
DOI 10.1140/epjp/i2014-14259-y

Regular Article

Eur. Phys. J. Plus (2014) 129: 259 THE EUROPEAN
PHYSICAL JOURNAL PLUS

A general analytical solution for the variance-to-mean
Feynman-alpha formulas for a two-group two-point, a two-group
one-point and a one-group two-point cases

Dina Chernikova1,a, Wang Ziguan1, Imre Pázsit1, and Lénárd Pál2
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Abstract. This paper presents a full derivation of the variance-to-mean or Feynman-alpha formula in a
two-energy-group and two-spatial-region treatment. The derivation is based on the Chapman-Kolmogorov
equation with the inclusion of all possible neutron reactions and passage intensities between the two
regions. In addition, the two-group one-region and the two-region one-group Feynman-alpha formulas,
treated earlier in the literature for special cases, are extended for further types and positions of detectors.
We focus on the possibility of using these theories for accelerator-driven systems and applications in the
safeguards domain, such as the differential self-interrogation method and the differential die-away method.
This is due to the fact that the predictions from the models which are currently used do not fully describe
all the effects in the heavily reflected fast or thermal systems. Therefore, in conclusion, a comparative
study of the two-group two-region, the two-group one-region, the one-group two-region and the one-group
one-region Feynman-alpha models is discussed.

1 Introduction

In detection statistics, the relation between the average number 〈N〉 of counts during a detection time t, and the
fluctuations around this value, expressed by the variance 〈N2〉 − 〈N〉2, i.e. the variance-to-mean ratio,

Q2 ∼ 〈N2〉 − 〈N〉2
〈N〉 ,

is often used to characterise the statistics of the particle field detected. In the case of neutrons emitted from a
radioactive source obeying a simple Poisson statistics, this ratio is obviously equal to unity. However, for a neutron
chain in a multiplying medium1, such as a subcritical reactor with a source or a fissile sample with an inherent neutron
source due to spontaneous fission, the branching character represented by the fission process has the consequence that
the individual detections will not be independent, rather positive correlations exist between them. Hence the variance-
to-mean ratio is larger than unity, and the deviation from unity carries information on the medium in which the
branching process (neutron multiplication) took place.

This fact was used by Feynman and de Hoffmann in 1944–1956 [1–3] for the derivation of a formula for a branching
process where the variance to mean was above unity, Q2 = 1+Y (t). The Y (t)-function became called the Feynman Y -
function, characterising the deviation of the relative variance from unity. Both its time dependence (e−αt), expressed by
the prompt neutron2 decay constant α, as well as its asymptotic value, carry information on the sought parameters of
the system. The original application of these studies was related to the theoretical description of statistical fluctuations
of the number of neutrons in multiplying medium or in other words, to the determination of the level of subcriticality.
Therefore, the above-mentioned research remained classified for several years.

a e-mail: dina@nephy.chalmers.se
1 A medium, where particles (e.g. neutrons) induce reactions which lead to the emission of several particles of the same type.
2 Neutrons which are emitted in less than 10−14 s following a nuclear fission event.
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The fundamental principles of the Feynman-alpha theory have been extensively described in a number of publica-
tions, e.g. [4]. About a decade ago the interest in this subject was revived in connection to the on-line measurement
of subcritical reactivity (a quantity which is normally used to characterize the multiplication properties of a reactor
core) of Accelerator-Driven Systems (ADS)3. Whereas the original Feynman-alpha formulas referred to a homogeneous
system in a monoenergetic (“one-group”, i.e. one energy group approximation) description [3], dealing only with one
exponent or decay constant, the experiments, e.g. the Yalina [5–7], MUSE [8] and FREYA [9,10], showed the appear-
ance of more than one decay constant and, therefore, the possible need of extension of the one-group one-region (also
referred to as “one-point”) Feynman-alpha formulas to more energy groups and/or spatial regions. Several attempts
were made towards the explanation of multiple exponential modes by the spatial effects [11–14]. By that time it
was decided that the future ADS-systems will be driven by pulsed neutron and spallation sources4 which led to the
extension of the theory of variance-to-mean formulas for a continuous source with Poisson statistics to the cases of
pulsed and spallation neutron sources with different definition of the pulse shapes and pulsing manner [15–28]. Latter
analysis [29] showed the close link between the application of Feynman-alpha formulas to subcriticality measurements
and Safeguards (nuclear material control and accounting).

In line with the above, the suggestion of the new Safeguards technique for mixed oxide (MOX) fuel/spent fuel
assay [30], the Differential Die-away Self-Interrogation (DDSI) technique displayed the interest towards the energy-
dependent aspects of neutron counting. In connection with this, the two-group Feynman-alpha theory was elaborated
in [31], where delayed neutrons5 were neglected, and in [32] with inclusion of delayed neutron precursors. However, fast
fission and thermal detections were neglected in both papers. The results of further considerations of the importance
of the energy-aspect in evaluation of the real systems shows that “a measured variance-to-mean ratio in fast systems
may be contaminated by the energy-higher order mode effect except when the system is near-critical [33]”.

In the light of recent advances in detector technologies in Safeguards towards the development of fast neutron
detection systems with scintillators, the knowledge of the energy-dependent behavior of neutron counting became a
very important issue to be taken into account in Feynman-alpha theory. The authors of [34] showed that the short-
and long-time behavior of the Y -function can be used to assay the amount of 240Pu and the absolute amount of
239Pu + 241Pu in the reprocessed fuel. Therefore, one part of this paper is devoted to the derivation of the general case
of one-point two-group Feynman-alpha formulas, when fast fission and thermal detections and delayed neutrons are
included. However in some cases, for example, when the fission chambers are used as detectors, the energy importance
makes way for the region-dependent aspect. This issue has not well been studied previously, although some expressions
for the one-group two-region Feynman-alpha formulas can be found in [35]. However, even these investigations are
limited to the case of delayed neutron precursors having been neglected and detections accounted for only in one
region. Thus, the second part of this paper is devoted to the derivation of the general case of the two-point one-group
Feynman-alpha formulas, when detections and delayed neutrons are accounted for in both regions.

It has to be noted that the present paper does not carry out fully an analysis of the diagnostic value of the obtained
formulas the same way as it was made in the traditional works based on a one-group treatment in a single (infinite)
homogeneous medium. In the traditional case the time dependence of the Feynman Y (t)-function is characterised
essentially with one decay constant which can clearly be related to the subcriticality of the system. In the case of
using two energy groups and two spatial regions, the number of decay constants increases and each of them becomes a
much more involved function of the increased number of material properties (reaction intensities) that the treatment
of different regions and energy intervals incurs. The sought system parameters become very involved functions of these
decay constants, and no attempt is made in this paper on the investigation of how these parameters can be extracted
from the measurements. This is deferred to later work. The objective of the present work is to give a clear and
transparent derivation of the various variance-to-mean formulas as functions of the reaction and transition intensities,
and to compare the solutions for the different cases.

2 The main concept and assumptions

In this paper, the two-point two-group, the two-group one-point (with delayed neutrons) and the one-group two-point
(with delayed neutrons) Feynman-alpha formulas were derived by using the Kolmogorov approach. The Kolmogorov
equations, originally developed by the Russian mathematician Andrei Kolmogorov [36], also often called “master
equations”, describe the evolution of the probability distribution of Markovian processes. These can be given in two
different forms, called the forward and the backward approaches. In the present work we use the forward Kolmogorov
approach [4], mostly because the symbolic computational codes (in our case the Mathematica package [37]) are better
suited to solve the coupled system of differential equations (arising from the forward approach) than to calculate the
multiple nested integrals which arise from the backward approach.

3 A subcritical reactor driven by an external source.
4 Usually meant as a thick target made of a high-Z material which is bombarded by accelerated charged particles, e.g.

high-energy protons.
5 Neutrons which are emitted with an exponential decay law after the fission, with mean delay times between 0.1 and 10 s.
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Fig. 1. A two-point two-group model of various processes which particles can undergo.

In the general model used for derivations we assume that the neutron population consists of two groups of neutrons:
fast (denoted as 1) and thermal (denoted as 2). Fast and thermal neutrons can undergo different reactions (i) listed
below:

– absorption (i = a);
– fission (i = f);
– detection (i = d);
– removal from the fast group to the thermal (i = r).

Unlike in the terminology, used in the traditional one-group treatments, absorbtion here stands only for capture. The
decay constant of the delayed neutron precursors is given as λ. In addition, both the fast and thermal neutrons can
transit from one region to the others, in both directions. In all models the source is considered as releasing n particles
with probability pq(n) at an emission event. In this paper a term “two-point” has the same meaning as “two-region”.

2.1 The two-group two-point model

For the two-group two-point model it was assumed that two adjacent infinite and homogeneous half-space regions
(denoted as A and B) with different independent reaction intensities for absorption of fast and thermal neutrons
(λA1a, λA2a, λB1a, λB2a), fission induced by fast and thermal neutrons (λA1f , λA2f , λB1f , λB2f ) and detection of
fast and thermal neutrons (λA1d, λB1d, λA2d, λB2d). The two regions are coupled by two passage intensities (λA1t,
λA2t, λB1t, λB2t) in two different directions6. Thus, each of the reactions for the different groups of neutrons can be
described by transition intensities, as shown in fig. 1. Total intensities including both the reactions and transitions
between the regions for the fast and the thermal neutrons are denoted as λA1 and λA2, λB1 and λB2 for regions A
and B, respectively,

λA1 = λA1a + λA1f + λA1t + λA1r + λA1d

λA2 = λA2a + λA2f + λA2t + λA2d

λB1 = λB1a + λB1f + λB1t + λB1r + λB1d

λB2 = λB2a + λB2f + λB2t + λB2d.

The slowing down process, i.e. the removal of neutrons from the fast group to the thermal group is described by
the removal reaction intensity λi=r=R. In the two-point two-group model we also include two extraneous compound
Poisson sources of fast neutrons placed in different regions, A and/or B, with intensities SA and SB . In the following,
two special cases of the above general form will be described briefly. Because in the lower dimensionality of the special
cases, inclusion of delayed neutrons is possible.

2.2 The two-group one-point model (with delayed neutrons)

In the two-group one-point Feynman-alpha model (fig. 2), we assume that the medium is infinite and homogeneous.
The neutron population consists of two groups of neutrons, fast and thermal. A compound Poisson source of fast
neutrons with emission intensity S1 is included in the model. Thus, the total transition intensities for the fast and
thermal neutrons, denoted as λ1 and λ2, are given as

λ1 = λ1a + λ1f + λR + λ1d

λ2 = λ2a + λ2f + λ2d.

6 λAit describes the intensity of particles (group i) leaving region A for region B and λBit is the intensity of particles (group i)
transferring to region A from region B.
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Fig. 2. A two-group one-point model of various processes which particles can undergo.

2.3 The one-group two-point model (with delayed neutrons)

The assumption behind the one-group two-point model is that the two adjacent homogeneous half-space regions
(denoted as A and B) with independent reaction intensities for detection (λAd, λBd), absorption λAa and λBa, and
fission λAf and λBf are coupled by two passage intensities λAt and λBt in two different directions. The decay constants
of delayed neutron precursors are given as λAc and λBc for regions A and B, as shown in fig. 3. Thus, total transition
intensities for region A and region B are denoted as λA and λB :

λA = λAa + λAf + λAt + λAd

λB = λBa + λBf + λBt + λBd.

In the model we include two compound Poisson sources of fast neutrons in regions A and B with emission intensities
SA and SB , respectively. The sources are considered as releasing n particles in one emission with the probability
distributions of pA(n) and pB(n), respectively. For the induced fission reaction, we consider that k neutrons and l
delayed neutron precursors are emitted with the probability distributions fA(k, l) and fB(k, l) for the fission reaction
in region A and region B, respectively.

Fig. 3. A two-point one-group model of various processes which particles can undergo.

3 Theoretical formulas

Based on the main concept and assumptions used the two-group two-region, the two-group one-region and the two-
region one-group Feynman-alpha formulas are elaborated as below.
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3.1 Two-point two-group Feynman-alpha theory

In order to derive the two-point two-group Feynman-alpha theory let us assume that the source SA/SB is switched on
in the region A/B at the time t0 ≤ t, while the detection process is started at the fixed time instant td, where td ≤ t
and td ≥ t0. Let the random processes NA1(t), NB1(t), NA2(t) and NB2(t) represent the number of fast neutrons in
region A, fast neutrons in region B, thermal neutrons in region A and thermal neutrons in region B at the time t ≥ 0
and ZA1(t, td), ZA2(t, td), ZB1(t, td), ZB2(t, td) —the number of fast and thermal particle detections in the regions
A and B in the time interval [td, t], respectively. For convenience, we consider td = 0. Thus, the joint probability of
having NA1 fast neutrons in region A, NB1 fast neutrons in region B, NA2 thermal neutrons in region A, NB2 thermal
neutrons in region B at time t, ZA1 fast neutrons have been detected in region A, and ZB1 fast neutrons have been
detected in region B, ZA2 thermal neutrons have been detected in region A, and ZB2 thermal neutrons have been
detected in region B during the period of time t − td ≥ 0 can be defined as

P (NA1, NA2, NB1, NB2, ZA1, ZB1, ZA2, ZB2, t|t0).
By summing up the probabilities of all mutually exclusive events of the particle not having or having a specific

reaction within the infinitesimally small time interval dt, one can write:

∂P (NA1, NA2, NB1, NB2, ZA1, ZB1, ZA2, ZB2, t)
∂t

=

− (λA1NA1 + λA2NA2 + λB1NB1 + λB2NB2 + SA + SB)P (NA1, NA2, NB1, NB2, ZA1, ZB1, ZA2, ZB2, t)

+ λA1a(NA1 + 1)P (NA1 + 1, NA2, NB1, NB2, ZA1, ZB1, ZA2, ZB2, t)

+ λA2a(NA2 + 1)P (NA1, NA2 + 1, NB1, NB2, ZA1, ZB1, ZA2, ZB2, t)

+ λB1a(NB1 + 1)P (NA1, NA2, NB1 + 1, NB2, ZA1, ZB1, ZA2, ZB2, t)

+ λB2a(NB2 + 1)P (NA1, NA2, NB1, NB2 + 1, ZA1, ZB1, ZA2, ZB2, t)

+ λA1f

NA1+1∑

k

(NA1 + 1 − k)fA1(k)P (NA1 + 1 − k,NA2, NB1, NB2, ZA1, ZB1, ZA2, ZB2, t)

+ λB1f

NB1+1∑

k

(NB1 + 1 − k)fB1(k)P (NA1, NA2, NB1 + 1 − k,NB2, ZA1, ZB1, ZA2, ZB2, t)

+ λA2f

NA1∑

k

(NA2 + 1)fA2(k)P (NA1 − k,NA2 + 1, NB1, NB2, ZA1, ZB1, ZA2, ZB2, t)

+ λB2f

NB1∑

k

(NB2 + 1)fB2(k)P (NA1, NA2, NB1 − k,NB2 + 1, ZA1, ZB1, ZA2, ZB2, t)

+ λA1t(NA1 + 1)P (NA1 + 1, NA2, NB1 − 1, NB2, ZA1, ZB1, ZA2, ZB2, t)

+ λB1t(NB1 + 1)P (NA1 − 1, NA2, NB1 + 1, NB2, ZA1, ZB1, ZA2, ZB2, t)

+ λA2t(NA2 + 1)P (NA1, NA2 + 1, NB1, NB2 − 1, ZA1, ZB1, ZA2, ZB2, t)

+ λB2t(NB2 + 1)P (NA1, NA2 − 1, NB1, NB2 + 1, ZA1, ZB1, ZA2, ZB2, t)

+ λAr(NA1 + 1)P (NA1 + 1, NA2 − 1, NB1, NB2, ZA1, ZB1, ZA2, ZB2, t)

+ λBr(NB1 + 1)P (NA1, NA2, NB1 + 1, NB2 − 1, ZA1, ZB1, ZA2, ZB2, t)

+ λA1d(NA1 + 1)P (NA1 + 1, NA2, NB1, NB2, ZA1 − 1, ZB1, ZA2, ZB2, t)

+ λB1d(NB1 + 1)P (NA1, NA2, NB1 + 1, NB2, ZA1, ZB1 − 1, ZA2, ZB2, t)

+ λA2d(NA2 + 1)P (NA1, NA2 + 1, NB1, NB2, ZA1, ZB1, ZA2 − 1, ZB2, t)

+ λB2d(NB2 + 1)P (NA1, NA2, NB1, NB2 + 1, ZA1, ZB1, ZA2, ZB2 − 1, t)

+ SA

NA1∑

n

pA(n)P (NA1 − n,NA2, NB1, NB2, ZA1, ZB1, ZA2, ZB2, t)

+ SB

NB1∑

n

pB(n)P (NA1, NA2, NB1 − n,NB2, ZA1, ZB1, ZA2, ZB2, t),
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with initial conditions

P (NA1, NA2, NB1, NB2, ZA1, ZB1, ZA2, ZB2, t = t0 | t0) = δNA1,0δNA2,0δNB1,0δNB2,0δZA1,0δZA2,0δZB1,0δZB2,0

and ∑

NA1

∑

NA2

∑

NB1

∑

NB2

P (NA1, NA2, NB1, NB2, ZA1, ZB1, ZA2, ZB2, t = td | t0) = δZA1,0δZA2,0δZB1,0δZB2,0

and fi(k) is the number distribution of neutrons in a fission of type i.
This equation can be solved by using the generating function technique in the way similar to as described

in [4]. By defining the following generating function for the probability distribution P (NA1, NA2, NB1, NB2, ZA1, ZB1,
ZA2, ZB2, t):

G(XA, YA,XB , YB ,M,N,O, P, t) =
∑

NA1

∑

NA2

∑

NB1

∑

NB2

∑

ZA1

∑

ZA2

∑

ZB1

∑

ZB2

XNA1
A Y NA2

A XNB1
B Y NB2

B MZA1NZA2OZB1PZB2

∗ P (NA1, NA2, NB1, NB2, ZA1, ZB1, ZA2, ZB2, t),

with initial condition for t0 ≤ 0

G(XA, YA,XB , YB ,M,N,O, P, t = t0 | t0) = 1

and
G(1, 1, 1, 1,M,N,O, P, t = td | t0) = 1.

The following partial differential equation is obtained:

∂G

∂t
= [λA1a + λArYA + λA1tXB + λA1dM − λA1XA + qA1(XA)λA1f ]

∂G

∂XA

+ [λA2a + λA2tYB + λA2dN − λA2YA + qA2(XA)λA2f ]
∂G

∂YA

+ [λB1a + λBrYB + λB1tXA + λB1dO − λB1XB + qB1(XB)λB1f ]
∂G

∂XB

+ [λB2a + λB2tYA + λB2dP − λB2YB + qB2(XB)λB2f ]
∂G

∂YB

+ SA[rA(XA) − 1]G + SB[rB(XB) − 1]G,

where

qi(X) =
∑

k

Xkfif (k)

r(X) =
∑

n

pq(n)Xn.

For the sake of simplicity, some identities are used in the solution as below (i = 1, 2):

∂

∂X
r(X)

∣∣∣∣
X=1

=
∑

n

npq(n)

= r′

∂2

∂X2
r(X)

∣∣∣∣
X=1

=
∑

n

n(n − 1)pq(n)

= r′′.

Thus, νAi
′ (qAi

′), νBi
′ (qBi

′), νAi
′′ (qAi

′′), νBi
′′ (qBi

′′) and rA
′, rB

′, rA
′′, rB

′′ stand for the first and second factorial
moments7 of the number of neutrons emitted in a fission process and in a source event, respectively. The index i = 1, 2
denotes fission induced by fast or thermal neutrons, respectively. In a steady subcritical medium with a steady source,

7 If f is a random variable or a random process, then the expectation 〈fn〉 is called the n-th ordinary moment of the process,
whereas 〈f [f − 1] . . . [f − n + 1]〉 is called its n-th factorial moment.
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when t0 → −∞, the following stationary solutions for the neutron populations N̄A1, N̄A2, N̄B1, N̄B2, Z̄A1, Z̄B1, Z̄A2,
Z̄B2 are obtained as below:

N̄A1 =
1

ω1ω2ω3ω4

(
SBr′B (λA2λB1tλB2 + λB2t (−λA2tλB1t + λA2fλBrν

′
A2))

+SAr′A

(
λA2tλB2t (−λB1 + λB1fνB1

′) + λA2 (λB1λB2 − λB1fλB2νB1
′ − λB2fλBrν

′
B2)

))

N̄B1 =
1

ω1ω2ω3ω4

(
SAr′A (λA1t (λA2λB2 − λA2tλB2t) + λA2tλArλB2fν′

B2)

+SBr′B

(
λA1 (λA2λB2 − λA2tλB2t) + λA1f (−λA2λB2 + λA2tλB2t) νA1

′ − λA2fλArλB2ν
′
A2

))

N̄A2 =
1

ω1ω2ω3ω4

(
SAr′A (λA1tλB2tλBr + λAr (λB1λB2 − λB1fλB2νB1

′ − λB2fλBrν
′
B2))

+SBr′B

(
λArλB1tλB2 + λB2tλBr (λA1 − λA1fνA1

′)
))

N̄B2 =
1

ω1ω2ω3ω4

(
SAr′A (λA1tλA2λBr + λA2tλAr (λB1 − λB1fνB1

′))

+SBr′B

(
λA2tλArλB1t + λBr (λA1λA2 − λA1fλA2νA1

′ − λA2fλArν
′
A2)

))

Z̄A1 = λA1dN̄A1t

Z̄B1 = λB1dN̄B1t

Z̄A2 = λA2dN̄A2t

Z̄B2 = λB2dN̄B2t.

By introducing the modified second factorial moment of the random variables a and b as follows:

μaa ≡ 〈a(a − 1)〉 − 〈a〉2 = σ2
a − 〈a〉

μab ≡ 〈ab〉 − 〈a〉〈b〉,

and then taking cross- and auto-derivatives, the following system of differential equations of modified second factorial
moments (μXAXA

, μXBXB
, μXAYA

, μXAYB
, μXAXB

, μXBYA
, μXBYB

) for the neutron population are obtained as below:

∂

∂t
μXAXA

= 2λB1tμXAXB
+ 2λA2fνA2

′μXAYA
+ 2(λA1fνA1

′ − λA1)μXAXA
+ SAr′′A + λA2fνA2

′′N̄A2 + λA1fνA1
′′N̄A1

∂

∂t
μXAYA

= λB1tμYAXB
+ λA2fνA2

′μYAYA
+ λB2tμXAYB

+ (λA1fν′
A1 − λA1 − λA2) μXAYA

+ λArμXAXA

∂

∂t
μXAXB

= λB1tμXBXB
+ λA2fνA2

′μYAXB
+ λB2fνB2

′μXAYB
+ (λA1fν′

A1 − λA1) μXAXB

+ (λB1fνB1
′ − λB1) μXAXB

+ λA1tμXAXA

∂

∂t
μXAYB

= λB1tμXBYB
+ λA2fνA2

′μYAYB
+ (λA1fν′

A1 − λA1 − λB2) μXAYB
+ λBrμXAXB

+ λA2tμXAYA

∂

∂t
μXBXB

= 2λB2fνB2
′μXBYB

+ 2(λB1fνB1
′ − λB1)μXBXB

+ 2λA1tμXAXB
+ SBr′′B + λB2fνB2

′′N̄B2 + λB1fνB1
′′N̄B1

∂

∂t
μYAXB

= λB2tμXBYB
+ λB2fνB2

′μYAYB
+ (λB1fνB1

′ − λB1 − λA2) μYAXB
+ λArμXAXB

+ λA1tμXAYA

∂

∂t
μXBYB

= λB2fνB2
′μYBYB

+ (λB1fνB1
′ − λB1 − λB2) μXBYB

+ λBrμXBXB
+ λA2tμYAXB

+ λA1tμXAYB

∂

∂t
μYAYA

= 2λB2tμYAYB
− 2λA2μYAYA

+ 2λArμXAYA

∂

∂t
μYAYB

= λB2tμYBYB
− λA2μYAYB

− λB2μYAYB
+ λBrμYAXB

+ λA2tμYAYA
+ λArμXAYB

∂

∂t
μYBYB

= −2λB2μYBYB
+ 2λBrμXBYB

+ 2λA2tμYAYB
.
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This system can be solved in the stationary state (when the left-hand sides are equal to 0). The final expression of
two-point two-group Feynman-alpha formulas for fast detections is given as below:

σ2
ZZ(t)

Z̄A1/A2/B1/B2

= 1 + Y (t) = 1 +
4∑

i=1

Yi

(
1 − 1 − e−ωit

ωit

)
.

The four roots, namely ω1, ω2, ω3 and ω4 can be obtained by solving the forth order characteristic equation in ω
with known coefficients a, b, c, d, obtained from the temporal Laplace transform of the time-dependent equations for
μZAZB

, etc.,
ω4 + a · ω3 + b · ω2 + c · ω + d = 0.

The coefficients a, b, c and d are given in appendix A.
If detection of fast neutrons is performed in region A, then the functions Y1, Y2, Y3 and Y4 should be used in the

form:

−Y1 =
2λA1d (K0 − ω1 (ω1 (K3ω1 − K2) + K1))

N̄A1ω1 (ω1 − ω2) (ω1 − ω3) (ω1 − ω4)

−Y2 =
2λA1d (K0 − ω2 (ω2 (K3ω2 − K2) + K1))

N̄A1ω2 (ω2 − ω1) (ω2 − ω3) (ω2 − ω4)

−Y3 =
2λA1d (K0 − ω3 (ω3 (K3ω3 − K2) + K1))

N̄A1ω3 (ω3 − ω1) (ω3 − ω2) (ω3 − ω4)

−Y4 =
2λA1d (K0 − ω4 (ω4 (K3ω4 − K2) + K1))

N̄A1ω4 (ω4 − ω1) (ω4 − ω2) (ω4 − ω3)
.

Analytical expressions for the coefficients K0, K1, K2, K3 and K4 are given in appendix A. It can be shown that

Y0 = Y1 + Y2 + Y3 + Y4

=
2K0λA1d

ω1ω2ω3ω4N̄A1
.

If a thermal neutron detector is placed in region A, then the following Y1, Y2, Y3 and Y4 functions are to be used:

−Y1 =
2λA2d (L0 − ω1 (ω1 (L3ω1 − L2) + L1))
ω1 (ω1 − ω2) (ω1 − ω3) (ω1 − ω4) N̄A2

−Y2 =
2λA2d (L0 − ω2 (ω2 (L3ω2 − L2) + L1))
ω2 (ω2 − ω1) (ω2 − ω3) (ω2 − ω4) N̄A2

−Y3 =
2λA2d (L0 − ω3 (ω3 (L3ω3 − L2) + L1))
ω3 (ω3 − ω1) (ω3 − ω2) (ω3 − ω4) N̄A2

−Y4 =
2λA2d (L0 − ω4 (ω4 (L3ω4 − L2) + L1))
ω4 (ω4 − ω1) (ω4 − ω2) (ω4 − ω3) N̄A2

,

where, analytical expressions for coefficients L0, L1, L2, L3 and L4 are given in appendix A. It can be shown that

Y0 = Y1 + Y2 + Y3 + Y4

=
2L0λA2d

ω1ω2ω3ω4N̄A2
.

For the case when a fast neutron detector is placed in region B, the following Y1, Y2, Y3 and Y4 functions should be
used:

−Y1 =
2λB1d (M0 − ω1 (ω1 (M3ω1 − M2) + M1))

N̄B1ω1 (ω1 − ω2) (ω1 − ω3) (ω1 − ω4)

−Y2 =
2λB1d (M0 − ω2 (ω2 (M3ω2 − M2) + M1))

N̄B1ω2 (ω2 − ω1) (ω2 − ω3) (ω2 − ω4)

−Y3 =
2λB1d (M0 − ω3 (ω3 (M3ω3 − M2) + M1))

N̄B1ω3 (ω3 − ω1) (ω3 − ω2) (ω3 − ω4)

−Y4 =
2λB1d (M0 − ω4 (ω4 (M3ω4 − M2) + M1))

N̄B1ω4 (ω4 − ω1) (ω4 − ω2) (ω4 − ω3)
,
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where, analytical expressions for coefficients M0, M1, M2, M3 and M4 are given in appendix A. It can be shown that

Y0 = Y1 + Y2 + Y3 + Y4

=
2M0λB1d

N̄B1ω1ω2ω3ω4
.

If a thermal neutron detector is placed in region B, the following Y1, Y2, Y3 and Y4 functions should be used:

−Y1 =
2λB2d (P0 − ω1 (ω1 (P3ω1 − P2) + P1))
ω1 (ω1 − ω2) (ω1 − ω3) (ω1 − ω4) N̄B2

−Y2 =
2λB2d (P0 − ω2 (ω2 (P3ω2 − P2) + P1))
ω2 (ω2 − ω1) (ω2 − ω3) (ω2 − ω4) N̄B2

−Y3 =
2λB2d (P0 − ω3 (ω3 (P3ω3 − P2) + P1))
ω3 (ω3 − ω1) (ω3 − ω2) (ω3 − ω4) N̄B2

−Y4 =
2λB2d (P0 − ω4 (ω4 (P3ω4 − P2) + P1))
ω4 (ω4 − ω1) (ω4 − ω2) (ω4 − ω3) N̄B2

,

where, analytical expressions for coefficients P0, P1, P2, P3 and P4 are given in appendix A. It can be shown that

Y0 = Y1 + Y2 + Y3 + Y4

=
2P0λB2d

N̄B2ω1ω2ω3ω4
.

Quantitative examples of the Feynman Y (t)-function will be given shortly.

3.2 Two-group one-point Feynman-alpha theory (with delayed neutrons)

In order to derive the two-group one-point Feynman-alpha theory let us assume that the source S is switched on at the
time t0 ≤ t, while the detection process is started at the fixed time instant td, where td ≤ t and td ≥ t0. For convenience,
we consider td = 0. Let the random processes N1(t), N2(t) and C(t) represent the number of fast neutrons, thermal
neutrons and delayed neutron precursors at the time t ≥ 0, and Z1(t, td), Z2(t, td) —the number of fast and thermal
particle detections in the time interval [td, t], respectively. Thus, the joint probability of having N1 fast neutrons, N2

thermal neutrons and C delayed neutron precursors present in system at time t, and that Z1 fast neutrons and Z2

thermal neutrons have been detected during the period t − td ≥ 0 can be defined as P (N1, N2, C, Z1, Z2, t|t0). By
summing up the probabilities of the mutually exclusive events of the particle not having or having a specific reaction
or that there is a source emission within the infinitesimally small time interval dt, one can write:

∂P (N1, N2, C, Z1, Z2, t)
∂t

= −(λ1N1 + λ2N2 + λC + S1)P (N1, N2, C, Z1, Z2, t)

+λ1a(N1 + 1)P (N1 + 1, N2, C, Z1, Z2, t) + λ2a(N2 + 1)P (N1, N2 + 1, C, Z1, Z2, t)

+λ1f

N1+1∑

k

C∑

l

(N1 + 1 − k)f1f (k, l)P (N1 + 1 − k,N2, C − l, Z1, Z2, t)

+λ2f

N1∑

k

C∑

l

(N2 + 1)f2f (k, l)P (N1 − k,N2 + 1, C − l, Z1, Z2, t)

+λR(N1 + 1)P (N1 + 1, N2 − 1, C, Z1, Z2, t)

+λ1d(N1 + 1)P (N1 + 1, N2, C, Z1 − 1, Z2, t)

+λ2d(N2 + 1)P (N1, N2 + 1, C, Z1, Z2 − 1, t)

+λ(C + 1)P (N1 − 1, N2, C + 1, Z1, Z2, t)

+S1

N1∑

n

pq(n)P (N1 − n,N2, C, Z1, Z2, t),
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with initial condition
P (N1, N2, C, Z1, Z2, t = t0 | t0) = δN1,0δN2,0δC,0δZ1,0δZ2,0

and ∑

N1

∑

N2

∑

C

P (N1, N2, C, Z1, Z2, t = td | t0) = δZ1,0δZ2,0.

By defining the following generating function for the probability distribution P (N1, N2, C, Z1, Z2, t):

G(X,Y, V,M,N, t) =
∑

N1

∑

N2

∑

C

∑

Z1

∑

Z2

XN1Y N2V CMZ1NZ2P (N1, N2, C, Z1, Z2, t)

with initial condition for t0 ≤ 0,
G(X,Y, V,M,N, t = t0 | t0) = 1

and
G(1, 1, 1,M,N, t = td | t0) = 1,

the following partial differential equation is obtained:

∂G

∂t
= [λ1a + λRY + q1(X,V )λ1f + λ1dM − λ1X]

∂G

∂X

+ [λ2a + q2(X,V )λ2f + λ2dN − λ2Y ]
∂G

∂Y

+ λ(X − V )
∂G

∂V
+ S1[r(X) − 1]G,

where

q1(X,V ) =
∑

k

∑

l

XkV lf1f (k, l)

q2(X,V ) =
∑

k

∑

l

XkV lf2f (k, l)

r(X) =
∑

n

pq(n)Xn.

Here, f1f (k, l) is the probability of having k prompt neutrons and l delayed neutron precursors produced in a fission
event induced by a fast neutron, f2f (k, l) is the probability of having k prompt neutrons and l delayed neutron
precursors produced in a fission event induced by a thermal neutron. The effective delayed neutron fraction is β, ν′

1
and ν′

2 are the average total number of neutrons per fast and thermal induced fission, respectively. For the sake of
simplicity, some identities are used in the solution as below (i = 1, 2):

∂

∂X
qi(X,V )

∣∣∣∣
X=1,V =1

=
∑

k

∑

l

kfif (k, l)

= (1 − β)ν′
i

∂

∂V
qi(X,V )

∣∣∣∣
X=1,V =1

=
∑

k

∑

l

lfif (k, l)

= βν′
i

and

∂

∂X
r(X)

∣∣∣∣
X=1

=
∑

n

npq(n)

= r′

∂2

∂X2
r(X)

∣∣∣∣
X=1

=
∑

n

n(n − 1)pq(n)

= r′′.
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In a steady subcritical medium with a steady source, when t0 → −∞, the following stationary solutions for the neutron
populations N1, N2 and C, and detection counts Z1 and Z2 are obtained as below:

N̄1 =
λ2S1r

′

λ1λ2 − λ2ν′
1λ1f − λRν′

2λ2f

N̄2 =
λRS1r

′

λ1λ2 − λ2ν′
1λ1f − λRν′

2λ2f

C̄ =
(λ2βν′

1λ1f + λRβν′
2λ2f )S1r

′

λ(λ1λ2 − λ2ν′
1λ1f − λRν′

2λ2f )

=
N̄1βν′

1λ1f

λ
+

N̄2βν′
2λ2f

λ

Z̄1 = λ1dN̄1t

Z̄2 = λ2dN̄2t.

By introducing the modified second factorial moment of the random variables a and b and then taking cross- and
auto-derivatives, the following system of differential equations of modified second factorial moments for the neutron
population are obtained as below:

∂

∂t
μXX = S1r

′′ + λ2fν2ppN̄2 + λ1fν1ppN̄1 + 2λμXV + 2 [−λ1 + (1 − β)λ1fν′
1] μXX + 2(1 − β)λ2fν′

2μXY

∂

∂t
μXY = λμY V + (1 − β)λ2fν′

2μY Y + [(1 − β)λ1fν′
1 − λ1 − λ2] μXY + λRμXX

∂

∂t
μY Y = −2λ2μY Y + 2λRμXY

∂

∂t
μXV = λμV V + λ2fν2pdN̄2 + (1 − β)λ2fν′

2μY V + λ1fν1pdN̄1 + [−λ1 + (1 − β)λ1fν′
1 − λ] μXV

+ βλ2fν′
2μXY + βλ1fν′

1μXX

∂

∂t
μY V = (−λ − λ2)μY V + βλ2fν′

2μY Y + λRμXV + βλ1fν′
1μXY

∂

∂t
μV V = −2λμV V + λ2fν2ddN̄2 + 2βλ2fν′

2μY V + λ1fν1ddN̄1 + 2βλ1fν′
1μXV .

The three coefficients ω1, ω2 and ω3 can be obtained by solving the third order equation in ω with known constant
coefficients a, b, c:

ω3 + a · ω2 + b · ω + c = 0,

where

a = βν′
1λ1f − ν′

1λ1f + λ + λ1 + λ2

= −(ω1 + ω2 + ω3)

b = βλ2ν
′
1λ1f − λν′

1λ1f − λ2ν
′
1λ1f + βν′

2λ2fλR − ν′
2λ2fλR + λλ1 + λ2λ1 + λλ2

c = −λλ2ν
′
1λ1f − λν′

2λ2fλR + λλ1λ2

= −ω1ω2ω3.

The stationary modified variance of the fast particle detections can be obtained from the coupled equation system by
using the Laplace transform technique:

∂

∂t
μXM = λμV M + (1 − β)λ2fν′

2μY M + (−λ1 + (1 − β)λ1fν′
1) μXM + λ1dμXX

∂

∂t
μY M = −λ2μY M + λRμXM + λ1dμXY

∂

∂t
μV M = −λμV M + βλ2fν′

2μY M + λ1dμXV + βλ1fν′
1μXM

∂

∂t
μMM = 2λ1dμXM .
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The same can be done to define the stationary modified variance of the thermal particle detections via solving the
following coupled equation system:

∂

∂t
μXN = λμV N + (1 − β)λ2fν′

2μY N + (−λ1 + (1 − β)λ1fν′
1) μXN + λ2dμXY

∂

∂t
μY N = −λ2μY N + λRμXN + λ2dμY Y

∂

∂t
μV N = −λμV N + βλ2fν′

2μY N + λ2dμY V + βλ1fν′
1μXN

∂

∂t
μNN = 2λ2dμY N .

Some second moment notations were introduced as follows:

∂2

∂X2
qi(X,V )

∣∣∣∣
X=1,V =1

=
∑

k

∑

l

k(k − 1)fif (k, l)

= νipp

∂2

∂V 2
qi(X,V )

∣∣∣∣
X=1,V =1

=
∑

k

∑

l

l(l − 1)fif (k, l)

= νidd

∂2

∂V ∂X
qi(X,V )

∣∣∣∣
X=1,V =1

=
∑

k

∑

l

klfif (k, l)

= νipd,

in which i = 1, 2. Thus, the solution for the two-group one-point Feynman-alpha formula for fast and thermal detection
particles can be written as below:

σ2
ZZ(t)
Z̄1 Z̄2

= 1 + Y (t)

= 1 +
3∑

i=1

Yi

(
1 − 1 − e−ωit

ωit

)
.

For fast particle detections the following expressions should be used:

−Y1 = −2λ1d (ω1 (K2ω1 − K1) + K0)
N̄1ω1 (ω1 − ω2) (ω1 − ω3)

−Y2 =
2λ1d (ω2 (K2ω2 − K1) + K0)
N̄1 (ω1 − ω2) ω2 (ω2 − ω3)

−Y3 =
2λ1d (ω3 (K2ω3 − K1) + K0)
N̄1 (ω1 − ω3) ω3 (ω3 − ω2)

,

with

K2 = μXX

K1 = −βλ2fν′
2μXY + λ2fν′

2μXY + λμXV + λμXX + λ2μXX

K0 = λλ2fν′
2μXY + λλ2μXV + λλ2μXX .

It can be shown that

Y0 = Y1 + Y2 + Y3

=
2K0λ1d

N̄1ω1ω2ω3
.
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If a thermal neutron detector is used, then the following expressions should be considered:

−Y1 = −2λ2d (ω1 (L2ω1 − L1) + L0)
ω1 (ω1 − ω2) (ω1 − ω3) N̄2

−Y2 =
2λ2d (ω2 (L2ω2 − L1) + L0)
(ω1 − ω2) ω2 (ω2 − ω3) N̄2

−Y3 =
2λ2d (ω3 (L2ω3 − L1) + L0)
(ω1 − ω3) ω3 (ω3 − ω2) N̄2

,

with

L2 = μY Y

L1 = βλ1fν′
1μY Y − λ1fν′

1μY Y + λRμXY + λμY Y + λ1μY Y

L0 = −λλ1fν′
1μY Y + λλRμXY + λλRμY V + λλ1μY Y .

It can be shown that

Y0 = Y1 + Y2 + Y3

=
2L0λ2d

ω1ω2ω3N̄2
.

3.3 One-group two-point Feynman-alpha theory (with delayed neutrons)

Similarly as in the derivation of two-group one-point version of the Feynman-alpha formula, in the one-group two-point
Feynman-alpha theory the joint probability of having NA neutrons in region A, NB neutrons in region B, CA delayed
neutron precursors presented in region A, CB delayed neutron precursors presented in region B at time t, ZA neutrons
have been detected in region A, and ZB neutrons have been detected in region B in the system during the period of
time t − td ≥ 0 can be defined as P (NA, NB , CA, CB , ZA, ZB , t|t0). By summing up all mutually exclusive events of
the particle not having or having a specific reaction within the infinitesimally small time interval dt, one can write

∂P (NA, NB , CA, CB , ZA, ZB , t)
∂t

= −(λANA + λBNB + λAcCA + λBcCB + SA + SB)P (NA, NB , CA, CB , ZA, ZB , t)

+λAa(NA + 1)P (NA + 1, NB , CA, CB , ZA, ZB , t)
+λBa(NB + 1)P (NA, NB + 1, CA, CB , ZA, ZB , t)

+λAf

NA+1∑

k

CA∑

l

(NA + 1 − k)fA(k, l)P (NA + 1 − k,NB , CA − l, CB , ZA, ZB , t)

+λBf

NB+1∑

k

CB∑

l

(NB + 1 − k)fB(k, l)P (NA, NB + 1 − k,CA, CB − l, ZA, ZB , t)

+λAt(NA + 1)P (NA + 1, NB − 1, CA, CB , ZA, ZB , t)

+λBt(NB + 1)P (NA − 1, NB + 1, CA, CB , ZA, ZB , t)
+λAc(CA + 1)P (NA − 1, NB , CA + 1, CB , ZA, ZB , t)

+λBc(CB + 1)P (NA, NB − 1, CA, CB + 1, ZA, ZB , t)
+λAd(NA + 1)P (NA + 1, NB , CA, CB , ZA − 1, ZB , t)

+λBd(NB + 1)P (NA, NB + 1, CA, CB , ZA, ZB − 1, t)

+SA

NA∑

n

pA(n)P (NA − n,NB , CA, CB , ZA, ZB , t)

+SB

NB∑

n

pB(n)P (NA, NB − n,CA, CB , ZA, ZB , t),
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with initial condition

P (NA, NB , CA, CB , ZA, ZB , t = t0 | t0) = δNA,0δNB ,0δCA,0δCB ,0δZA,0δZB ,0

and ∑

NA

∑

NB

∑

CA

∑

CB

P (NA, NB , CA, CB , ZA, ZB , t = td | t0) = δZA,0δZB ,0.

By defining the following generating function for the probability distribution P (NA, NB , CA, CB , ZA, ZB , t):

G(X,Y, V,W,M,N, t) =
∑

NA

∑

NB

∑

CA

∑

CB

∑

ZA

∑

ZB

XNAY NBV CAWCBMZANZBP (NA, NB , CA, CB , ZA, ZB , t),

with initial condition for t0 ≤ 0,
G(X,Y, V,W,M,N, t = t0 | t0) = 1

and
G(1, 1, 1, 1,M,N, t = td | t0) = 1,

a partial differential equation in the variables (X,Y, V,W,M,N) in terms of generating function can be obtained:

∂G

∂t
= [λAa + λAtY + qA(X,V )λAf + λAdM − λAX]

∂G

∂X

+ [λBa + λBtX + qB(Y,W )λBf + λBdN − λBY ]
∂G

∂Y
+ λAc(X − V )

∂G

∂V

+ λBc(Y − W )
∂G

∂W
+ SA[rA(X) − 1]G + SB [rB(Y ) − 1]G,

where

qA(X,V ) =
∑

k

∑

l

XkV lfA(k, l)

qB(Y,W ) =
∑

k

∑

l

Y kW lfB(k, l)

rA(X) =
∑

n

pA(n)Xn

rB(Y ) =
∑

n

pB(n)Y n.

Here, βA and βB are the effective delayed neutron fractions in region A and region B, respectively. For the sake of
simplicity, some identities are used in the solution as below (i = A,B):

∂

∂X
qA(X,V )

∣∣∣∣
X=1,V =1

=
∑

k

∑

l

kfAf (k, l)

= (1 − βA)ν′
A

∂

∂V
qA(X,V )

∣∣∣∣
X=1,V =1

=
∑

k

∑

l

lfAf (k, l)

= βAν′
A

∂

∂Y
qB(Y,W )

∣∣∣∣
Y =1,W=1

=
∑

k

∑

l

kfBf (k, l)

= (1 − βB)ν′
B

∂

∂W
qB(Y,W )

∣∣∣∣
Y =1,W=1

=
∑

k

∑

l

lfBf (k, l)

= βBν′
B
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and

∂

∂X
rA(X)

∣∣∣∣
X=1

=
∑

n

npA(n)

= r′A

∂2

∂X2
rA(X)

∣∣∣∣
X=1

=
∑

n

n(n − 1)pA(n)

= r′′A
∂

∂Y
rB(Y )

∣∣∣∣
Y =1

=
∑

n

npB(n)

= r′B

∂2

∂Y 2
rB(Y )

∣∣∣∣
Y =1

=
∑

n

n(n − 1)pB(n)

= r′′B .

In a steady subcritical medium with a steady source, when t0 → −∞, the following stationary solutions for the neutron
population and detection counts are obtained as follows:

N̄A =
SA (λB − λBfν′

B) r′A + SBλBtr
′
B

(λA − λAfν′
A) (λB − λBfν′

B) − λAtλBt

N̄B =
SAλAtr

′
A + SB (λA − λAfν′

A) r′B
(λA − λAfν′

A) (λB − λBfν′
B) − λAtλBt

C̄A =
βAλAfν′

A

λAc
N̄A

C̄B =
βBλBfν′

B

λBc
N̄B

Z̄A = λ1dN̄1t

Z̄B = λ2dN̄2t.

By introducing the modified second factorial moments and then taking cross- and auto-derivatives, the following system
of differential equations of modified second factorial moments for the neutron population are obtained as below:

∂

∂t
μXX = 2 [(1 − βA)λAfν′

A − λA] μXX + 2λBtμXY + 2λAcμXV + SAr′′A + λAfνAppN̄A

∂

∂t
μXY = λAcμY V + λBcμXW + λBtμY Y + λAtμXX + [(1 − βB) λBfν′

B − λB + (1 − βA) λAfν′
A − λA] μXY

∂

∂t
μY Y = 2 [−λB + (1 − βB)λBfν′

B ] μY Y + 2λAtμXY + 2λBcμY W + SBr′′B + λBfνBppN̄B

∂

∂t
μXV = ((1 − βA)ν′

AλAf − λA − λAc)μXV + βAν′
AλAfμXX + λAcμV V + λBtμY V + λAfνApdN̄A

∂

∂t
μY V = λBcμV W + [(1 − βB) λBfν′

B − λB − λAc] μY V + λAtμXV + βAλAfν′
AμXY

∂

∂t
μV V = −2λAcμV V + 2βAλAfν′

AμXV + λAfνAddN̄A

∂

∂t
μXW = λAcμV W + λBtμY W + [(1 − βA) λAfν′

A − λA − λBc] μXW + βBλBfν′
BμXY

∂

∂t
μY W = λBcμWW + [(1 − βB) λBfν′

B − λB − λBc] μY W + βBλBfν′
BμY Y + λAtμXW + λBfνBpdN̄B

∂

∂t
μV W = (−λAc − λBc) μV W + βBλBfν′

BμY V + βAλAfν′
AμXW

∂

∂t
μWW = −2λBcμWW + 2βBλBfν′

BμY W + λBfνBddN̄B ,
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where

∂2

∂X2
qA(X,V )

∣∣∣∣
X=1,V =1

=
∑

k

∑

l

k(k − 1)fAf (k, l)

= νApp

∂2

∂Y 2
qB(Y,W )

∣∣∣∣
Y =1,W=1

=
∑

k

∑

m

k(k − 1)fBf (k,m)

= νBpp

∂2

∂V 2
qA(X,V )

∣∣∣∣
X=1,V =1

=
∑

k

∑

l

l(l − 1)fAf (k, l)

= νAdd

∂2

∂V 2
qB(Y,W )

∣∣∣∣
Y =1,W=1

=
∑

k

∑

l

l(l − 1)fBf (k, l)

= νBdd

∂2

∂V ∂X
qA(X,V )

∣∣∣∣
X=1,V =1

=
∑

k

∑

l

klfAf (k, l)

= νApd

∂2

∂W∂Y
qB(Y,W )

∣∣∣∣
Y =1,W=1

=
∑

k

∑

l

klfBf (k, l)

= νBpd.

The system above is solved for the stationary case when ∂
∂t = 0. Four roots ω1, ω2, ω3 and ω4 can be obtained by

solving the forth order equation with coefficients a, b, c, d specified as below:

ω4 + a · ω3 + b · ω2 + c · ω + d = 0,

where the coefficients a, b, c and d are given in appendix B.
The stationary modified variance of the particle detections in region A can be obtained from the coupled equation

system by using the Laplace transform technique:

∂

∂t
μXM = λAcμV M + λBtμY M + [(1 − βA) λAfν′

A − λA] μXM + λAdμXX

∂

∂t
μY M = λBcμWM + [(1 − βB) λBfν′

B − λB] μY M + λAtμXM + λAdμXY

∂

∂t
μV M = −λAcμV M + βAλAfν′

AμXM + λAdμXV

∂

∂t
μWM = −λBcμWM + βBλBfν′

BμY M + λAdμXW

∂

∂t
μMM = 2λAdμXM .

A similar coupled equation system can be derived for the particle detections in region B:

∂

∂t
μXN = λAcμV N + λBtμY N + [(1 − βA) λAfν′

A − λA] μXN + λBdμXY

∂

∂t
μY N = λBcμWN + [(1 − βB) λBfν′

B − λB ] μY N + λAtμXN + λBdμY Y

∂

∂t
μV N = −λAcμV N + βAλAfν′

AμXN + λBdμY V

∂

∂t
μWN = −λBcμWN + βBλBfν′

BμY N + λBdμY W

∂

∂t
μNN = 2λBdμY N .
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Thus, a final expression for the two-point one-group Feynman-alpha formula for region A and B is written below:

σ2
ZZ(t)

Z̄A/Z̄B
= 1 + Y (t) + 1 +

4∑

i=1

Yi

(
1 − 1 − e−ωit

ωit

)
.

If the detector is placed in region A, the following expressions for the functions Yi should be used:

−Y1 =
2λAd (K0 − ω1 (ω1 (K3ω1 − K2) + K1))

N̄Aω1 (ω1 − ω2) (ω1 − ω3) (ω1 − ω4)

−Y2 =
2λAd (K0 − ω2 (ω2 (K3ω2 − K2) + K1))

N̄Aω2 (ω2 − ω1) (ω2 − ω3) (ω2 − ω4)

−Y3 =
2λAd (K0 − ω3 (ω3 (K3ω3 − K2) + K1))

N̄Aω3 (ω3 − ω1) (ω3 − ω2) (ω3 − ω4)

−Y4 =
2λAd (K0 − ω4 (ω4 (K3ω4 − K2) + K1))

N̄Aω4 (ω4 − ω1) (ω4 − ω2) (ω4 − ω3)

and it can be proved that

Y0 = Y1 + Y2 + Y3 + Y4

=
2K0λAd

N̄Aω1ω2ω3ω4
,

where the coefficients K are given in appendix B.
If the detector is placed in region B, the following expressions for the functions Yi should be used:

−Y1 =
2λBd (L0 − ω1 (ω1 (L3ω1 − L2) + L1))
ω1 (ω1 − ω2) (ω1 − ω3) (ω1 − ω4) N̄B

−Y2 =
2λBd (L0 − ω2 (ω2 (L3ω2 − L2) + L1))
ω2 (ω2 − ω1) (ω2 − ω3) (ω2 − ω4) N̄B

−Y3 =
2λBd (L0 − ω3 (ω3 (L3ω3 − L2) + L1))
ω3 (ω3 − ω1) (ω3 − ω2) (ω3 − ω4) N̄B

−Y4 =
2λBd (L0 − ω4 (ω4 (L3ω4 − L2) + L1))
ω4 (ω4 − ω1) (ω4 − ω2) (ω4 − ω3) N̄B

and it can be proved that

Y0 = Y1 + Y2 + Y3 + Y4

=
2L0λBd

ω1ω2ω3ω4N̄B
,

where the coefficients L are given in appendix B.

4 Discussion and quantitative analysis

In the following, we shall perform a comparison of the two-point two-group version of the Feynman-alpha theoretical
formula to the two-point one-group, the one-point two-group and the one-point one-group (i.e. traditional) versions.

4.1 The simulation set-up

In order to compare the four different versions of the Feynman-alpha theory, quantitative values of the transition
probabilities and reaction intensities were obtained by using Monte Carlo simulations in a way similar to that described
in [31, 35, 38, 39]. The simulation setup consists of two regions, region A and region B, as shown in fig. 4. Region A
represents nuclear material (radius 4.46 cm), in particular a mixture of 2.5% 235U and 97.5% 238U. Region B consists
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Fig. 4. Geometry used for the Monte Carlo simulations.

of a moderating material with a thickness of 21 cm. The neutron source emits the neutrons with an energy of 2.5MeV.
Two cases are considered in the simulations, one when the neutron source is in the center of region A and another when
the neutron source is at a distance of 15 cm from the center of the nuclear material, in region B. Two point detectors,
in region A and in region B, are included in the simulation setup. Delayed neutron precursors are not included in the
simulations8.

4.2 Coefficients

Initially, the transition probabilities and reaction intensities are obtained in MCNPX simulations [40] for the two-point
two-group case by merging the information from neutron weight balance table (“print table 130” in MCNPX) with
simulated reaction rates (normalized to one starting neutron). Alternatively, one can obtain similar information by
processing MCNPX PTRAC file. Then, the values of reaction intensities of the two-point two-group case are condensed
in order to get the reaction intensities which correspond to the two-point one-group, the one-point two-group and one-
point one-group cases. Afterwards, these values are used in order to obtain the values of the Y and ω coefficients in
the Feynman-alpha formulas for the cases when the source is in region A, and in region B for fast neutron detections
and thermal neutron detections, as shown in tables 1–4, respectively.

Since there is only one region considered in the two-group one-point and the one-point one-group Feynman-alpha
formulas, the coefficients are the same for the detection in the different regions of the initial system used for the
simulations. The same is true for the energy-dependent factor in the two-point one-group and the one-point one-group
Feynman-alpha formulas, the coefficients are the same for the fast and thermal neutron detection.

In the studies described below we assume that the two-point two-group version of Feynman-alpha formulas gives
the most accurate predictions as the most involved one among the four various versions, i.e. the two-point two-group,
the two-point one-group, the two-group one-point and one-point one-group theories.

4.3 Comparison of the four versions of the Feynman-alpha theoretical formulas for the case of fast neutrons
detections

Figures 5 and 6 show a quantitative illustration of the dependence of the variance to mean of the number of fast
neutron detections on the detection time for four versions of Feynman-alpha theories when the source is in region A.
Different curves in figs. 5 and 6 are created based on the parameter values from tables 1 and 2.

As it is shown in fig. 5, when fast neutrons are detected in region A, the two-point two-group, the two-point one-
group and one-point one-group versions of the Feynman-alpha theoretical formulas give very similar results. However,
the one-point two-group version of the formulas overestimates the asymptotic ratio of the variance to mean. Thus, we
can conclude that the region dependence of the model plays a more important role than the energy dependence for the

8 A Mathematica notebook for visualization of two-point two-group, two-point one-group and one-point two-group Feynman-
alpha formulas can be downloaded from dx.doi.org/10.13140/2.1.3251.5209.



Eur. Phys. J. Plus (2014) 129: 259 Page 19 of 27

Table 1. The values of the Yi and ωi calculated for four various versions of Feynman-alpha formulas (the source is in region
A, fast neutron detector is used either in region A or B).

Source in region A

2-point 2-point 1-point 1-point

2-group 1-group 2-group 1-group

ω1 1.52001 1.8083 1.45471 0.923611

ω2 1.12141 0.743335 0.350087

ω3 0.759289

ω4 0.0983484

Fast neutron detections in region A

Y1 0.00239792 0.00154341 0.000823734 0.0126651

Y2 0.00354816 0.00938149 0.0544565

Y3 0.00061659

Y4 0.0056358

Fast neutron detections in region B

Y1 −0.0000243761 −0.000134373 0.000823734 0.0126651

Y2 −0.000094874 0.000795215 0.0544565

Y3 0.000301926

Y4 0.000161625

Table 2. The values of the Yi and ωi calculated for four various versions of Feynman-alpha formulas (the source is in region B,
fast neutron detector is used either in region A or B).

Source in region B

2-point 2-point 1-point 1-point

2-group 1-group 2-group 1-group

ω1 1.00891 1.06295 1.12123 0.905974

ω2 0.721378 0.0660208 0.516779

ω3 0.28402

ω4 0.00211384

Fast neutron detections in region A

Y1 5.90179E-7 1.29166E-6 9.406E-6 0.943027E-4

Y2 4.20869E-6 0.014281 0.122662E-3

Y3 0.159498E-2

Y4 1.07716

Fast neutron detections in region B

Y1 −2.65992E-9 −2.18905E-7 9.406E-6 0.943027E-4

Y2 −1.33593E-6 0.567443E-4 0.122662E-3

Y3 8.38725E-6

Y4 0.00477401

case when the source and the fast neutron detector are both placed in the region of the nuclear material. Therefore,
in this situation all three versions of the Feynman-alpha theory, the two-point two-group, the two-point one-group
and one-point one-group, can be used, although it is more time-efficient to use the one-group one-point version of the
Feynman-alpha theory. As an example, in reality this case may be related to the measurements performed in the spent
fuel pool when the detector is placed in the control tube of fuel assembly.

In the case when the fast neutron detector is in region B (fig. 6), a slight difference is observed between the two-point
two-group and the two-point one-group versions of Feynman-alpha theories. At the same time, the one-point two-group
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Table 3. The values of the Yi and ωi calculated for four various versions of Feynman-alpha formulas (the source is in region
A, thermal neutron detector is used either in region A or B).

Source in region A

2-point 2-point 1-point 1-point

2-group 1-group 2-group 1-group

ω1 1.52001 1.8083 1.45471 0.923611

ω2 1.12141 0.743335 0.350087

ω3 0.759289

ω4 0.0983484

Thermal neutron detections in region A

Y1 −1.31014E-7 0.00154341 −0.806821E-4 0.0126651

Y2 9.33539E-7 0.00938149 0.00139308

Y3 −2.39735E-6

Y4 0.000052813

Thermal neutron detections in region B

Y1 0.108441E-3 −0.134373E-3 −0.806821E-4 0.0126651

Y2 −0.505571E-3 0.795215E-3 0.00139308

Y3 0.663882E-3

Y4 0.258841E-3

Table 4. The values of the Yi and ωi calculated for four various versions of Feynman-alpha formulas (the source is in region B,
thermal neutron detector is used either in region A or B).

Source in region B

2-point 2-point 1-point 1-point

2-group 1-group 2-group 1-group

ω1 1.00891 1.06295 1.12123 0.905974

ω2 0.721378 0.0660208 0.516779

ω3 0.28402

ω4 0.00211384

Thermal neutron detections in region A

Y1 −8.84973E-9 1.29166E-6 −4.82586E-6 0.943027E-4

Y2 4.87895E-8 0.014281 0.227173E-4

Y3 −5.6035E-6

Y4 0.0974942

Thermal neutron detections in region B

Y1 1.71005E-6 −2.18905E-7 −4.82586E-6 0.943027E-4

Y2 −7.10267E-6 0.567443E-4 0.227173E-4

Y3 0.232948E-4

Y4 0.0170835

and one-point one-group versions of Feynman-alpha theory significantly overestimate the values of variance to mean
ratio obtained with the two-point two-group version of the formulas. Thus, in this case two versions of Feynman-alpha
theory, the two-point two-group and the two-point one-group can be used, although it is more time-efficient to use the
two-point one-group version for quantitative estimates.

The differences between the various versions of Feynman-alpha theory are significantly higher when the neutron
source is placed in region B and the fast neutron detector is in either region A or B, see figs. 7 and 8.
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Fig. 5. The dependence of the ratio of the variance to mean of the number of fast neutron detections on the detection time for
four versions of Feynman-alpha theory (the source is in region A, detector is in region A).
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Fig. 6. The dependence of the ratio of the variance to mean of the number of fast neutron detections on the detection time for
four versions of Feynman-alpha theory (the source is in region A, detector is in region B).
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Fig. 7. The dependence of the ratio of the variance to mean of the number of fast neutron detections on the detection time for
four versions of Feynman-alpha theory (the source is in region B, detector is in region A).
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Fig. 8. Dependence of the ratio of the variance to mean of the number of fast neutron detections on the detection time for four
versions of Feynman-alpha theory (the source is in region B, detector is in region B).

In all cases when the fast neutron detector is used, the two-point two-group version of Feynman-alpha formulas
produce high values of the asymptotic variance-to-mean ratio compared to results obtained with other versions, i.e.
the two-point one-group, one-point two-group and one-point one-group versions of the theory.

4.4 Comparison of four versions of the Feynman-alpha theoretical formulas for the case of thermal neutron
detections

Regarding thermal neutron detection, when the source and the detector are in region A (fig. 9), the three special
versions of the Feynman-alpha theory, the two-point one-group, the one-point two-group and the one-point one-group,
all deviate significantly from the two-point two-group version. However, the one-point one-group theory gives very
similar predictions of the ratio of the variance to mean as the two-point one-group theory. At the same time, the
two-group one-point theory provides somewhat more accurate results. Thus, the impact of the energy dependence
appears to be somewhat higher than the impact of the space dependence.
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Fig. 9. The dependence of the ratio of the variance to mean of the number of thermal neutron detections on the detection time
for four versions of Feynman-alpha theory (the source is in region A, detector is in region A).
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Fig. 10. The dependence of the ratio of the variance to mean of the number of thermal neutron detections on the detection
time for four versions of Feynman-alpha theory (the source is in region A, detector is in region B).
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Fig. 11. Dependence of the ratio of the variance to mean of the number of thermal neutron detections on the detection time
for four versions of Feynman-alpha theory (the source is in region B, detector is in region A).

When the thermal neutron detection is performed in region B (fig. 10), we may conclude that both the space-
dependent and energy-dependent aspects play important role for this case.

If the source is in region B and detection is performed in region A (fig. 11), the two-point one-group version of the
Feynman-alpha theory gives results which are closer to the one obtained with two-point two-group theory. Thus, the
impact of the space dependence to the final results is higher than the impact of energy dependence.

Although, for a case of detector and source being placed in region B (fig. 12), the two-point one-group, two-group
one-point and one-group one-point versions provide results of the variance-to-mean ratio that are significantly deviating
from the ratio obtained by using the two-point two-group theory. Thus, the space-dependent and energy-dependent
aspects, both play the important role in this situation.
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Fig. 12. Dependence of the ratio of the variance to mean of the number of thermal neutron detections on the detection time
for four versions of Feynman-alpha theory (the source is in region B, detector is in region B).

In general, one can say that for the thermal neutron detections when the detection is made in region A, the energy-
dependence has a higher impact to the ratio of the variance to mean than the space-dependent factor. On the other
hand, for detection in region B both factors should be equally taken into account.

5 Conclusions

The two-group two-point version of Feynman-alpha theory was derived with a use of the forward master equation
technique. The two-group one-point Feynman-alpha theory (with delayed neutrons) is extended by including fast
neutron detections and fast fissions. The two-point one-group variance-to-mean formula (with delayed neutrons) is
enhanced as well, by including detection and source terms in both regions. Thus, this gives the possibility of treating
fast reflected systems in a more accurate way, by treating the counts separately in the fast and the thermal groups (or
in the nuclear material (fissile region) and reflector regions).

The comparative study of the two-group two-point, the two-group one-point, the one-group two-point and the one-
group one-point Feynman-alpha models is made by using the specific reaction intensities obtained in Monte Carlo simu-
lations. It is shown that for all cases when the fast neutron detector is used in measurements, the space-dependent aspect
has a higher impact on the final results than the energy-dependent aspect. In particular, when the source and the fast
neutron detector are both placed in the region of nuclear material, three versions of the Feynman-alpha theory provide
similar accuracy in the determination of the variance to mean ratio. Namely, the two-point two-group, the two-point
one-group and one-point one-group can be used, although it is more time-efficient to use the one-group one-point version
of the Feynman-alpha theory. The situation is not so optimistic for the case when the fast neutron detector is in region
B, because a slight difference is observed between all versions of the theories. The one-point two-group and one-point
one-group versions of Feynman-alpha theory significantly overestimate the values of variance to mean ratio obtained
with the two-point two-group version of the formulas. Therefore, in this case two versions of Feynman-alpha theory, the
two-point two-group, the two-point one-group can be considered as the accurate qualitative estimates. Regarding the
use of the thermal neutron detections, both energy- and space-dependent factors are important to take into account.
However, when the detection is done in region A, the space-dependence has a higher impact to the ratio of the variance
to mean than the energy-dependence, while, for detection in region B both factors should be equally considered.

This work was supported by the Swedish Radiation Safety Authority, SSM and the FP7 EU Collaborative Research Project
FREYA, Grant Agreement no. FP7-269665. The authors want to thank Dr. Stephen Croft for useful discussions and advice.
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Appendix A.

In appendix A the analytical expressions for some of the coefficients used in two-point two-group Feynman-alpha
theory are given as follows:

a = λA1 + λA2 + λB1 + λB2 − λA1fνA1
′ − λB1fνB1

′,

b = −λA1tλB1t + λA2λB2 − λA2tλB2t − λA2 (λA1fνA1
′ − λA1) − λB2 (λA1fνA1

′ − λA1) − λA2 (λB1fνB1
′ − λB1)

− λB2 (λB1fνB1
′ − λB1) + (λA1fνA1

′ − λA1) (λB1fνB1
′ − λB1) − λA2fλArνA2

′ − λB2fλBrνB2
′,

c = −λA1tλA2λB1t − λA1tλB1tλB2 − λA2λB2 (λA1fνA1
′ − λA1) + λA2tλB2t (λA1fνA1

′ − λA1)

− λA2λB2 (λB1fνB1
′ − λB1) + λA2tλB2t (λB1fνB1

′ − λB1) + λA2 (λA1fνA1
′ − λA1) (λB1fνB1

′ − λB1)

+ λB2 (λA1fνA1
′ − λA1) (λB1fνB1

′ − λB1) − λA2fλArλB2νA2
′ + λA2fλAr (λB1fνB1

′ − λB1) νA2
′

− λA2λB2fλBrνB2
′ + λB2fλBr (λA1fνA1

′ − λA1) νB2
′,

d = −λA1tλA2λB1tλB2 + λA1tλA2tλB1tλB2t + λA2λB2 (λA1fνA1
′ − λA1) (λB1fνB1

′ − λB1)

− λA2tλB2t (λA1fνA1
′ − λA1) (λB1fνB1

′ − λB1) − λA1tλA2fλB2tλBrνA2
′ + λA2fλArλB2 (λB1fνB1

′ − λB1) νA2
′

− λA2tλArλB1tλB2fνB2
′ + λA2λB2fλBr (λA1fνA1

′ − λA1) νB2
′ + λA2fλArλB2fλBrνA2

′νB2
′,

= ω1ω2ω3ω4,

K3 = μXAXA
,

K2 = λA2fμXAYA
q′A2 (XA) + λA2μXAXA

− λB1fμXAXA
q′B1 (XB) + λB1μXAXA

+ λB1tμXAXB
+ λB2μXAXA

,

K1 = λA2fλB1fμXAYA
q′A2 (XA) q′B1 (XB) + λA2fλB1μXAYA

q′A2 (XA) + λA2fλB2μXAYA
q′A2 (XA)

+ λA2fλB2tμXAYB
q′A2 (XA) − λA2λB1fμXAXA

q′B1 (XB) + λA2λB1μXAXA
+ λA2λB1tμXAXB

+ λA2λB2μXAXA
− λA2tλB2tμXAXA

− λB1fλB2μXAXA
q′B1 (XB) + λB1tλB2fμXAYB

q′B2 (XB)

− λB2fλBrμXAXA
q′B2 (XB) + λB1λB2μXAXA

+ λB1tλB2μXAXB
,

K0 = λA2fλB1fλB2μXAYA
q′A2 (XA) q′B1 (XB) − λA2fλB1fλB2tμXAYB

q′A2 (XA) q′B1 (XB)

− λA2fλB2fλBrμXAYA
q′A2 (XA) q′B2 (XB) + λA2fλB1λB2μXAYA

q′A2 (XA) + λA2fλB1λB2tμXAYB
q′A2 (XA)

+ λA2fλB2tλBrμXAXB
q′A2 (XA) − λA2λB1fλB2μXAXA

q′B1 (XB) + λA2λB1tλB2fμXAYB
q′B2 (XB)

− λA2λB2fλBrμXAXA
q′B2 (XB) + λA2λB1λB2μXAXA

+ λA2λB1tλB2μXAXB

+ λA2tλB1fλB2tμXAXA
q′B1 (XB) + λA2tλB1tλB2fμXAYA

q′B2 (XB) − λA2tλB1λB2tμXAXA
−λA2tλB1tλB2tμXAXB

,

L3 = μYAYA
,

L2 = −λA1fμYAYA
q′A1 (XA) + λA1μYAYA

+ λArμXAYA
− λB1fμYAYA

q′B1 (XB) + λB1μYAYA
+ λB2μYAYA

+ λB2tμYBYA
,

L1 = λA1fλB1fμYAYA
q′A1 (XA) q′B1 (XB) − λA1fλB1μYAYA

q′A1 (XA) − λA1fλB2μYAYA
q′A1 (XA)

− λA1fλB2tμYBYA
q′A1 (XA) − λA1λB1fμYAYA

q′B1 (XB) + λA1λB1μYAYA
+ λA1λB2μYAYA

+ λA1λB2tμYBYA
− λA1tλB1tμYAYA

− λArλB1fμXAYA
q′B1 (XB) + λArλB1μXAYA

+ λArλB1tμXBYA
+ λArλB2μXAYA

− λB1fλB2μYAYA
q′B1 (XB) − λB1fλB2tμYBYA

q′B1 (XB)

− λB2fλBrμYAYA
q′B2 (XB) + λB1λB2μYAYA

+ λB1λB2tμYBYA
+ λB2tλBrμXBYA

,

L0 = λA1fλB1fλB2μYAYA
q′A1 (XA) q′B1 (XB) + λA1fλB1fλB2tμYBYA

q′A1 (XA) q′B1 (XB)

+ λA1fλB2fλBrμYAYA
q′A1 (XA) q′B2 (XB) − λA1fλB1λB2μYAYA

q′A1 (XA) − λA1fλB1λB2tμYBYA
q′A1 (XA)

− λA1fλB2tλBrμXBYA
q′A1 (XA) − λA1λB1fλB2μYAYA

q′B1 (XB) − λA1λB1fλB2tμYBYA
q′B1 (XB)

− λA1λB2fλBrμYAYA
q′B2 (XB) + λA1λB1λB2μYAYA

+ λA1λB1λB2tμYBYA
+ λA1λB2tλBrμXBYA

− λA1tλB1tλB2μYAYA
− λA1tλB1tλB2tμYBYA

+ λA1tλB2tλBrμXAYA
− λArλB1fλB2μXAYA

q′B1 (XB)

+ λArλB1tλB2fμYBYA
q′B2 (XB) − λArλB2fλBrμXAYA

q′B2 (XB) + λArλB1λB2μXAYA
+ λArλB1tλB2μXBYA

,

M3 = μXBXB
,

M2 = −λA1fμXBXB
q′A1 (XA) + λA1μXBXB

+ λA1tμXAXB
+ λA2μXBXB

+ λB2fμXBYB
q′B2 (XB) + λB2μXBXB

,

M1 = −λA1fλA2μXBXB
q′A1 (XA) − λA1fλB2fμXBYB

q′A1 (XA) q′B2 (XB) − λA1fλB2μXBXB
q′A1 (XA)

+ λA1tλA2fμXBYA
q′A2 (XA) − λA2fλArμXBXB

q′A2 (XA) + λA1λA2μXBXB
+ λA1λB2fμXBYB

q′B2 (XB)

+ λA1λB2μXBXB
+ λA1tλA2μXAXB

+ λA1tλB2μXAXB
+ λA2λB2fμXBYB

q′B2 (XB) + λA2λB2μXBXB

+ λA2tλB2fμXBYA
q′B2 (XB) − λA2tλB2tμXBXB

,
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M0 = −λA1fλA2λB2fμXBYB
q′A1 (XA) q′B2 (XB) − λA1fλA2λB2μXBXB

q′A1 (XA)

− λA1fλA2tλB2fμXBYA
q′A1 (XA) q′B2 (XB) + λA1fλA2tλB2tμXBXB

q′A1 (XA)

+ λA1tλA2fλB2μXBYA
q′A2 (XA) + λA1tλA2fλB2tμXBYB

q′A2 (XA)

− λA2fλArλB2fμXBYB
q′A2 (XA) q′B2 (XB) − λA2fλArλB2μXBXB

q′A2 (XA)

+ λA1λA2λB2fμXBYB
q′B2 (XB) + λA1λA2λB2μXBXB

+ λA1λA2tλB2fμXBYA
q′B2 (XB)

− λA1λA2tλB2tμXBXB
+ λA1tλA2λB2μXAXB

− λA1tλA2tλB2tμXAXB
+ λA2tλArλB2fμXAXB

q′B2 (XB) ,

P3 = μYBYB
,

P2 = −λA1fμYBYB
q′A1 (XA) + λA1μYBYB

+ λA2μYBYB
+ λA2tμYBYA

− λB1fμYBYB
q′B1 (XB) + λB1μYBYB

+λBrμXBYB
,

P1 = −λA1fλA2μYBYB
q′A1 (XA) − λA1fλA2tμYBYA

q′A1 (XA) + λA1fλB1fμYBYB
q′A1 (XA) q′B1 (XB)

− λA1fλB1μYBYB
q′A1 (XA) − λA1fλBrμXBYB

q′A1 (XA) − λA2fλArμYBYB
q′A2 (XA) + λA1λA2μYBYB

+ λA1λA2tμYBYA
− λA1λB1fμYBYB

q′B1 (XB) + λA1λB1μYBYB
+ λA1λBrμXBYB

− λA1tλB1tμYBYB

+ λA1tλBrμXAYB
− λA2λB1fμYBYB

q′B1 (XB) + λA2λB1μYBYB
+ λA2λBrμXBYB

+ λA2tλArμXAYB

− λA2tλB1fμYBYA
q′B1 (XB) + λA2tλB1μYBYA

,

P0 = λA1fλA2λB1fμYBYB
q′A1 (XA) q′B1 (XB) − λA1fλA2λB1μYBYB

q′A1 (XA) − λA1fλA2λBrμXBYB
q′A1 (XA)

+ λA1fλA2tλB1fμYBYA
q′A1 (XA) q′B1 (XB) − λA1fλA2tλB1μYBYA

q′A1 (XA) + λA1tλA2fλBrμYBYA
q′A2 (XA)

+ λA2fλArλB1fμYBYB
q′A2 (XA) q′B1 (XB) − λA2fλArλB1μYBYB

q′A2 (XA) − λA2fλArλBrμXBYB
q′A2 (XA)

− λA1λA2λB1fμYBYB
q′B1 (XB) + λA1λA2λB1μYBYB

+ λA1λA2λBrμXBYB
− λA1λA2tλB1fμYBYA

q′B1 (XB)
+ λA1λA2tλB1μYBYA

− λA1tλA2λB1tμYBYB
+ λA1tλA2λBrμXAYB

− λA1tλA2tλB1tμYBYA

− λA2tλArλB1fμXAYB
q′B1 (XB) + λA2tλArλB1μXAYB

+ λA2tλArλB1tμXBYB
.

Appendix B.

In appendix B the analytical expressions for some of the coefficients used in one-group two-point Feynman-alpha
theory (with delayed neutrons) are given as follows:

a = βAλAfν′
A − λAfν′

A + λA + λAc + βBλBfν′
B − λBfν′

B + λB + λBc,

b = −λAcλAfν′
A + λAλAc + βAλAfλBν′

A − βAλAfλBfν′
Aν′

B + βAλAfβBλBfν′
Aν′

B − λAfβBλBfν′
Aν′

B

+ λAfλBfν′
Aν′

B − λAfλBν′
A + βAλAfλBcν

′
A − λAfλBcν

′
A + λAβBλBfν′

B − λAλBfν′
B + λAλB + λAλBc

+ λAcβBλBfν′
B − λAcλBfν′

B + λAcλB + λAcλBc − λAtλBt − λBcλBfν′
B + λBλBc,

c = −λAcλAfβBλBfν′
Aν′

B + λAcλAfλBfν′
Aν′

B − λAcλAfλBν′
A − λAcλAfλBcν

′
A + λAλAcβBλBfν′

B − λAλAcλBfν′
B

+ λAλAcλB + λAλAcλBc + βAλAfλBλBcν
′
A − βAλAfλBcλBfν′

Aν′
B + λAfλBcλBfν′

Aν′
B − λAfλBλBcν

′
A

− λAλBcλBfν′
B + λAλBλBc − λAcλAtλBt − λAcλBcλBfν′

B + λAcλBλBc − λAtλBcλBt,

d = λAcλAfλBcλBfν′
Aν′

B − λAcλAfλBλBcν
′
A − λAλAcλBcλBfν′

B + λAλAcλBλBc − λAcλAtλBcλBt,

K3 = μXX ,

K2 = λAcμXV + λAcμXX + βBλBfμXXν′
B − λBfμXXν′

B + λBμXX + λBcμXX + λBtμXY ,

K1 = λAcβBλBfμXV ν′
B − λAcλBfμXV ν′

B + λAcβBλBfμXXν′
B − λAcλBfμXXν′

B + λAcλBμXV + λAcλBμXX

+ λAcλBcμXV + λAcλBcμXX + λAcλBtμXY − λBcλBfμXXν′
B + λBλBcμXX + λBcλBtμXW + λBcλBtμXY ,

K0 = −λAcλBcλBfμXV ν′
B − λAcλBcλBfμXXν′

B + λAcλBλBcμXV + λAcλBλBcμXX

+ λAcλBcλBtμXW + λAcλBcλBtμXY ,

L3 = μY Y ,

L2 = βAλAfμY Y ν′
A − λAfμY Y ν′

A + λAμY Y + λAcμY Y + λAtμXY + λBcμY W + λBcμY Y ,

L1 = −λAcλAfμY Y ν′
A + λAλAcμY Y + βAλAfλBcμY W ν′

A − λAfλBcμY W ν′
A + βAλAfλBcμY Y ν′

A

− λAfλBcμY Y ν′
A + λAλBcμY W + λAλBcμY Y + λAcλAtμXY + λAcλAtμY V + λAcλBcμY W

+ λAcλBcμY Y + λAtλBcμXY ,

L0 = −λAcλAfλBcμY W ν′
A − λAcλAfλBcμY Y ν′

A + λAλAcλBcμY W + λAλAcλBcμY Y

+ λAcλAtλBcμXY + λAcλAtλBcμY V .
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