b −
√

Re

(
5 + 6

√
1
t

)
√

t

+6

√
b

t

√
t

}
t2

]
− 6H

√
π
√

t
{√

−Re iω erf
(√

−iω
)

+ et(iω+iω)
√

Re iω erf
[√

itω
]}]

. (32)

7 Limiting cases

In order to underline the theoretical value of the general solutions (14), (15) and (13) for velocity, as well as to gain
physical insight of the flow regime, we consider some limiting cases whose technical relevance is well known in the
literature.

7.1 Solutions for Stokes’ first problem

In this case, the flow in the fluid is induced due to impulsive motion of the plate. The velocity condition at infinity
and temperature conditions are same. The temperature solutions are independent of oscillation. Thus by taking ω = 0
(which physically corresponds to Stokes’ first problem), into eq. (14), for ramped velocity and eqs. (21) for isothermal
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velocity, we obtain

u(ramp)(y, t) = H(t)

[
erf c

(
y
√

Re
2
√

t

)]

+
a

2

[(
t2 + Re ty2 +

Re2y4

12

)
erfc

(
y
√

Re
2
√

t

)
− (10t + Re y2)

√
Rey

√
te−

Re y2

4t

12
√

π

]

−a

2

[(
t2 + bty2 +

b2y4

12

)
erfc

(
y
√

b

2
√

t

)
− (10t + by2)y

√
b
√

te−
by2

4t

12
√

π

]
, (33)

u(iso)(y, t) = H(t)

[
erf c

(
y
√

Re
2
√

t

)]
+ a

[(
t +

Re y2

2

)
erfc

(
y
√

Re
2
√

t

)
− y

√
Re

√
te−

Re y2

4t

2
√

π

]

−a

[(
t +

by2

2

)
erfc

(
y
√

b

2
√

t

)
− y

√
b
√

te−
by2

4t

2
√

π

]
. (34)

It is important to note that eqs. (14) and (12) together with (21) and (20) are found to be identical to those
obtained by Nandkeolyaret et al. [37], eqs. (12) and (13), and eqs.(15) and (16), respectively, when N = 0 (absence of
thermal radiation), M = 0 (absence of MHD) and 1/K1 = 0 (absence of porosity). Hence, this verifies the correctness
of the present work.

7.2 Solutions for Newtonian fluids

Here, if we want to study pure viscous fluid without incorporating the nanoparticles, we need to replace the thermal
and mechanical parameters of nanofluid with those of viscous fluid in the obtained solutions (12), (14) and (20), (21).
Thus, the resulting solutions will be independent of the influence of nanoparticles. These solutions will correspond
to the pure convection problem when the bounding plate is at rest at all the times. They will be identical to those
obtained by Chandran et al. [34], see eqs. (11), (12), (19) and (20).

7.3 Solution in the absence of mechanical effects

In this case, we consider the flow situation when the infinite plate is kept at rest all the times. More exactly, the wall
velocity of the fluid is zero for each real value of t and thus the mechanical component of velocity identically vanishes.
Consequently, the velocity of the fluid u(y, t) reduces to its thermal components for both ramp and isothermal velocities.
Its ramp and isothermal temperatures as well as the surface heat transfer rate are given by the same equalities. However,
the skin friction will be changed correspondingly.

7.4 Solution in the absence of thermal effects

In this last case, we assume that the flow is induced only due to bounding plate and the corresponding buoyancy
forces are zero equivalently it shows the absence of free convection (Gr = 0) due to the differences in the temperature
gradient. This shows that the thermal parts of velocities in eqs. (14), (15), (21) and (22) are zero. Hence, the flow is
governed only by the corresponding mechanical parts given by

u(ramp)(y, t) = u(iso)(y, t) = u1(y, t) + u2(y, t). (35)

8 Numerical computation, results and discussion

This section includes the numerical computations of the obtained exact solutions. In order to highlight the effects of
different physical parameters of nanofluid on velocity, temperature, Nusselt number and skin friction several graphs
are plotted and tables are constructed. Water, H2O, is taken as base fluid. Five different types of nano particles namely
copper (Cu), silver (Ag), copper oxide (CuO), alumina (Al2O3) and titanium oxide (TiO2) are added to water for
making it as water-based nanofluids. Graphs are plotted and compared for both ramped and isothermal velocity and
temperature. In fig. 2, velocity distribution u(y, t) is plotted for two different values of time t = 0.6 and 1.5 for copper
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Fig. 2. The velocity profiles of copper water nanofluid of ramped wall temperature and isothermal boundary conditions for
different values of Pr.
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Fig. 3. Velocity profiles of Al2O3 water-based nanofluid for different values of Gr.

water nanofluid. The time t = 0.6 corresponds to the ramp velocity and t = 1.5 is used for isothermal plate velocity
given by eqs. (14) and (21), respectively. Three different values of the Prandtl number Pr = 0.71, Pr = 1, Pr = 7
are chosen. As suggested by Loganathan et al. [28], the nanoparticle volume fraction is considered in the range of
0 ≤ φ ≤ 0.04, because sedimentation takes place when the nanoparticle volume fraction exceeds 8%. Furthermore,
in this study, we have considered spherical nanoparticles with thermal conductivity and dynamic viscosity as shown
in table 1. This choice is based on existing studies [28] and [29]. One may chose another type of nanoparticles from
table 1. As we can see from the solutions that analytical results are obtained from both cosine and sine oscillations
whereas the graphical results are plotted only for the cosine parts of velocity.
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Fig. 4. Effect of nanoparticle volume fraction φ on the velocity profiles.

Figure 2 shows the variation in the Prandtl number for both ramped and isothermal velocities. The Prandtl number
for ramped velocity as well as for isothermal velocity is takes as 0.71, 1 and 7. It is found that ramped velocity is
smaller compared to isothermal velocity. This comparison is in excellent agreement with published results in literature
including Chandran et al. [34], Sami et al. [39] and Nandkeolyar et al. [37]. However, the fluctuation in isothermal
velocity is more than ramp velocity and converges faster. Further velocity in both cases first increases and then
decreases. However, the variations in case of isothermal velocity are much, compared to ramped velocity. The influence
of Grashof number Gr on ramped velocity (eq. (14)) and isothermal velocity (eq. (21)) for aluminium oxide nanofluid
are shown in fig. 3. On the other hand, the Grashof number Gr is a dimensionless number which approximates the ratio
of the buoyancy to viscous force acting on a fluid. In this figure Gr = 0 corresponds to the absence of free convection,
while Gr > 0 represents the cooling problem. Here again for ramped velocity t is chosen less than unity, whereas for
isothermal cases t is taken greater than 1. As in fig. 2, ramped velocity comes down than isothermal velocity. More
exactly, when Gr = 0, physically corresponds to the absence of free convection, velocity is minimum for both ramped
and isothermal cases and increases for positive values of Gr. For natural convection flow over a vertical plate, we can
take 0 < Gr < 108. However, in the present analysis we have taken Gr = 2 and 4. For Gr values bigger than this
range the boundary layer becomes turbulent. This figure also shows the comparison of the absence and presence of
free convection.

Figure 4 illustrates the effects of nanoparticle volume fraction φ on the velocity profiles for copper water nanofluid
0 ≤ φ ≤ 0.04. It is observed that as the nanoparticle volume fraction increases, the velocity of the nanofluid decreases
due to increase in viscosity. This figure also shows the comparison of base fluid (water) and copper-based nanofluid.
Both ramped and isothermal velocities of base fluid take minimum values compared to copper-based nanofluid. Phys-
ically, this is due to the reason that an increase in nanoparticle volume fraction leads to a decrease in the thermal
conductivity of the nanofluid, hence the thickness of the thermal boundary layer decreases and viscosity increases, and
finally velocity decreases. It is further inferred from this figure that changes in nanoparticle volume fraction leads to
changes in temperature and then velocity which, in turn, shows the importance of nanofluids in the processes involving
heating and cooling. Similarly to the previous figures, this figure also shows the comparison of ramped and isothermal
velocities. The behavior is found to be identical. When φ = 0, the partial differential equations (2) and (3) governing
the current flow reduces to the partial differential equations to a base fluid. Further, to the case of φ = 0, if the
oscillating plate is kept at static position for all the times, then the resulting equations and conditions will give the
same problem done by Chandran et al. [34].

Comparison of velocity profiles of ramped wall temperature and isothermal boundary conditions for different
nanofluids, when Pr = 6.2, φ = 0.04, Gr = 2 is shown in fig. 5. This figure shows that Al2O3 water nanofluids
has highest velocity followed by TiO2, copper, and silver Ag. Variation in ramped velocity is negligible for y < 1.8
and y > 4.8. Isothermal velocity, on the other hand, shows oscillatory behavior. Figure 6 is prepared to show the
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comparison for the two models of Al2O3 and Cu for ramped wall temperature at the same time t = 0.6. It is found
that copper-based nanofluid velocity is more than alumina-based nanofluid near the plate. However, as the distance
increases from the plate, this behaviour reverses. The presence of the nanoparticles in the fluids increases appreciably
the effective thermal conductivity of the fluid and consequently enhances the heat transfer characteristics. The heat
transfer near the plate is higher compared to away from the plate. The Cu nanoparticles have high values of thermal
diffusivity. Therefore, velocity of the fluid with Cu nanoparticles near the plate is higher compared to the fluid with
Al2O3. However, away from the plate this behaviour changes due to change in temperature.

Figure 7 depicts the effects of the Prandtl number on temperature profiles for copper water nanofluids for both
ramped and isothermal wall temperatures. It is observed that the increasing values of Pr, it results in a decrease of
the thermal boundary layer which causes the temperature to decrease. Physically, this behaviour is meaningful due
to the fact that the Prandtl number increases either by increasing the size of the nanoparticle or by the viscosity of
the base fluid and hence the temperature decreases. Moreover, with increasing viscosity of the base fluid, the thermal
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boundary layer thickness decreases and the heat transfer is found to be smaller for large values of Pr. A common
behavior of velocity from all these graphs is noticed that the velocity of the nanofluid is maximum near the plate
and decreases away from the plate. This physical behavior of velocity is in good agreement with imposed boundary
conditions. Figure 8 discusses the temperature distributions of different types of nanofluids. This figure shows that the
silver water nanofluid has the highest temperature distribution compared to copper, TiO2 and Al2O3 water nanofluids.

Now in order to check the accuracy of the present results, the temperature and velocity profiles of the present
study are compared with existing results in literature by Nandkeolyar et al. [37]. This comparison is shown in fig. 9.
An excellent agreement is observed. The effects of Prandtl number Pr, Grashof number Gr, phase angle ωt and
dimensionless time t, on skin friction and Nusselt number corresponding to isothermal and ramped velocities are
studied in tables 2, 3, 4 and 5. The bold number in each table shows the variation of that parameter. An increase in
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Table 2. Skin friction variations for ramped wall temperature.

Pr Gr ωt t τramp

0.71 2 π/4 0.6 0.257239

7.0 2 π/4 0.6 0.386272

0.71 4 π/4 0.6 0.264543

0.71 2 π/2 0.6 0.310681

0.71 2 π/4 0.9 0.258601

Table 3. Skin friction variations for isothermal temperature.

Pr Gr ωt t τiso

0.71 2 π/4 1.5 1.76398

7.0 2 π/4 1.5 1.96976

0.71 4 π/4 1.5 4.76402

0.71 2 π/2 1.5 2.71942

0.71 2 π/4 2.0 2.30887

each Pr, Gr, ωt and t increases the ramped and isothermal skin frictions, τramp and τiso at the surface. On the other
hand, Nusselt number Nu is found to increase for large values of Pr and t for ramped wall temperature whereas the
Nusselt number related to isothermal temperature increases with increasing Pr but decreases with increasing t.
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Table 4. Nusselt’s number variations for ramped wall temperature.

Pr t Nuramp

0.71 0.6 0.32634

7.0 0.6 1.02470

0.71 0.9 0.39908

Table 5. Nusselt’s number variations for isothermal temperature.

Pr t Nuiso

0.71 1.5 0.38815

7.0 1.5 1.21879

0.71 2.0 0.33615

9 Concluding remarks

An exact analysis is performed to study the unsteady convection flow of nanofluids bounded by an infinite ver-
tical plate oscillating in its own plane. The fluid motion is induced due to free convection and bounding plate
with ramped wall temperature. Closed form solutions for velocity and temperature are obtained using the Laplace
transform technique. They satisfy the governing equations together with initial and boundary conditions and can
be further used to verify the validity of other numerical solutions obtained for more complicated transient free
convection flow of nanofluids. Both cases of ramped and isothermal plate temperatures are discussed. Corre-
sponding expressions for the Nusselt number and skin friction are also evaluated for both ramped and isother-
mal plate conditions. Some special and limiting cases are also discussed. On the other hand, the present prob-
lem of natural convection flow of nanofluids over an infinite vertical flat plate has immediate applications in so-
lar film collectors, heat exchangers technology, material sprocessing exploiting vertical surfaces, geothermal en-
ergy storage and all those processes which are highly affected by heat transfer concept. Amongst others, one
of the technological applications of nanoparticles is the use of heat transfer fluids containing suspensions of
nanoparticles to confront cooling problems in the thermal systems [28]. The following main results are con-
cluded:

– An increase in nanoparticle volume fraction increases the nanofluid temperature, which leads to an increase in the
heat transfer rates.

– Ramped velocity and temperature are smaller than isothermal velocity and temperature.

– Base fluid (water) has lower velocity whereas Al2O3 has maximum velocity.

– The surface skin friction increases for large values of Pr, Gr, ωt and t.

– Pr leads to an increase in the heat transfer rate.

– Silver water nanofuid is proven to have better heat transfer rate than the other three types of nanofluids.

– Skin-friction increases with increasing values of Pr, Gr, ωt and t for ramped wall temperature as well as isothermal
temperature.

– The Nusselt number increases with increasing values of Pr and t for ramped wall temperature whereas Nusselt
number associated with isothermal temperature increases with increasing Pr but decreases with increasing t.

– Our solutions are found identical to those obtained by Nandkeolyar et al. [37].

The authors would like to acknowledge the SBKWU (HEC), Pakistan, Ministry of Education Malaysia (MOE) and Research
Management Centre-UTM for the financial support through vote numbers 06H67 and 4F255 for this research.
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