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Abstract. We study physical consequences of the Hubble expansion of Friedmann-Lemâıtre-Robertson-
Walker (FLRW) manifold on measurement of space, time and light propagation in the local inertial frame.
We use the results of this study to analyse the Solar System radar ranging and Doppler tracking experiments
and time synchronization. FLRW manifold is covered by the coordinates (t, yi), where t is the cosmic time
coinciding with the proper time of the Hubble observers and identified with the barycentric coordinate
time (TCB) used in ephemeris astronomy. We introduce the local inertial coordinates xα = (x0, xi) in
the vicinity of a world line of a Hubble observer with the help of a special conformal transformation
that respects the local equivalence between the tangent and FLRW manifold. The local inertial metric
is Minkowski flat and is materialized by the congruence of time-like geodesics of static observers being
at rest with respect to the local spatial coordinates xi. The static observers are equipped with the ideal
clocks measuring their own proper time which is synchronized with the cosmic time t measured by the
Hubble observer. We consider the geodesic motion of test particles and notice that the local coordinate time
x0 = x0(t) taken as a parameter along the world line of the particle, is a function of Hubble’s observer time
t. This function changes smoothly from x0 = t for a particle at rest (observer’s clock), to x0 = t+(1/2)Ht2

for photons, where H is the Hubble constant. Thus, the motion of a test particle is non-uniform when its
world line is parametrized by the cosmic time t. NASA JPL Orbit Determination Program operates under
the assumption that the spacetime is asymptotically flat which presumes that the motion of light (after
the Shapiro delay is excluded) is uniform with respect to the time t but it does not comply with the non-
uniform motion of light on cosmological manifold. For this reason, the motion of light in the Solar System
analysed with the Orbit Determination Program appears as having a systematic blue shift of frequency, of
radio waves circulating in the Earth-spacecraft radio link. The magnitude of the anomalous blue shift of
frequency is proportional to the Hubble constant H that may open an access to the measurement of this
fundamental cosmological parameter in the Solar System radiowave experiments.

1 Introduction

Modern physics is intensively looking for the unified field theory that might explain the origin of the universe and the
underlying fundamental nature of spacetime and elementary particles [1]. This work requires deeper understanding of
the theoretical and experimental principles of general relativity. It is challenging to find a new type of experiments
that broaden the current knowledge. An appealing problem is to examine a presumable link between the local gravi-
tational phenomena and the global cosmological expansion of the universe that is to test the foundational basis of the
Einstein equivalence principle (EEP) in application to a conformal cosmological metric with a time-dependent scale
factor.

EEP in general relativity is universally valid because gravitational field in general relativity has a pure geometric
nature. It is always mathematically possible to find a local diffeomorphism which reduces any global metric to a
Minkowski metric in a sufficiently small neighborhood of a time-like world line of the observer if tidal forces are
neglected. This mathematical fact was a clue that led Einstein to the formulation of his general principle of relativity
(also known as the principle of covariance [2]) and, later on, to the discovery of general relativity as a physical theory
of gravitational field [3, 4].
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The apparent mathematical nature of EEP caused some physicists to deny its physical significance [5]. The present
paper neither shares this extremal point of view nor confronts the solid mathematical foundation of EEP. We focus
on physical aspects of EEP, namely,
1) comparison of the inertial motion of test particles on cosmological manifold considered from the local point of view

of a Hubble observer,
2) derivation of experimental consequences that can be used for testing the Hubble law in the local Solar System

experiments.
So far, all gravitational experiments in the Solar System have been interpreted under a rather natural assumption

that the background spacetime geometry is asymptotically flat [6] covered by coordinates (t, yi) with the background
Minkowski metric

ds2 = −dt2 + δijdyidyj , (1)
where the Latin indices i, j, k, . . . take values 1, 2, 3, δij = diag(1, 1, 1) is the unit matrix, and we have used a convention
for the speed of light, c = 1. The time t entering the metric (1) is identified with the barycentric coordinate time
(TCB) of the Solar System according to the IAU 2000 resolutions [7].

On the other hand, theoretical and observational cosmology postulates that the background spacetime is described
by the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric

ds2 = −dt2 + R2(t)
(

1 +
1
4
kr2

)−2

δij dyi dyj , (2)

where t is the universal cosmic time, yi are the global isotropic coordinates, k = {−1, 0,+1} defines a curvature of
space, and the scale factor R(t) is a function of time found by solving Einstein’s equations [8,9]. The cosmic time t is
the proper time measured by observers having fixed spatial coordinates yi. Therefore, it is exactly the same as time t
in the flat metric (1) and identifies with TCB of fundamental astronomy in the Solar System [2,7, 10].

In what follows, we admit k = 0 in accordance with observations [11] and limit ourselves with the linearized
Hubble approximation. In other words, we consider only terms being linear with respect to the Hubble constant H
and neglect all terms that are quadratic with respect to H or proportional to its time derivative Ḣ ∼ H2. We shall
also neglect post-Newtonian gravitational effects of the Solar System which must be included to the realistic data
analysis of observations in the Solar System. These effects are described in [2,10], and can be easily accounted for by
superposition, if necessary.

FLRW metric (2) is not asymptotically flat and has a non-vanishing spacetime curvature tensor Rαβγδ where the
Greek indices α, β, γ, . . . take values 0, 1, 2, 3. Nonetheless, the Weyl tensor of FLRW metric, Cαβγδ ≡ 0. Hence, (2)
can be reduced to a conformally flat metric for any value of space curvature k [12]. When k = 0, it is achieved by
transforming the cosmological time t to a conformal time, η = η(t), defined by an ordinary differential equation

dt = a(η)dη, (3)

where the scale factor, a(η) ≡ R[t(η)]. The time transformation (3) brings the cosmological metric (2) into the
conformally Minkowskian form

ds2 = a2(η)fαβ dyα dyβ , (4)
where yα = (y0, yi) = (η, yi) are the global conformal coordinates, fαβ = diag(−1, 1, 1, 1) is the Minkowski metric.

According to Einstein’s general relativity and the definition of FLRW metric, the cosmological time t is a physical
proper time of the Hubble observer and can be measured with the help of the observer’s atomic clock while the
conformal time η is a convenient coordinate parameter which is calculated from the clock’s reading but cannot be
measured directly [8,9]. Typically, the cosmological metric (4) is applied to describe the properties of spacetime on the
scale of galaxy clusters and larger. On small scales of the size of the Milky Way, the Solar System and terrestrial lab,
the background spacetime is believed to be flat with any cosmological effect being strongly suppressed. Nevertheless,
the question remains open: if we admit FLRW metric to be valid on any scale, can the cosmological expansion be
detected in local gravitational experiments?

Following [13, 14] we postulate that FLRW metric (4) is a physical metric not only in cosmology but for the
description of the local physics as well. It describes the background spacetime geometry in the global coordinates yα

on all scales spreading up from the cosmological horizon to the Solar System and down to a local observer. The small
parameter in the approximation scheme used in the present paper, is the product of the Hubble constant, H, with the
interval of time used for physical measurements. All non-linear terms of the quadratic order with respect to the small
parameter (formally, the terms being quadratic with respect to H) will be systematically neglected because of their
smallness.

We introduce the reader to the concepts associated with the Einstein equivalence principle in sect. 2 and discuss
construction of the local inertial coordinates in sect. 3. The inertial frame is built in sect. 4. Light geodesics in local
coordinates are derived in sect. 5. We solve these equations in sect. 6 and employ them for investigation of observability
of cosmological effects in the Solar System. Discussion is provided in sect. 7.
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2 Einstein’s principle of equivalence

A thorough treatment of the local astronomical measurements on cosmological manifold inquires a scrutiny re-
examination of Einstein’s equivalence principle (EEP) which states: “In a given gravitational field, the outcome of
any local, non-gravitational experiment is independent of the freely falling experimental apparatus’ velocity, of where
and when in the gravitational field the experiment is performed and of experimental technique applied” [15]. Mathe-
matical interpretation of EEP suggests universality of local geometry in the sense that at each point on a spacetime
manifold with an arbitrary gravitational field, it is possible to chose the local inertial coordinates such that, within a
sufficiently small region of the point in question, all laws of nature take the same form as in non-accelerated Cartesian
coordinates [2, 16].

EEP is applicable in general relativity to any kind of spacetime manifold, in particular, to the manifold of FLRW
universe [13] which is described by metric (4). We noticed [14,17] that due to the expanding nature of space in FLRW
manifold, the parametric description of the propagation of light given in local inertial coordinates in terms of the proper
time of observer, differs from that in the Cartesian coordinates of flat spacetime. Let us consider a Hubble observer
who is at the origin of a local inertial coordinates (LIC), xα = (x0, xi). Physical metric gαβ ≡ a2(η)fαβ , given by (4) in
the global coordinates, is reduced to the Minkowski metric, fαβ , at the origin of LIC with the affine connection being
nil, Γα

μν(x) = 0, on the observer’s world line [18–21]. EEP asserts that the world lines of freely falling (electrically
neutral) test particles and photons are geodesics of the physical metric gαβ with an affine parametrization. Because
the affine connection is nil in LIC, it presumes that the geodesic equations of motion of all test particles —massive
and massless— can be written down as follows:

d2xα

dσ2
= 0, (5)

where σ is the affine parameter along the geodesic. Equation (5) neglects the tidal (caused by the Riemann curvature
of FLRW spacetime) effects [22] which produce terms of the order of H2 which we discard. Solving (5) for time
component shows that the parameter σ can be chosen equal to the coordinate time x0 of LIC, that is σ = x0.

Local coordinate time, x0, must be further operationally connected to the proper time t measured in LIC by the
central Hubble observer. The time x0 is often identified with the proper time of observer t but one must keep in mind
that this identification is true only for static observers being at rest with respect to the central Hubble observer. In
general, the local coordinate time x0 is a non-linear function of t on world lines of moving test particles. Therefore,
changing the affine parameter σ to the non-affine (but directly measurable) parameter t brings (5) to the following
form:

d2xα

dt2
=

dxα

dx0

d2x0

dt2
. (6)

The cosmic time t coincides with the proper time of the central Hubble observer in the absence of any gravitational
perturbations caused by massive bodies of the Solar System like the Sun and planets. Real experiments demand to
include the effect of gravitational field of the Solar System on time transformations but they are well-known and can
be easily taken into account [2]. In ephemeris astronomy the time t is identified with the barycentric coordinate time
(TCB) which is considered as a uniform global time scale. Equations for transformation of the proper time τ of any
observer within the Solar System to TCB are given by the corresponding IAU resolutions [7]. This transformation
shows that τ differs from t by small relativistic terms which are not essential for further discussion (see [2] for more
detail).

NASA JPL Orbit Determinantion Program that is used for spacecraft navigation and calculating planetary and
lunar ephemerides [23] assumes that for any particle including photons, x0 = t. It means that the right side of (6) is
postulated to be nil:

d2xα

dt2
= 0. (7)

This equation yields the photon’s world line x0 = t, xi = xi
0 + kit, where ki is a unit vector in the direction of the

photon’s propagation and we assumed that light passes through the point xi
0 of LIC at instant t = 0 which fixes the

integration constants1. It establishes a linear relationship between the spatial coordinates xi of the photon and the
proper time t of the observer at the origin of LIC, which is a directly measurable quantity (after accounting for the
IAU time transformations).

Equation (7) does not show the presence of the Hubble constant, H. It led scientists to believe that EEP cancels
out all cosmological effects of the linear order of O(H) that prevents astronomers to observe them in the Solar System’
experiments [13]. However, eq. (7) and its solution are incomplete as the relation between x0 and t is not a linear
function of time so that light does not propagate uniformly with constant velocity. This non-uniform propagation of
light in the local coordinates may look as anomaly and violation of EEP for photons but this is just a mathematical

1 Realistic measurement requires accounting for the post-Newtonian relativistic corrections in (7) which is beyond the scope
of the present paper but can be found, for example, in [2, 10].
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consequence of the geometric expansion of space in FLRW universe. This effect makes possible measurement of
the Hubble expansion in the Solar System in the local experiments like the Doppler tracking of spacecraft in deep
space.

3 The local inertial coordinates

In order to interpret the local astronomical measurements (like radar ranging, spacecraft Doppler tracking, etc.) we
have to build the local inertial coordinates (LIC) in the neighbourhood of a time-like world line of the observer.
We focus on building LIC in the vicinity of a Hubble observer which by definition has constant spatial coordinates
yi = const of the FLRW metric and moves along a time-like geodesic world line [24]. Real observers move with respect
to the Hubble flow and experience gravitational forces from the massive bodies of the Solar System. Therefore, the
construction of LIC for a real observer requires to work out additional coordinate transformations which are known
and can be found in [2, 10] so that they are not a matter of concern of the present paper.

Let us put the Hubble observer at the origin of LIC, xi = 0, whose world line coincides, then, with the time-
like geodesic of the observer. The Hubble observer carries out an ideal clock that measures the parameter of the
observer’s world line which is the observer’s proper time t. The proper time t of the Hubble observer coincides with
the cosmological coordinate time t in (2). EEP suggests that in a small neighbourhood of the world line of the observer
(called a tangent spacetime) there exists a local diffeomorphism from the global, yα, to local, xα, coordinates such
that the physical metric gαβ(y) = a2(η)fαβ is transformed to the Minkowski metric, fαβ , as follows:

a2(η)fμν
∂yμ

∂xα

∂yν

∂xβ
= fαβ , (8)

where all tidal terms of the order of O(H2) have been omitted as negligibly small. In the tangent spacetime where (8)
is valid, the physical spacetime interval (4) written down in LIC, reads

ds2 = fαβ dxα dxβ , (9)

where fαβ is understood as the physical metric gαβ(x) expressed in the local coordinates.
Equation (8) looks similar to the special conformal transformation establishing a conformal isometry of the

Minkowsky metric [25,26]

Ω2(x)fμν
∂yμ

∂xα

∂yν

∂xβ
= fαβ , (10)

where

Ω(x) = fαβ

(
b2xα − bα

) (
b2xβ − bβ

)
b−2

= 1 − 2bαxα + b2x2 , (11)

is a conformal factor, bα is a constant four-vector yet to be specified, x2 ≡ fαβxαxβ , and b2 ≡ fαβbαbβ . The special
conformal transformation includes inversions and translations, and is defined by equation [26,27]

yα

y2
=

xα

x2
− bα, (12)

that is equivalent to

yα =
xα − bαx2

Ω(x)
. (13)

All operations of rising and lowering indices in the above equations are completed with the Minkowski metric fαβ .
Let us assume for simplicity that the origin of LIC, xi = 0, coincides with the point having the global spatial

coordinates, yi = 0. As the background manifold is assumed to be analytic, eq. (8) should match (10) in a small
neighbourhood of the origin of the LIC. The matching can be achieved by demanding the scale factor of the FLRW
metric, a(η(x)) = Ω(x). This equality is valid in arbitrary cosmological model if we discard the curvature terms being
proportional to ∼ H2 and/or Ḣ. Indeed, for small values of the conformal time η we have,

a(η) = a(0) + a′(0)η +
1
2
a′′(0)η2 + O(η3), (14)

where we assume that the present epoch corresponds to η = 0 in the conformal time, and the prime denotes the
time derivative, a′ = da/dη, etc. We normalize the scale factor at the present epoch to a(0) = 1. Then, at the
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present epoch the Hubble constant H = a′(0). The second time derivative of the scale factor, a′′ = H ′ + 2H2, and we
drop it off as being negligibly small. Assuming a constant vector, bα = O(H), we approximate the conformal factor,
Ω(x) = 1 − 2bαxα by neglecting terms of the order of b2. Taking into account that (13) yields η = x0 + O(b), and
equating Ω(x) in (11) to the Taylor expansion (14) of the scale factor a(η), we find out that matching yields vector
bα = (H/2)uα = (H/2, 0, 0, 0). It is directed along the four-velocity uα = (1, 0, 0, 0) of the Hubble observer, and is
time-like.

The reader may notice that the special conformal transformation has a singular point, xα = −bα/b2, that goes
over to t = 2/H. It means that the special conformal diffeomorphism (13) is approximately limited in time domain by
the Hubble time, TH = 1/H, calculated for the present value of the Hubble parameter H � 2.3× 10−18 s−1. However,
because LIC have been derived under the assumption that the series (14) is convergent, Ht � 1, the period of time for
which the local inertial frame is really valid is much smaller than the Hubble time and is given by t � TH . Because of
this limitation imposed on the time of applicability of the local frame, the local coordinates are also bounded in space
by the radius, r � RH , where RH = cTH is the Hubble radius of the universe. The conclusion of this paragraph is
that the LIC can be employed only for sufficiently close objects in the universe with the red shift factor z � 1 which
excludes the most distant quasars and galaxies. Therefore, the formalism of the present paper is not applicable to the
discussion of global cosmological properties and/or effects like the red shift of quasars. More stringent results on the
domain of applicability of the local inertial coordinates in cosmology can be found in [28].

The matching ensures that LIC can be constructed in the linearised Hubble approximation from the global co-
ordinates, yα, by means of the special conformal transformation (13) that respects EEP as the matching procedure
demonstrates. In what follows, we accept the equalities, Ω(x(η)) = a(η) that are valid in the linearised Hubble ap-
proximation. Moreover, we work in the vicinity to the present epoch where a(t) = 1 + Ht + O(H2t2), and in this
approximation we are allowed to use t = η in terms which are proportional to H. It means we can equate a(η) = a(t).
This brings the transformation (13) to the following form:

x0 = a(η)
[
η − H

2
(
η2 − y2

)]
, (15)

xi = a(η)yi, (16)

where y = yi, y2 = δijy
iyj , and all residual terms of the order of H2 have been discarded. Expansion of the scale

factor a(η) and conformal time η in terms of the cosmic time t yields yet another form of the transformation from
global to local coordinates in cosmology

x0 = t +
H

2
y2, (17)

xi = (1 + Ht)yi, (18)

where we have again neglected all residual terms of the quadratic order in H.
The special conformal transformation (13) and its approximate expressions (15)–(18) extends the list of transfor-

mations to LIC in cosmology found by other researchers [19–21,28].

4 The local inertial frame

The local inertial coordinates, xα, are mathematical functions on FLRW manifold which have no immediate physical
meaning unlike the Cartesian coordinates in Euclidean space. To make the local coordinates physically meaningful
they should be further specified and operationally connected with measuring devices (clocks, rulers) of a set of some
reference observers. This materialization yields access to the local inertial frame. The corresponding relations between
the measuring tools and the local coordinates are known in differential geometry as inertial (or projective) structure [29].
The Minkowski form of the physical local metric (9) suggests that LIC can be associated with the Gaussian normal
coordinates based on the congruence of time-like geodesics of (electrically neutral) test particles being at rest with
respect to LIC [24].

The first step, is to find relation between the coordinate time x0 and the proper time t of the Hubble observer
at the origin of LIC. Because the spacetime interval, ds2 = −d(x0)2 for xi = 0, and ds2 = −dt2 by the definition of
the proper time [24], we come to the conclusion that x0 = t on the world line of the origin of LIC. The grid of the
Gaussian coordinates start from the initial hypersurface, t = 0, that is orthogonal to the world line of the Hubble
observer. We identify the spatial Gaussian coordinates with the orthogonal (in the Euclidean sense) spatial coordinates
xi of LIC on the initial hypersurface. Extension of the spatial coordinates from the initial hypersurface to an arbitrary
value of the time coordinate x0 ≡ t is performed by means of time-like geodesics. The Christoffel symbols of the
local metric (9) are nil in a neighbourhood of the origin of LIC in accordance with diffeomorphism (13) by which
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LIC were introduced. Because all Christoffel symbols are nil, the time-like world lines of particles having constant
spatial coordinates, xi = const, are geodesics given by (5). The proper time of the particle with the constant spatial
coordinate xi coinsides with the time coordinate x0 which was identified with the proper time of the Hubble observer.
Hence, the parameter σ in (5) can be identified with the proper time t as well. After that eq. (5) describing the world
lines of the static observers takes on the following simple form:

d2xα

dt2
= 0. (19)

The meaning of the time-like geodesic equation (19) is as follows. The world lines xα = {x0 = t, xi = const} are
identified with the network of static reference observers which play a fundamental role in local physical measurements.
We admit that each static observer is equipped with an ideal (atomic) clock measuring their proper time which
coincides with a time-like parameter, x0, along the observer’s world line. Solving (19) reveals that x0 ≡ t is the proper
time of the Hubble observer located at the origin of LIC. We assume that the ideal clocks of the static observers are
synchronized. It can be done with Einstein’s procedure of exchanging light signals as we will confirm in sect. 6.2.

The Gaussian normal coordinates form a local inertial frame that is used for doing local physical measurements of
time and space along time-like world lines of static observers and on space-like hypersurfaces of constant time. The
frame is defined operationally in terms of the proper time of the ideal clocks and rigid rulers. The rulers are made of
an ordinary matter which rigidity is defined primarily by the chemical bonds having an electromagnetic origin. We
have proved [14] that in the linearized Hubble approximation the electromagnetic (Coulomb) forces in an expanding
universe remain the same as in a flat spacetime. For this reason, the rigid rulers and rods are not subject to the
cosmological expansion and can serve for physical materialization of LIC. Another physical realization of the local
Gaussian coordinates is achieved by the celestial ephemerides of the Solar System bodies since their orbits are not
affected by the Hubble expansion either [13,14].

5 The light geodesics

The most precise measurements of spacetime events are made with electromagnetic waves and light [30]. Therefore,
we have to solve equations of light geodesics (6) parametrized with the proper time t of the central observer which
is directly measurable quantity. First of all, we need to evaluate the right side of (6). Function x0 taken on the light
cone, where η2 − y2 = 0, is given in terms of the conformal time η by (15) or, more exactly, x0 = a(η)η. Since the
conformal time η and the cosmic time t are related by

t =
∫

a(η)dη = η +
H

2
η2 + O(H2), (20)

and the cosmic time coincides with the proper time t of the central Hubble observer, we get on the light geodesic

x0 = t +
H

2
t2, (21)

which can be also obtained directly from (17) after making use of equation of light geodesics for y2 � t2 in the term
being proportional to H. Taking the second derivative from x0 in (21) yields d2x0/dt2 = H. Hence, equation of light
geodesics (6) takes on in the local coordinates the following form:

d2xα

dt2
= H

dxα

dt
, (22)

where we have made use of a legitimate approximation, dxα/dx0 = dxα/dt, in the right side of (22).
Equation (22) predicts the existence of a cosmological force in the tangent space of FLRW universe, exerted on a

freely falling photon. It should not be misinterpreted as a violation of general relativity or Newtonian gravity like the
“fifth force” [31] or whatever else. Equation (22) is a direct consequence of general relativity applied along with the
cosmological principle stating that the global cosmological time t is identical with the proper time measured by the
Hubble observer. It explains how and why the Hubble expansion of the universe may appear locally. We discuss the
observational aspects of this local cosmological effect in next section in more detail.

Solution of (22) is given by quadratic function of time

xα = xα
0 + kα

(
t +

H

2
t2

)
, (23)

where xα
0 is position of photon at time t = 0, and kα = (1, ki) is a constant null vector with the unit vector ki pointing

out in the direction of propagation of light. The reader may notice that the coordinate speed of light, vα = kα(1+Ht),
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exceeds the fundamental value of c = 1 for t > 0. There is no violation of special relativity here because this effect
is non-local —the speed is given with respect to the origin of the local coordinates. The local value of the speed of
light measured at time t at the current position of photon, is always equal to c = 1. This is because the group of the
conformal isometry includes the Poincaré group as a sub-group which allows us to change the initial epoch and the
initial position on the background manifold without changing the differential equation (22).

Non-uniform propagation of light in the local frame may look counterintuitive as compared with our experience
with special relativity. Nonetheless, this is how light propagates in the expanding universe. Equation (23) is just a direct
consequence of a standard light propagation formula in cosmology which reads in the global conformal coordinates,
yα = kαη, where kα = (1, ki) is the null vector [32]. Taking this law of propagation of light, substituting it to equations
of the coordinate transformations (15), (16) and accounting for constant translation xα

0 , we arrive at (23) as expected.
The non-uniform propagation of light in the local frame can be observed in the Solar System, thus, making it possible
to measure the Hubble expansion rate locally as contrasted to the cosmological observations of distant quasars.

6 Cosmological effects in the local frame

6.1 Radar and laser ranging

Precise dynamical modelling of orbital and rotational motion of astronomical bodies in the Solar System (major and
minor planets, asteroids, spacecraft, etc.) is inconceivable without radar and laser ranging. The ranging is an integral
part of the experimental testing of general relativity and alternative theories of gravity in the Solar System [2,30,33].
We are to check if the Hubble expansion can be measured in the ranging experiments.

Equation of light propagation in the local Gaussian coordinates xα is given by (22). Let us consider radial propa-
gation of light. The radial (always positive) spatial coordinate of photon is, r =

√
δijxixj . Let a light pulse be emitted

at time t0 at point r0, reaches the target at radial coordinate r > r0 at time t, and is immediately retransmitted to
the point of observation being at radial distance r1 < r to which it arrives at time t1. Propagation of the outgoing and
incoming light rays are obtained from (23) where we demand that at the time of emission, t0, the coordinate speed of
light ṙ(t0) = 1 for both outgoing and incoming light rays. Equation of propagation for outgoing light ray is

r = r0 + (t − t0) +
H

2
(t − t0)

2
, (24)

and propagation of the incoming light ray is described by

r1 = r − (t1 − t) − H

2
[
(t1 − t0)2 − (t − t0)2

]
. (25)

Let us assume for simplicity that the radar ranging is conducted by the Hubble observer at the origin of the local
coordinates so that both the points of emission and observation of the light signal are at the origin and have the radial
coordinate, r0 = r1 = 0. We define the radar distance by a standard equation [2, 34]

� ≡ 1
2

(t1 − t0) , (26)

which is a relativistic invariant due to the covariant nature of the proper time t and the constancy of the fundamental
speed c = 1 in the geometrized system of units adopted in the present paper. After solving (24), (25) we obtain

t =
1
2

(t0 + t1) +
1
2
Hr2, (27)

� = r − Hr2, (28)

where the residual terms of the order of O(H2) have been neglected, r is the radial distance of the point of reflection
of a radar signal at time t.

This calculation reveals that the difference between the coordinate distance r and the invariant radar distance �
is of the order of Hr2. Planetary ranging is done for the inner planets of the Solar System so we can approximate
r � 1 astronomical unit (au) and H � 2.3 × 10−18 s−1. Hence the difference Hr2 � 0.17mm which is a factor of
∼ 104 smaller than the current ranging accuracy (∼ 2m) to interplanetary spacecraft [35, 36]. In case of lunar laser
ranging to the Moon, the coordinate radius of the lunar orbit r � 384000 km, and the estimate of the residual term
Hr2 � 1.1 × 10−6 mm which is one million times less than the current accuracy (∼ 1mm) of LLR [37]. We conclude
that in radar/laser ranging experiments:

1) within the measuring uncertainty the coordinate radial distance r = �,
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2) the radial distance r in the local frame of reference has an invariant geometric meaning in agreement with the
definition of the proper distance accepted in cosmology [8, 32],

3) the radar/laser ranging metrology is insensitive to the Hubble expansion in the local coordinates.

Hence, the celestial ephemerides of the Solar System bodies built on the basis of radar/laser ranging data are not
crippled by the Hubble expansion. They represent a dynamical reference frame with a fixed value of the astronomical
unit (au) which is not changing in time and can be treated as a rigid ruler for measuring distances between celestial
bodies within the Solar System in accordance with a recent resolution of IAU General Assembly (Beijing 2012) on the
meaning and value of astronomical unit [38].

6.2 Einstein’s synchronization of clocks

Let us now consider the Einstein procedure of the synchronization of two clocks based on exchange of light signals
between the clocks. We want to synchronize the clock of the central Hubble observer with the clock of a static observer
located at a point with the Gaussian radial coordinate r. We apply exactly the same procedure as in the case of
radar ranging described above. By Einstein’s definition, when the photon riches the reflection point with the radial
coordinate r at the instant of time t, the clock of the Hubble observer at the point, r = 0, reads the time

t∗ =
1
2

(t0 + t1) , (29)

because the time rate of the (ideal) clock of the Hubble observer is uniform. The instant of time t∗ is defined as being
simultaneous with the time reading, t, of a second clock located at the position with a radial coordinate, r, at the
instant when the light signal is reflected. The time t∗ as a function of t, can be found immediately from (27)

t∗ = t − 1
2
Hr2. (30)

This relation reveals that in order to synchronize two clocks separated by a radial distance r, we have to subtract the
time difference Hr2 from the reading t of the clock of the static observer at the point with radial coordinate r in order
to make the time readings of the two clocks identical. Because the radial distance r coincides with the invariant radar
distance �, which is a measurable quantity, the Einstein synchronization of clocks in such experiment is operationally
possible.

The two clocks will remain synchronized as time goes on, if and only if, the radial distance between the clocks
does not change. For example, a clock at a geocenter will remain synchronized with clocks on-board of a geostationary
satellite moving around Earth on a circular orbit. On the other hand, an ultra-stable clock on board of spacecraft which
moves with respect to the primary time standard on Earth may detect the de-synchronization effect due to the Hubble
expansion of the universe if the radial distance between Earth and the spacecraft changes periodically. If the change
in the radial distance amounts to δr, the overall periodic time difference caused by the clock’s de-synchronization
amounts to δt = δ(t∗ − t) = 2H(r/c)2(δr/r). Expressing r in astronomical units we can find a numerical estimate of
the de-synchronization between the readings of the two clocks,

δt = 1.7 × 10−12
( r

1 au

)2
(

δr

r

)
[s], (31)

where we have used the approximate numerical value of the Hubble constant, H = 2.3×10−18 s−1, the universal speed
c = 3 × 1010 cm/s in cgs units, and the astronomical unit (au) = 1.5 × 1013 cm. This local cosmological effect may be
detectable by NIST and/or other world-leading timekeepers.

6.3 Doppler effect in the local frame

Next step is to consider the Doppler effect that is a change in frequency of propagating electromagnetic wave (light)
emitted at one spacetime event and received at another one, as caused by various physical reasons —relative motion of
observer and the source of light, gravity field, expansion of the Universe, etc. A monochromatic electromagnetic wave
propagates on a light cone hypersurface of a constant phase ϕ, that is a function of spacetime coordinates, ϕ = ϕ(xα).
The wave (co)vector is lα = ∂αϕ, and frequency of the wave measured by an observer moving with 4-velocity, uα,
is [2, 24]

ω = −lαuα. (32)



Eur. Phys. J. Plus (2015) 130: 11 Page 9 of 13

Frequency of electromagnetic wave can be calculated directly as soon as we know lα and uα = dxα/dτ where τ is the
proper time along the world line of the emitter (or receiver) of light. Indeed,

ω = −lauα =
∂ϕ

∂xα

dxa

dτ
=

dϕ

dτ
, (33)

which is just the rate of change of the phase of electromagnetic wave along the world line of emitter (or receiver).
Let us denote the point of emission of the wave P1, the point of its observation P2, and the emitted and observed

wave frequencies as ω1 and ω2, respectively. Proper time of the emitter is denoted as τ1, the proper time of receiver
is τ2, and the time measured by the central Hubble observer is the cosmic time t. The ratio of received to emitted
frequency

ω2

ω1
=

(lαuα)P2

(lαuα)P1

, (34)

quantifies the Doppler effect.
Because the phase of electromagnetic wave remains constant along the light rays we can use eq. (33) to reformu-

late (34) in terms of the time derivatives [2]
ω2

ω1
=

dτ1

dt1

dt1
dt2

dt2
dτ2

, (35)

where dτ1/dt1 is calculated along the world line of the emitter, dt2/dτ2 is calculated along the world line of the receiver,
and dt1/dt2 is calculated along the light ray which is a solution of the light ray geodesic (22) described by equation

xi(t) = xi
0 + ki

[
(t − t0) +

H

2
(t − t0)2

]
, (36)

where xi
0 is the point of emission of light at time t0, and xi is the point of reception of light at time t, and we fix the

coordinate speed of light ẋi = 1 at time t = t0.
We assume that the emitter and receiver moves with respect to LIC, and their proper times τ1 and τ2 are related

to time t1 and t2 by the definition of the spacetime interval: −dτ2 = ds2 = −(dx0)2 + dx2. Taking derivatives yield,

dτ1

dt1
=

√
1 − v2

1 + 2Hv1 · x1, (37)

dτ2

dt2
=

√
1 − v2

2 + 2Hv2 · x2, (38)

where we have made use of diffeomorphism (13) taken on the world line of the emitter and receiver respectively, and
vi
1 = dxi

1/dt1, vi
2 = dxi

2/dt2 are velocities of the emitter and the receiver.
Time derivative dt1/dt2 can be found from (36). We write this equation for times t1 and t2, subtract one from

another, and find the radial distance between points xi
1 = xi(t1) and xi

2 = xi(t2). It yields

|x2 − x1| = t2 − t1 +
H

2

[
(t2 − t0)

2 − (t1 − t0)
2
]
. (39)

Taking differential of this equation and separating terms being proportional to dt1 and dt2, we get

dt1
dt2

=
1 − n21 · v2 + H(t2 − t0)
1 − n21 · v1 + H(t1 − t0)

, (40)

where the unit vector
n21 =

x2 − x1

|x2 − x1|
, (41)

and it points out from the point of emission, P1, to the point of reception, P2, of the light signal.
We insert equations (37), (38), (40) to (35), and expand with respect to the Hubble constant. It yields the Doppler

shift of frequency of electromagnetic wave in the expanding universe for the emitter and receiver being moving with
respect to the LIC,

ω2

ω1
=

1 − n21 · v2

1 − n21 · v1

√
1 − v2

1

1 − v2
2

[
1 + H(t2 − t1)

]
, (42)

where we have dropped off all residual terms of the order of Hv1 and Hv2 as negligibly small. Notice that (42) does
not depend on the choice of the initial epoch t0.
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Equation (42) consists of two groups of term. The first group depends on the velocities of the emitter and receiver,
and represents a special relativistic Doppler effect. The second group (in square brackets) depends on the Hubble
constant H and represents an additional shift of frequency caused by the cosmological expansion of space. The
gravitational field of the Solar System bodies should be also taken into account in realistic experiments. We have
excluded the gravitational shift of frequency as it brings about much more terms to (42) and makes it too complicated.
These terms are well known and can be found, for example, in [2, 23].

For static emitter and receiver we have v1 = v2 = 0, and the Doppler shift equation (42) drastically simplifies

ω2

ω1
= 1 + H(t2 − t1). (43)

It tells us that the cosmological Doppler shift measured by the local static observers is blue because t2 > t1 and, con-
sequently, ω2 > ω1. It works opposite to the cosmological red shift for distant quasars [9] but there is no contradiction
over here. Cosmological red shift is measured with respect to the reference objects (quasars) which have fixed values
of the global coordinates, yi, while the local Doppler shift (43) is measured with respect to static observers having
fixed Gaussian coordinates xi. Thus, the Doppler shift measurements in the global cosmological spacetime and in the
local tangent spacetime refer to two different sets of reference observers moving one with respect to another with the
velocity of the Hubble flow. Therefore, it is natural to expect a different signature of the Doppler effect —red shift for
light coming from distant quasars and blue shift for light emitted by the astronomical objects, for example spacecraft,
within the Solar System. Our theory provides an exact answer for the signature and magnitude of the cosmological
blue shift effect measured in the local inertial frame.

The Doppler effect in the tangent spacetime of FLRW universe has been considered by a number of other authors,
most notably by Carerra and Giulini [13, 39]. They claimed that the cosmological expansion does not produce any
Doppler effect in the local radio wave frequency measurements. Their conclusion is invalid as they implicitly identified
the local Minkowskian time coordinates x0 with the proper time t of the Hubble observer on a world line of any
freely moving particle including photons. However, this identification is not applied to photons (or any other moving
particle) but solely to the static clocks of the Hubble observer. This is the reason for the overlook admitted in [13,39].

6.4 Measuring the Hubble constant with spacecraft Doppler-tracking

The results of the previous section suggest that precise and long-term Doppler tracking of space probes in the Solar
System may offer a new, fascinating opportunity to measure the local value of the Hubble constant H in the Solar
System. It is highly plausible that the “Pioneer anomaly” detected by John Anderson [40] with the JPL deep-space
Doppler tracking technique in the hyperbolic orbital motion of Pioneer spacecraft has a natural explanation given in
terms of the Hubble expansion which changes the frequency of radio waves in spacecraft radio communication link in
an amazing agreement (both in sign and in magnitude) with our equation (43).

We have analyzed the cosmological origin of the “Pioneer anomaly” effect in another paper [14] making use of the
local equations of motion for charged and neutral test particles as well as for photons in FLRW universe. We have
proved that in the local frame of reference the equations of motion for interacting massive neutral and/or charged
particles do not include the linear terms of the first order in the Hubble constant —only tidal terms of the order of
H2 remain. On the other hand, equations of motion of photons parameterized with the TCB time t do contain such
linear terms of the order of H which have dimension of acceleration.

The present paper confirms results of the paper [14] from the point of view of a set of local observers doing
measurements in tangent space of the FLRW manifold. Transformation to the local coordinates xα = (x0, xi) allows
us to transform FLRW metric to the Minkowski metric ds2 = −(dx0)2 + δijdxi dxj but the coordinate time x0 can
be identified with the proper time t of the central Hubble observer only for static observers while for moving particles
x0 = x0(τ) is a non-linear function of time t which is given for photons by (21).

Equation (42) explains the “Pioneer anomaly” effect as a consequence of the expansion of space bringing about
the blue frequency shift of radio waves on their round trip from Earth to spacecraft and back. Indeed, let us denote
ω0 the reference frequency emitted from Earth to spacecraft, ω1 the frequency received at spacecraft and transmitted
back to Earth, and ω2 the frequency received on Earth. Then, according to (42), the shift between ω0 and ω2 is

ω2

ω0
=

ω2

ω1

ω1

ω0
=

(1 − n21 · v2)(1 − n10 · v1)
(1 − n21 · v1)(1 − n10 · v0)

×
√

1 − v2
0

1 − v2
2

[
1 + H(t2 − t0)

]
, (44)

where t0 is the time of emission on Earth, t1 is the time of re-transmission of the signal at spacecraft, and t2 is the
time of reception of the signal back on Earth.
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Let us simplify further consideration by assuming that the measurement is done by the central Hubble observer
located at the origin of LIC. Then, v0 = v2 = 0, and the unit vector n ≡ n10 = −n21 points out in the positive
radial direction toward spacecraft moving with velocity v ≡ v1. After noticing that t2 − t0 � 2(t1 − t0) and neglecting
quadratic with respect to velocity terms, formula (44) takes on the following form:

ω2

ω0
= 1 − 2[

v

c
− H(t1 − t0)], (45)

where v = n · v is the radial velocity of spacecraft, and we prefer to keep over here the speed of light c explicitly. The
Doppler shift is defined as z ≡ (1/2)[(ω2/ω0) − 1]. We get from (45)

z = −v

c
+ H(t1 − t0), (46)

that shows that the cosmological shift of frequency appears as a tiny blue shift on top of much larger red shift of
frequency caused by the outward motion of the spacecraft. It was observed by J. Anderson [40] and confirmed in a
number of papers [41,42].

The time rate of change of the Doppler shift is ż ≡ dz/dt1 which yields

ż = −1
c

(a − Hc) , (47)

where a = dv/dt1 is the magnitude of radial acceleration of the Pioneer spacecraft due to the attraction of the
solar gravity field. The Hubble frequency-shift term, Hc, is subtracted from the spacecraft acceleration and can
be interpreted as a constant, directed-inward acceleration, aP = Hc, in the motion of spacecraft. In fact, the true
cause of the “anomalous” acceleration is associated with the motion of photons but not the spacecraft. This is the
reason why the vigorous attempts to find out the explanation for the “anomalous gravity force” exerted on Pioneer
spacecraft were unsuccessful. The observed value of aobs

P = 8.5 × 10−10 m · s−2 [40] is in a good agreement (both in
sign and in magnitude) with the theoretical value of atheory

P = Hc � 7 × 10−10 m · s−2. Therefore, we believe that
our result (47) provides a strong evidence in favour of general-relativistic explanation of the “Pioneer anomaly” as
opposed to numerous attempts to explain it by thermal recoil force.

The thermal recoil definitely makes contribution to the acceleration of Pioneer spacecraft because the observed
value of aobs

P exceeds theoretical value atheory
P by 20% [40,41]. Recent studies [42–44] indicate that the numerical value of

the Pioneer anomalous acceleration may be slightly decreasing over time which may be associated with the radioactive
decay of the power generators of Pioneer spacecraft. The question about how much the thermal recoil force contributes
to the overall effect remains open. The papers [42–44] state the Pioneer effect is 100% thermal but they have not taken
into account the geometric effect of the expanding space on the propagation of light in the local frames in cosmology
which suggests that numerical value of the Pioneer effect cannot be smaller than atheory

P = 7 × 10−10 m · s−2. The
thermal emission always adds to the general-relativistic prediction, atheory

P . Observations indeed show aobs
P larger than

atheory
P by 20%. The theory of the present paper explains 80% of the overall effect by the effect of the expanding

geometry leaving for the thermal recoil contribution no more than 20%.

7 Discussion

1) We have build the LIC by applying the special conformal transformation (13). Comparison with other ap-
proaches [13, 18–21] to build the LIC in cosmology reveals that all of them bring about the same coordinate
transformation (17), (18) in the linearized Hubble approximation. Therefore, there is no difference between various
approaches to build the local inertial coordinates in cosmology so far as the quadratic terms in the expansion
with respect to the Hubble parameter are not considered. Our approach to build LIC helps to realize that the
transformation to the local coordinates on the expanding cosmological manifold is, in fact, an infinitesimal special
conformal transformation which establishes 1-to-1 local mapping between the local and conformal coordinates.

2) Introducing a local physical distance xi = R(t)yi, recast (2) to the following form:

ds2 = −
(
1 − H2x2

)
dt2 − 2Hxi dxi dt + δij dxi dxj , (48)

which can be written down as

ds2 = −dt2 + δij

(
dxi − Xi dt

) (
dxj − Xj dt

)
, (49)

where vector field Xi ≡ Hxi. Metric (49) is exactly the warp-drive metric that was suggested by Alcubierre [45]
to circumvent the light-speed limit in general relativity. All mathematical properties of the warp-drive metric that
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have been analysed, for example in [46], are valid in the local coordinates (t, xi) where t is the proper time of the
local static observers (xi = const) coinciding with the cosmic time. The metric (49) is non-inertial but it can be
converted to the flat Minkowski metric in a neighbourhood of the coordinate origin with the help of an additional
transformation of the proper time t to a local time coordinate x0 as shown in (13). The local time coordinate
x0 coincides with the proper time t of the static observers but deviates quadratically from t on the light cone as
demonstrated in (21).

3) The analysis of EEP given in the present paper, was focused on the Solar System experiments as contrasted
with pure cosmological tests. There are other possible tests which can be potentially conducted for testing the
formalism worked out in the present paper, for example, with binary pulsars [47]. Timing measurements establish
a very precise local frame for the binary pulsar system which is not affected by the Hubble expansion as explained
in [14]. On the other hand, we expect that the cosmological expansion influence the time of propagation of radio
pulses from the pulsar to observer on Earth, and this effect should be seen in the secular change of the orbital
period Pb of binary pulsars of the order of Ṗb/Pb = H � 2.3 × 10−18. This effect is superimposed on the effect
of the orbital decay due to the emission of gravitational waves by the binary system and introduces a bias to the
observed value of Ṗb in addition to the Shklovskii effect [48]. However, the orbital decay of binary pulsars with
wide orbits is negligible small, hence, we may expect to observe the Hubble expansion effect in the secular change
of the orbital period.

4) It is worth mentioning that Cassini spacecraft was also equipped with a coherent Doppler tracking system and
it might be tempting to use the Cassini telemetry to measure the universal “anomalous Cassini acceleration”
atheory

C � 7 × 10−10 m · s−2. Unfortunately, there are large thermal and outgassing effects on Cassini that would
make it difficult or impossible to say anything about the “Cassini anomaly” from Cassini data, during its cruise
phase between Earth and Saturn [49]. Due to the presence of the Cassini-on-board-generated systematics, the
recent study [50] of radio science simulations in general relativity and in alternative theories of gravity is consistent
with a non-detection of the “Cassini anomalous acceleration” effect.
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