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Abstract. This paper presents a full derivation of the variance-to-mean or Feynman-alpha formula in a
two-energy-group and two-spatial-region treatment. The derivation is based on the Chapman-Kolmogorov
equation with the inclusion of all possible neutron reactions and passage intensities between the two
regions. In addition, the two-group one-region and the two-region one-group Feynman-alpha formulas,
treated earlier in the literature for special cases, are extended for further types and positions of detectors.
We focus on the possibility of using these theories for accelerator-driven systems and applications in the
safeguards domain, such as the differential self-interrogation method and the differential die-away method.
This is due to the fact that the predictions from the models which are currently used do not fully describe
all the effects in the heavily reflected fast or thermal systems. Therefore, in conclusion, a comparative
study of the two-group two-region, the two-group one-region, the one-group two-region and the one-group
one-region Feynman-alpha models is discussed.

1 Introduction

In detection statistics, the relation between the average number (N) of counts during a detection time ¢, and the
fluctuations around this value, expressed by the variance (N?) — (N)?, i.e. the variance-to-mean ratio,

g7 o N — (2
Ny 7

is often used to characterise the statistics of the particle field detected. In the case of neutrons emitted from a
radioactive source obeying a simple Poisson statistics, this ratio is obviously equal to unity. However, for a neutron
chain in a multiplying medium?, such as a subcritical reactor with a source or a fissile sample with an inherent neutron
source due to spontaneous fission, the branching character represented by the fission process has the consequence that
the individual detections will not be independent, rather positive correlations exist between them. Hence the variance-
to-mean ratio is larger than unity, and the deviation from unity carries information on the medium in which the
branching process (neutron multiplication) took place.

This fact was used by Feynman and de Hoffmann in 1944-1956 [1-3] for the derivation of a formula for a branching
process where the variance to mean was above unity, Q> = 1+ Y (¢). The Y (¢)-function became called the Feynman Y-
function, characterising the deviation of the relative variance from unity. Both its time dependence (e~ "), expressed by
the prompt neutron? decay constant o, as well as its asymptotic value, carry information on the sought parameters of
the system. The original application of these studies was related to the theoretical description of statistical fluctuations
of the number of neutrons in multiplying medium or in other words, to the determination of the level of subcriticality.
Therefore, the above-mentioned research remained classified for several years.
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1" A medium, where particles (e.g. neutrons) induce reactions which lead to the emission of several particles of the same type.
2 Neutrons which are emitted in less than 107" s following a nuclear fission event.
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The fundamental principles of the Feynman-alpha theory have been extensively described in a number of publica-
tions, e.g. [4]. About a decade ago the interest in this subject was revived in connection to the on-line measurement
of subcritical reactivity (a quantity which is normally used to characterize the multiplication properties of a reactor
core) of Accelerator-Driven Systems (ADS)?. Whereas the original Feynman-alpha formulas referred to a homogeneous
system in a monoenergetic (“one-group”, i.e. one energy group approximation) description [3], dealing only with one
exponent or decay constant, the experiments, e.g. the Yalina [5-7], MUSE [8] and FREYA [9,10], showed the appear-
ance of more than one decay constant and, therefore, the possible need of extension of the one-group one-region (also
referred to as “one-point”) Feynman-alpha formulas to more energy groups and/or spatial regions. Several attempts
were made towards the explanation of multiple exponential modes by the spatial effects [11-14]. By that time it
was decided that the future ADS-systems will be driven by pulsed neutron and spallation sources* which led to the
extension of the theory of variance-to-mean formulas for a continuous source with Poisson statistics to the cases of
pulsed and spallation neutron sources with different definition of the pulse shapes and pulsing manner [15-28]. Latter
analysis [29] showed the close link between the application of Feynman-alpha formulas to subcriticality measurements
and Safeguards (nuclear material control and accounting).

In line with the above, the suggestion of the new Safeguards technique for mixed oxide (MOX) fuel/spent fuel
assay [30], the Differential Die-away Self-Interrogation (DDSI) technique displayed the interest towards the energy-
dependent aspects of neutron counting. In connection with this, the two-group Feynman-alpha theory was elaborated
in [31], where delayed neutrons® were neglected, and in [32] with inclusion of delayed neutron precursors. However, fast
fission and thermal detections were neglected in both papers. The results of further considerations of the importance
of the energy-aspect in evaluation of the real systems shows that “a measured variance-to-mean ratio in fast systems
may be contaminated by the energy-higher order mode effect except when the system is near-critical [33]”.

In the light of recent advances in detector technologies in Safeguards towards the development of fast neutron
detection systems with scintillators, the knowledge of the energy-dependent behavior of neutron counting became a
very important issue to be taken into account in Feynman-alpha theory. The authors of [34] showed that the short-
and long-time behavior of the Y-function can be used to assay the amount of ?*°Pu and the absolute amount of
239Py 4 241Puy in the reprocessed fuel. Therefore, one part of this paper is devoted to the derivation of the general case
of one-point two-group Feynman-alpha formulas, when fast fission and thermal detections and delayed neutrons are
included. However in some cases, for example, when the fission chambers are used as detectors, the energy importance
makes way for the region-dependent aspect. This issue has not well been studied previously, although some expressions
for the one-group two-region Feynman-alpha formulas can be found in [35]. However, even these investigations are
limited to the case of delayed neutron precursors having been neglected and detections accounted for only in one
region. Thus, the second part of this paper is devoted to the derivation of the general case of the two-point one-group
Feynman-alpha formulas, when detections and delayed neutrons are accounted for in both regions.

It has to be noted that the present paper does not carry out fully an analysis of the diagnostic value of the obtained
formulas the same way as it was made in the traditional works based on a one-group treatment in a single (infinite)
homogeneous medium. In the traditional case the time dependence of the Feynman Y (¢)-function is characterised
essentially with one decay constant which can clearly be related to the subcriticality of the system. In the case of
using two energy groups and two spatial regions, the number of decay constants increases and each of them becomes a
much more involved function of the increased number of material properties (reaction intensities) that the treatment
of different regions and energy intervals incurs. The sought system parameters become very involved functions of these
decay constants, and no attempt is made in this paper on the investigation of how these parameters can be extracted
from the measurements. This is deferred to later work. The objective of the present work is to give a clear and
transparent derivation of the various variance-to-mean formulas as functions of the reaction and transition intensities,
and to compare the solutions for the different cases.

2 The main concept and assumptions

In this paper, the two-point two-group, the two-group one-point (with delayed neutrons) and the one-group two-point
(with delayed neutrons) Feynman-alpha formulas were derived by using the Kolmogorov approach. The Kolmogorov
equations, originally developed by the Russian mathematician Andrei Kolmogorov [36], also often called “master
equations”, describe the evolution of the probability distribution of Markovian processes. These can be given in two
different forms, called the forward and the backward approaches. In the present work we use the forward Kolmogorov
approach [4], mostly because the symbolic computational codes (in our case the Mathematica package [37]) are better
suited to solve the coupled system of differential equations (arising from the forward approach) than to calculate the
multiple nested integrals which arise from the backward approach.

3 A subcritical reactor driven by an external source.

4 Usually meant as a thick target made of a high-Z material which is bombarded by accelerated charged particles, e.g.
high-energy protons.

® Neutrons which are emitted with an exponential decay law after the fission, with mean delay times between 0.1 and 10s.
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Fig. 1. A two-point two-group model of various processes which particles can undergo.

In the general model used for derivations we assume that the neutron population consists of two groups of neutrons:
fast (denoted as 1) and thermal (denoted as 2). Fast and thermal neutrons can undergo different reactions () listed
below:

— absorption (i = a);

— fission (i = f);

— detection (i = d);

— removal from the fast group to the thermal (i = r).
Unlike in the terminology, used in the traditional one-group treatments, absorbtion here stands only for capture. The
decay constant of the delayed neutron precursors is given as A. In addition, both the fast and thermal neutrons can
transit from one region to the others, in both directions. In all models the source is considered as releasing n particles
with probability p,(n) at an emission event. In this paper a term “two-point” has the same meaning as “two-region”.

2.1 The two-group two-point model

For the two-group two-point model it was assumed that two adjacent infinite and homogeneous half-space regions
(denoted as A and B) with different independent reaction intensities for absorption of fast and thermal neutrons
(Mia, Aa2as ABla, AB24), fission induced by fast and thermal neutrons (Aaif, Aasg, A1y, Apay) and detection of
fast and thermal neutrons (Aa1q, AB1d, Aa2d, Ap24)- The two regions are coupled by two passage intensities (Aa1¢,
Aa2t, AB1t, Ap2t) in two different directions®. Thus, each of the reactions for the different groups of neutrons can be
described by transition intensities, as shown in fig. 1. Total intensities including both the reactions and transitions
between the regions for the fast and the thermal neutrons are denoted as A1 and A2, A1 and Aps for regions A
and B, respectively,

Aa1 = Aia + Aaiy + Aae + Aar + Adia

A2 = Aa2q + Aazp + Aage + Aaza

AB1 = AB1a + AB1f + AB1t + AB1r + AB14

AB2 = AB2q + AB2s + A2t + AB2d-
The slowing down process, i.e. the removal of neutrons from the fast group to the thermal group is described by
the removal reaction intensity A\;—,—g. In the two-point two-group model we also include two extraneous compound
Poisson sources of fast neutrons placed in different regions, A and/or B, with intensities S4 and Sp. In the following,

two special cases of the above general form will be described briefly. Because in the lower dimensionality of the special
cases, inclusion of delayed neutrons is possible.

2.2 The two-group one-point model (with delayed neutrons)

In the two-group one-point Feynman-alpha model (fig. 2), we assume that the medium is infinite and homogeneous.
The neutron population consists of two groups of neutrons, fast and thermal. A compound Poisson source of fast
neutrons with emission intensity S is included in the model. Thus, the total transition intensities for the fast and
thermal neutrons, denoted as A\; and \q, are given as

A = )\1a+>\1f + Ar + A4
A2 = Aaq + Aof + Aag.

5 Xait describes the intensity of particles (group 4) leaving region A for region B and Ap;; is the intensity of particles (group 1)
transferring to region A from region B.
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Fig. 2. A two-group one-point model of various processes which particles can undergo.
2.3 The one-group two-point model (with delayed neutrons)

The assumption behind the one-group two-point model is that the two adjacent homogeneous half-space regions
(denoted as A and B) with independent reaction intensities for detection (Aaq, Apq), absorption A4, and Ag,, and
fission A4y and Apy are coupled by two passage intensities A 44 and Ap; in two different directions. The decay constants
of delayed neutron precursors are given as A 4. and Ap. for regions A and B, as shown in fig. 3. Thus, total transition
intensities for region A and region B are denoted as A4 and Ap:

Ad = Mg +Aar + A4+ Aaa
AB = ABa +ABf + At + ABa-

In the model we include two compound Poisson sources of fast neutrons in regions A and B with emission intensities
S4 and Sp, respectively. The sources are considered as releasing n particles in one emission with the probability
distributions of pa(n) and pp(n), respectively. For the induced fission reaction, we consider that & neutrons and [
delayed neutron precursors are emitted with the probability distributions fa(k,l) and fg(k,1) for the fission reaction
in region A and region B, respectively.

Fig. 3. A two-point one-group model of various processes which particles can undergo.

3 Theoretical formulas

Based on the main concept and assumptions used the two-group two-region, the two-group one-region and the two-
region one-group Feynman-alpha formulas are elaborated as below.
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3.1 Two-point two-group Feynman-alpha theory

In order to derive the two-point two-group Feynman-alpha theory let us assume that the source S4/Sp is switched on
in the region A/B at the time tg < ¢, while the detection process is started at the fixed time instant tg, where t; < ¢
and tq > to. Let the random processes Nai(t), Np1(t), Naa(t) and Npa(t) represent the number of fast neutrons in
region A, fast neutrons in region B, thermal neutrons in region A and thermal neutrons in region B at the time ¢t > 0
and Za1(t,ta), Zaz(t,ta), Zp1(t,ta), Zp2(t,tq) —the number of fast and thermal particle detections in the regions
A and B in the time interval [tq, t], respectively. For convenience, we consider ¢4 = 0. Thus, the joint probability of
having N4, fast neutrons in region A, Np; fast neutrons in region B, N 4o thermal neutrons in region A, Ny thermal
neutrons in region B at time ¢, Z4; fast neutrons have been detected in region A, and Zp; fast neutrons have been
detected in region B, Z 4o thermal neutrons have been detected in region A, and Zpo thermal neutrons have been
detected in region B during the period of time ¢ — ¢4 > 0 can be defined as

P(NAlvNAQaNBlaNBQa ZA17231; ZA27ZBZat‘tO)'

By summing up the probabilities of all mutually exclusive events of the particle not having or having a specific
reaction within the infinitesimally small time interval d¢, one can write:

OP(Nay, Naz, Np1,Np2, Za1,Zp1, Za2, ZB2,t) _
ot
— (Aa1Na1 + AaaNas + A1 Np1 + ApaNpa + Sa + Sg)P(Na1, Nas, Np1, N2, Za1, Zp1, Zaz, Zp2,t)
+ A1a(Na1 +1)P(Na1 + 1, Nao, N1, N2, Zai, ZB1, Zaz, ZB2,t)
+ A2a(Naz +1)P(Na1, Na2 + 1, N1, N2, Z a1, Zp1, Zaz, Zp2,t)
+ AB1a(NB1 + 1)P(Na1, Naz, Np1 + 1, N2, Zayr, Z1, Z a2, Zpa2, t)
+ AB2a(Np2 + 1)P(Na1, Naz, Np1, N2 + 1, Za1, Zp1, Z a2, Zo2,t)

Na1+1

+ Ay Z (Na1+1—=k)far(k)P(Na1 +1 =k, Nao, Np1,Np2, Za1, Zp1, Zaz, Zp2,t)
%

Npi1+1
+Apir Y (Np1+1—k)fp1(k)P(Na1, Nas, Ng1 + 1 — k, Npa, Zar, Zp1, Zaz, Zpa, t)
k
Nax

+ Aoy Z(NAQ +1)fa2(k)P(Na1 — k,Naz +1,Np1,Npa, Za1, Zp1, Za2, Zp2,t)
k

Np1
+ Aoy Z(NBQ +1)fpa(k)P(Na1,Nas, Ng1 —k,Npa+1,Z41,ZB1,Z a2, Zp2,t)

+Aa1¢(Na1 +1)P(Nay +1,Na2, N1 — 1, Npa, Z a1, ZB1, Z a2, ZB2,t
+ AB1t(Np1 +1)P(Na1 — 1, Na2, Np1 + 1, N2, Za1, Zp1, Zaz, Zpa,t
+ Aa2¢(Naz +1)P(Na1, Naz + 1, Np1, Np2 — 1, Z a1, ZB1, Z a2, Zp2,t
+ AB2t(Np2 + 1)P(Na1, Naz — 1, N1, Npa + 1, Za1, Zp1, Zaz, Zpa,t
+ Aar(Na1 +1)P(Na1 +1,Naa — 1, Np1, Npa, Za1, Zp1, Zaz, Zp2, 1)
+ Ar (N1 +1)P(Na1,Naz, N1+ 1, Np2 — 1, Za1, Zp1, Z a2, Zpa2,t)
+ Aa1a(Nar +1)P(Nai + 1, Naa, Np1, N2, Za1 — 1, Zp1, Z a2, Zpa,

+ AB1a(Np1 + 1)P(Na1, Na2, Np1 + 1, Npa, Za1, Zp1 — 1, Zaz, Zpa,

+ Aa2d¢(Naz +1)P(Na1, Naz +1,Np1, N2, Za1, Zp1, Zas — 1, Zpa,

+ AB2d(Np2 + 1)P(Na1, Naz, Np1, Np2 + 1, Za1, Zp1, Zaz, Zp2 — 1,t

Nai
+84 Y pa(n)P(Nay —n, Naz, Np1, N2, Zar, Zp1, Zaz, Zpa, t)

—_— — o —

t)
t)
t)
)

Np1
+ SB ZPB(”)P(NAla Na2,Np1 —n, N2, Za1,Z1, Z a2, ZB2,t),
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with initial conditions

P(Na1,Na2,Np1,Np2,Za1,ZB1,Za2, Zp2,t =10 | t0) = ON41,00N42,00N51,00N52,00241,00242,00Z51,00 25,0

and

D> NN "> P(Nar, Naz, Np1, Nu2, Zar, Zp1, Zaz, Zpa,t = ta | t0) = 6241,002,15.0025,,0025.0
Na1 Naz Np1 N2

and f;(k) is the number distribution of neutrons in a fission of type i.

This equation can be solved by using the generating function technique in the way similar to as described
in [4]. By defining the following generating function for the probability distribution P(Na1, Na2, Ng1, Npa, Z a1, ZB1,
Z a2, Zp2,t):

G(Xa,Ya,Xp, Y, M,N,O,Pt) =Y Y 3" N"N"N NN xjuy Ve x fory ez ;7 NZa2 Q7 pZo

Na1 Naz2 Np1 N2 Za1 Zaz Zg1 ZB2
* P(Na1, Na2, N1, Np2, Z a1, ZB1, Za2, ZB2,t),

with initial condition for t5 <0
G(XA;YAaXB;YB7M5N507P7t = tO | tO) =1

and
G(1,1,1,1,M,N,0,P,t = t4 | tg) = 1.

The following partial differential equation is obtained:

0G oG
— = [Mata + AarYa + AauXp + Aa1aM — A1 Xa + qar(Xa)Aary] 5
ot 0Xa
oG
+ A2 + Aa2YB + Aa2aN — AaoYa + QAQ(XA)AAw]M
oG
+ [AB1a + ABrYB + AB1: XA + AB1a0 — Ag1XB + ¢B1(XB)AB1/] 0Xg
oG
+ [AB2a + AB2:Ya + Ap2aP — Ap2YB + qp2(XB)AB2y] W

+ SA[TA(XA) — l]G + SB[TB(XB) — 1]G,

where
G(X) = X*fip(k)
k
r(X) = pg(n)X".

For the sake of simplicity, some identities are used in the solution as below (i = 1, 2):

0
x| - 2
82
8XZT(X)‘Xl = Zn:n(n —1)py(n)

Thus, va;’ (¢ai'), vei' (gBi’), vai"” (qai”’), vei"” (¢i") and r4’, rg’, ra”, rg” stand for the first and second factorial
moments’ of the number of neutrons emitted in a fission process and in a source event, respectively. The index i = 1,2
denotes fission induced by fast or thermal neutrons, respectively. In a steady subcritical medium with a steady source,

T If f is a random variable or a random process, then the expectation (f™) is called the n-th ordinary moment of the process,
whereas (f[f —1]...[f —n+ 1]) is called its n-th factorial moment.
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when tg — —o0, the following stationary solutions for the neutron populations Nai, Nao, N1, Na, Zar, Zp1, Zao,
Z o are obtained as below:

— 1
N:7<S’)\)\)\>\—)\>\ Az Aprt/,
A= BB (A2AB1:AB2 + AB2t (—Aa20AB1t + Aa2fABrias))

+Sar!y (>\A2t)\32t (=AB1 + AB1svB1’) + Aaz (AB1AB2 — AB1AB2vB1 — AB2fABrVE)) ))

G 1
Npy = 7(5 " OMats A asABa — Az Mtos s Ao 1/
Bl = s AT’y (Aare (Aa2AB2 — Aa2tABat) + Aa2darAp2svps)

+Spr ()\Al (Aa2AB2 — Aa2iABae) + Aarg (—Aa2Ap2 + AanApar) var’ — )\Azf/\AMBzV/Az))

- 1
Nag = ———— (SAT/A (Aa1tAB2eABr + Aar (AB1AB2 — AB17AB2VB1" — AB2sABrVB2))
WiWwoWswyg
+Spr's (>\A7~/\B1t/\B2 + A2t ABr (Aa1 — Aargrar’) ))
_ 1
Npy = ——— (SATQ; (Aa1tAa2ABr + Aazedar (AB1 — AB1svB1’))
Wi1WwoWswyg
+Spr's ()\AQt/\Ar)\Blt + ABr (Aa1daz — Aarfdaovar’ — AazfAartiys) ))

Zar = AaraNart
Zp1 = Ap1alNpit
Zaz = Aa2aNast
Zp2 = Ap2aNpat.

By introducing the modified second factorial moment of the random variables a and b as follows:

paa = {ala = 1)) = (a)* = o7 — {a)
frab = (ab) — {a)(b),

and then taking cross- and auto-derivatives, the following system of differential equations of modified second factorial
moments ({x,Xa, hXpXpr XaAYas HXaYEs BXaXpr WXpYar HXpyy) for the neutron population are obtained as below:

0 _ _
pHXaXa = 2AB1tlxX x5 T 2N a25va2 ix v + 2(Aarfvar’ — Aar)pxaxa + Sary + Aazgrvaz”" Naz + Aarprar" Nay

0
XY = AB1tUyaXp + Aa2fvas iy, v + AB2tix avs + (Aa1fVa1 — Aa1 — Aa2) X ava + AArfXaX 4

0

Fptxaxs = AB1thxpXp + Aazfvas iy, xp + AB2sv2 txave + (Aa1fVa1 — A1) Bxaxs

+ (AB1fvB1 — AB1) HXAxp + AA1HX A XA

0
pHxavs = ABIIX v T Aa2fvaz yayvs + (Aa1fVa1 — Aa1 — AB2) hxavs + ABriixaXs + AA2t/iX Ava

0 _ _
iHXeXs = 2pasvB2 tixpys + 2(AB1rve1’ — AB1)Hxpxp + 2Ma1epx 4 x5 + SBTS + AB2svB2" N2 + Ap1sve1" Np1

0

FpHYaxs = AB2thXpYp T AB2fVB2 Wy avs + (AB1VB1 — AB1 — Aa2) ya X5 + AArkixaxs + AA1tHX AV

0
M XeYs = AB2svB2 Iy vs + (AB1rvB1 — AB1 — AB2) Hixpye + ABritxpXs + Aothyaxs + AATHX 4 Y5

0
PpH¥ava = 2ABotlya Yy — 2A A2y Ve T 2AAr X AV A

0

pHvavs = AB2tlYpYs — A2UYAYE — AB2YAYs + ABrivaXp + AA2tlhvayas + AarhX 4y

0
pHveYs = —2ABollypYy T 2ABriiXpYE T 2A A2 [0V A Y -
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This system can be solved in the stationary state (when the left-hand sides are equal to 0). The final expression of
two-point two-group Feynman-alpha formulas for fast detections is given as below:

U%Z(t)_ler(t)_leZYi(llewit).

ZAl/A2/Bl/BZ — w;t

The four roots, namely wi, ws, w3 and wy can be obtained by solving the forth order characteristic equation in w
with known coefficients a, b, ¢, d, obtained from the temporal Laplace transform of the time-dependent equations for
HZaZp, €tc.,
wita-wd+b-wi4c-wt+d=0.
The coefficients a, b, ¢ and d are given in appendix A.
If detection of fast neutrons is performed in region A, then the functions Y7, Y5, Y3 and Y, should be used in the
form:

22414 (Ko — w1 (w1 (Kswi — Ko) + Kq))

~h= NA1W1 (wl - w2) (w1 - w3) (w1 - w4)
Ly, = 2X 14 (Ko — wa (wa (K3wy — Ky) + K1)
Narws (wo — wi) (wo — w3) (w2 — wy)
Y, = 2)\§1d (Ko — w3 (w3 (K3ws — K3) + K1)
Najws (wg —w1) (w3 — wa) (w3 — wy)
Ly, = 22X 414 (Ko — wy (wa (K3ws — K3) + K1)

NA1W4 (w4 - wl) (w4 - wz) (w4 - w3)
Analytical expressions for the coefficients K, K, K5, K3 and K4 are given in appendix A. It can be shown that
Yo=Y1+Y2+Y5+Y)
2KoAa1d
wiwawswa N a1

If a thermal neutron detector is placed in region A, then the following Y7, Y5, Y3 and Y, functions are to be used:
2A 424 (Lo — w1 (w1 (Lawy — Lo) + L1))

= wi (w1 — wa) (w1 — ws) (w1 — wa) Nag
Ly, = 2A 424 (Lo — wa (w2 (Lawa — Lo) + %1))
wy (wo — w1) (wo — w3) (w2 — ws) Nao
Ly, = 2X 424 (Lo — w3 (w3 (Lsws — Ly) + L))
w3 (w3 — w1) (w3 — wa) (w3 — ws) Nao
Ly, = 2A a2q (Lo — w4 (wa (L3ws — Lo) + L1))

wy (ws — w1) (ws — ws) (ws — w3) Nag
where, analytical expressions for coefficients Lo, L1, Lo, L3 and L4 are given in appendix A. It can be shown that
Yo=Yi+Yeo+Y3+Y,
2LoAA24
wiwawzwaN a2

For the case when a fast neutron detector is placed in region B, the following Y7, Y5, Y3 and Y, functions should be
used:

2Ap1q (Mo — wy (w1 (M3wy — M) + My))

T T N (w1 —w2) (w1 — w3) (W1 — wy)
v, - 2)\551(1 (My — wa (wo (M3wy — Ms) + My))
Npiws (w2 — wi) (w2 — w3) (wa — wy)
Ly, = 2Ap1a (Mo — w3 (w3 (Maws — M) + M)
Npiws (w3 — wi) (w3 — w2) (w3 — wy)
Ly, = 2A1a (Mo — wy (wa (Mawy — M>) + M)

Npiws (wa — wi) (ws — wa) (wg — w3)
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where, analytical expressions for coefficients My, My, My, M3 and M, are given in appendix A. It can be shown that

Yo=Yi+Ys+Ys5+Y,

o 2M0)\Bld
Npiwiwowswy

If a thermal neutron detector is placed in region B, the following Y7, Y5, Y3 and Y, functions should be used:

2Apoq (Py — wy (wi (Pawy — Po) + Pr))

h= w1 (wl - w2) (wl - w3) (w1 - w4) NB2
Ly, = 2AB2d (Po — wa (wa (Pws — ) + P1))
wo (wo — wi) (wo — w3) (wa — wy) Np2
Ly, = 2Ap2a (Po — w3 (w3 (Pyws — Po) + 1))
w3 (w3 — w1) (w3 — w2) (w3 — wy) Np2
Ly, = 2Ap2a (P — wa (wa (Psws — P2) + P1))

wy (ws —w1) (wg —w2) (wg —w3) Nz
where, analytical expressions for coefficients Py, Py, P», P3 and P4 are given in appendix A. It can be shown that

Yo=Y +Ys+Y5+Y,

_ 2Py)ABad
Npawiwowswy

Quantitative examples of the Feynman Y (¢)-function will be given shortly.

3.2 Two-group one-point Feynman-alpha theory (with delayed neutrons)

In order to derive the two-group one-point Feynman-alpha theory let us assume that the source S is switched on at the
time tg < t, while the detection process is started at the fixed time instant t4, where t; < t and ty > to. For convenience,
we consider tq4 = 0. Let the random processes Ni(t), Nao(t) and C(¢) represent the number of fast neutrons, thermal
neutrons and delayed neutron precursors at the time ¢ > 0, and Z;(t,t4), Za2(t,tq) —the number of fast and thermal
particle detections in the time interval [t4, t], respectively. Thus, the joint probability of having Ny fast neutrons, No
thermal neutrons and C' delayed neutron precursors present in system at time ¢, and that Z; fast neutrons and Z,
thermal neutrons have been detected during the period ¢t — t; > 0 can be defined as P(Ny, No, C, Z1, Za, t|tg). By
summing up the probabilities of the mutually exclusive events of the particle not having or having a specific reaction
or that there is a source emission within the infinitesimally small time interval d¢, one can write:

OP(N1, N2, C, Zy1, Zy,1t)

(9t :_(>\1N1+A2N2+)\C—FSl)P(Nl,NQ,C,Zl,ZQ,t)

+>\1a(N1 + ]-)P(Nl + 17N2,C, Zla Zth) + )\2a(N2 + ]-)P(NlaNQ + 1707 Zla ZZat)

N1+1 C
Fhip DD (N + 1= k) fap(k, )P(Ny + 1= k,No, C =1, Z1, Z, 1)
k l

N1 C
hop Y > (No+ 1) for(k,)P(Ny =k, Ny +1,C — 1, Z1, Zs, 1)
k l

+Ar(N1 + 1)P(N1 + 1, No — 1,C, Z1, Zs, )
+A1a(N1 + 1)P(N1 + 1,No,C, Zy — 1, Z5, 1)
+A2q(No + 1)P(Ny,No+1,C, Z1, Z5 — 1,t)
+AC +1)P(Ny — 1,No,C + 1,7y, Zo, 1)

Ny
+51> pg(n)P(Ny —n,Na,C, Zy, Zy, 1),
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with initial condition
P(N1,N2,C, Zy, Za,t =t | to) = On,,00N5,000,002,,0025,0

and

SN P(N1, N, C 2y, Zo,t =t | to) = 0z,.002,.0-

N1 N» C
By defining the following generating function for the probability distribution P(Ny, Na, C, Z1, Za,t):

GX, Y, V.M, N,t) =Y Y "33 xMyNvOMAN%P(Ny, Ny, C, 21, Za, t)
N1 N2 C Zl Zz

with initial condition for to < 0,
GX,) Y, V,M,N,t =tg|ty) =1

and
G(1,1,1,M,N,t =tq | to) =

the following partial differential equation is obtained:

oG oG
a5 =[Ma+ARY + i (X, V)i + MigM — M X]| = X
oG
+ A2a + @2(X, V) Ao + AogN — NoY] — Y
oG
— 1
X -2 s ) - 1

where

a(X,V) ZZkalflf k1)
ZZX’fvlfzf (k, 1)
:qu n) X

Here, f1¢(k,1) is the probability of having k& prompt neutrons and ! delayed neutron precursors produced in a fission
event induced by a fast neutron, for(k,{) is the probability of having k prompt neutrons and ! delayed neutron
precursors produced in a fission event induced by a thermal neutron. The effective delayed neutron fraction is 3, v;
and v/, are the average total number of neutrons per fast and thermal induced fission, respectively. For the sake of
simplicity, some identities are used in the solution as below (i = 1,2):

0
av 4 va - k i k,l
ag | 2.2 Kfis(kl)
S
0
2 x, V)‘ ()
X=1,V=1 k 1
Y
and
9 (X)\ = Sl
0X o1
:’r‘/
32
o ()| _ = Sontn =t
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In a steady subcritical medium with a steady source, when ¢y — —o0, the following stationary solutions for the neutron
populations N1, Ny and C', and detection counts Z; and Z5 are obtained as below:

= /\2517“/
N1 = / 7
)\1)\2 — )\2V1)\1f — )\RI/2>\2f
_ A /
Ny = /RSlT 7
)\1)\2 — )\gul)\lf — )\RV2)\2f
O — ()\gﬁui/\lf =+ )\Rﬁup\gf)Slr’
)\(/\1)\2 — /\Qvi/\lf — /\Rl/é)\gf)
_ Nlﬂvi/\lf + Ngﬂl/é/\zf
A A
Zl = Allet
ZQ = )\QdNQt.

By introducing the modified second factorial moment of the random variables a and b and then taking cross- and
auto-derivatives, the following system of differential equations of modified second factorial moments for the neutron

population are obtained as below:

9] _ _
Pphxx = Sir" + XapvappNo + M1 pripp N1+ 20uxv + 2 [ A1 + (1 = B) A vy pxx + 2(1 = B)Aepvapxy

0
phxy = Miyv + (1= B)hapvapyy + [(1 = B)Aipry — M — Aol ixy + Arfixx

0
oYY = —2Xoptyy + 2ARpUxyY

8 7 / \ 7 /

9 _ ) _ _ _ _

o HXV Mivy + AofvapaNo + (1 = B)Aasvapyy + ApvipaN1 + [=A + (1 = B) A — N puxv
+ BAeasvhixy + BNV X x

0

v = (=X = X2)pyv + Brasvopyy + Arpixv + BApripxy

0 _ _
tvy = =2 vy + AogvadaNa + 28X o p sy v + A priaaN1 + 28 v pxy .

The three coefficients w1, ws and w3 can be obtained by solving the third order equation in w with known constant
coeflicients a, b, c:

where

WCHa-wr+b-wte=0,

a=PriAif — Vi + A+ A+ A2

= —(w1 + w2 +ws)
b= Ao Ais — AL — A ALs + BbAasAm — vbAagAm + AL+ AsAr + Ao
c= =M\ Aif — AWodafrAr + AN s

= —WiWaWws.

The stationary modified variance of the fast particle detections can be obtained from the coupled equation system by
using the Laplace transform technique:

0
Frlxm = Mevar + (1= B)Aapvhpyar + (=M + (1= B)A1pvh) pxar + Aapix x

0
ity M = —Xopty v + ARUX M + Aldpxy

0
kv = =My + Bhopvapy M+ Mapxv + B X m

0
— =2\ .
atNMM 1dMX M
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The same can be done to define the stationary modified variance of the thermal particle detections via solving the
following coupled equation system:

0

kXN = Mivn + (1= B)Aapvspyn + (= 1 + (1= B)A1p11) px N + Aoapixy
0

YN = =Xty N + ARXN + A2aftyy

0

ety = =AMy N + By N + Naptyy + BA1 v pix N

0
— =2\ .
ot HNN 2dHY N

Some second moment notations were introduced as follows:

82
S i(X.V) =D D k= 1)fis (k1)
X=1,Vv=1 k 1
= Vipp
2
Syai(X.V) :ZZ“—l fig (k1)
X=1,v=1 !
= Vidd
i »3
7qi(X7 V) = klfif(k‘7l)
IVIX x=1va1 05
= Vipd,

in which ¢ = 1, 2. Thus, the solution for the two-group one-point Feynman-alpha formula for fast and thermal detection
particles can be written as below:

2
222 = 14+Y(¢
2 +Y (1)
3
1 —ewit
=1 Yi[l—-—— ).
()
For fast particle detections the following expressions should be used:

2M4 (w1 (Kawy — K1) + Ko)

—Y = — —
! Niwy (w1 - wz) (wl - WB)
Ly, = 2)\1d (wa (Kaws — K1) + Ko)
(wl - w2) (w2 - w3)
Vo — 2)\1(1 (W3 (K2w3 - Kl) + Ko)
—13 = )

Ny (w1 — ws) w3 (w3 — w2)
with
Ky = pxx
K1 = —BXapvspixy + Aofvapixy + AMuxv + AMixx + Aopix x
Ko = Masvhuxy + Mapixy + AMofixx.
It can be shown that
Yo=Y +Yo+ Y3

2Ky 14
B N1w1w2w3 '
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If a thermal neutron detector is used, then the following expressions should be considered:

_ 224 (w1 (Lowy — L1) + Lo)

—Y = —
! w1 (w1 — (.L)Q) (w1 — W3) N2

Ly, - 2024 (w2 (Lowz — L1) + Lo)

(wl - wg) w2 ((UQ — uJ3) N2

Vi — 224 (w3 (Lows — L1) + Lo)
— 13 = )

(wl - WS) w3 (w3 - w2) NQ
with

Ly = pyy
Ly = BA\isvipyy — MfViiyy + Arpixy + Miyy + Aipyy
Lo = =M\ pyy + M ritxy + A epyv + Aipyy.

It can be shown that

Yo=Yi+Yo+ Y3
2LoA2g

wiwaws Ny

3.3 One-group two-point Feynman-alpha theory (with delayed neutrons)

Similarly as in the derivation of two-group one-point version of the Feynman-alpha formula, in the one-group two-point
Feynman-alpha theory the joint probability of having N4 neutrons in region A, Np neutrons in region B, C'4 delayed
neutron precursors presented in region A, C'p delayed neutron precursors presented in region B at time ¢, Z4 neutrons
have been detected in region A, and Zg neutrons have been detected in region B in the system during the period of
time t — tq > 0 can be defined as P(Na, Np,Ca,Cp,Za, Zp,t|tp). By summing up all mutually exclusive events of
the particle not having or having a specific reaction within the infinitesimally small time interval d¢, one can write

OP(NaA,Np,Ca,CB,Za,Zp,t)
ot

= —()\ANA + AN +A4.C4 + Ag.Cp + Sa +SB)P(NA,NB,CA,CB,ZA,ZB,t)

+A4a(Na +1)P(Na +1,Np,Ca,Cp, Za, Zp,t)
+)\BG(NB + 1)P(NA3NB + 17CAaCB7ZszB7t)
Na+1 Ca
+)\Af Z Z(NA +1- k)fA(k?l)P(NA +1- kaNBch - l,CBaZAaZth)
k l

Np+1 Cp
+Agr > D (Np+1—k)fp(k,))P(Na,Np +1—k,Ca,Cp —1,Z4,Zp,1)
k l

+Aa:(Na+1 t)
+Apt (N +1 t)
+A4:(Ca+1)P(Na—1,Np,Ca +1,Cp,Za, Zp,t)
+)\Bc(CB + 1)P(NA,NB —1,C4,Cp + 1,ZA,ZB,t)
FAad(Na+ )P(Ngs+1,Np,Cx,Cp,Zs — 1,Zp,t)
+ABi(Np +1)P(Na, N +1,C4,Cp,Za, Zp — 1,1)

P(NA + 17NB - 170AaCB7ZA7ZBv

)
)P(NA - 13NB + 170AaOB7ZszB?

+54 Y pa(n)P(Na —n,Np,Cu,Cp, Za, Zp, 1)

+SB ZpB(n)P(NAvNB - nchaCBv ZA7ZB7t)7
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with initial condition
P(Na,Np,Ca,CB,Za, Zp,t =to | to) = ON,,00N5,0004,0005,002,,0025,0

and
> 33> P(Na,Np,Ca,Cs, Za, Zp,t = ta | t0) = 02,0025 0-

Na Np Ca Cp
By defining the following generating function for the probability distribution P(Na, Ng,Ca,Cg, Z 4, Zp,t):
GX, Y, VW, M,N,t)=> "> "33 NN XNy NsvOaw s M?4N?5 P(Na, Np,Ca,Cp, Za, Zp, 1),
NA NB CA CB ZA ZB

with initial condition for tg < 0,
G(vauvaNvt:tO | to) =1

and
G(1,1,1,1, M, N,t =tq | tg) =1,

a partial differential equation in the variables (X,Y,V,W, M, N) in terms of generating function can be obtained:

oG 0G
o [)\Aa+)\AtY+(JA(X V))\Af-i—)\AdM )\AX] X
oG oG
+ P\Ba + A X -l—qB(Y, W))\Bf + AgalN — )\BY} oY + )\AC(X V)av

oG

o T Salra(X) = 1)G + Sp[rs(Y) - 1)G,

+Ape(Y = W)
where
= ZZXkVZfA(k,D
g (Y, W) = ZZY’“W fo(k,1)
ZPA
= ZPB (n)Y

Here, B4 and (p are the effective delayed neutron fractions in region A and region B, respectively. For the sake of
simplicity, some identities are used in the solution as below (i = A, B):

0

ax X V)’ =33 kfap(k,1)
X=1,V=1 k 1
= (1—Ba)vy
0
X V)’ =Y ifas(k,0)
X=1,Vv=1 k 1
= Bavy
0
Sy (VW) =YD kfps(k,l)
Y=1,W=1 k 1
= (1 -8BV
0
(v, W - TR
IR )Y:LW:I ;; fBr(k,D)

= BpVp
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and
8%7‘,4()() :anA(n)
X=1 -
—
82
0X2 TA(X) et - ;n(n 1)pA(n)
= Tx
a%rB(Y) = anB(n)
y=1 -
= T’B
82
ayas )| = atn—1psto
=r%.

In a steady subcritical medium with a steady source, when ¢ty — —oo, the following stationary solutions for the neutron
population and detection counts are obtained as follows:
NA: Sa ()\B_)\nyjg)r;x“"SB)\Btr}g
(Aa = Aasvy) (A = Ayrp) — Aardsi
o Sadarly S (A4 — Aapvl)rp
7T 0 = dapry) s = Apv) — Aads

_ Aart)e
CAZMNA

/\Ac
_ by I
Cp = BB BfVpB Ng
)\Bc
ZA = Ald]\_flt
ZB = )\QdNQt.

By introducing the modified second factorial moments and then taking cross- and auto-derivatives, the following system
of differential equations of modified second factorial moments for the neutron population are obtained as below:

0 _
phxx = 2[(1 = Ba)Aasvy — Aal pxx + 2ABeiixy + 2 achxv + Sar’y + AafvappNa

%NXY = Mty v + Apetixw + Agiftyy + Aapxx + [(1— Be) Apsvg — Ap + (1= Ba) Aapvly — Aal pxy
%NYY =2[-Ap + (1 — Be)ABsVE] tyy + 2Xatixy + 2Agepyw + Spr% + A fVBppNE

%NXV = ((1 = Ba)Vyrar — Aa — Aac)pxv + Bavidasiixx + Aachivy + ABepyv + AagvapalNa

%UYV = Agetvw + [(1 = BB) A — AB — Aacl pyv + Aacsixv + BadasVapixy

%Mvv = =2\ acvv + 2BaXafVapixyv + AagrvaaalNa

%MXW = Xactvw + Apepyw + [(1— Ba) Aapvly — Aa — Ae] ixw + BeABrrplixy

%NYW = Apepww + [(1 = BB) ABsvs — Ap — Apc] iyw + BeAvsiyy + Aackixw + ABrvpaNE
%uvw = (=Aac — ABe) pvw + BeABrvplyv + BadasVspxw

0

ptww = —2Agepiww + 28BABVsyw + ABfvBaaNE,
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where
82
ST NN 9) DRIV Y)
X=1,V=1 k 1
= VApp
82
SyzaB (Y, W) =3 k(k—1)fps(k,m)
Y=1,W=1 E m
= VBpp
2
FyatalX, V)' =D U= 1)fas(k.1)
X=1,V=1 k 1
= VAdd
82
Syzis(Y. W) =2 D W= pskD)
Y=1,W=1 k 1
= VBdd
2
———qa(X, V)‘ = Kifagp(k,1)
IVoX X=1,v=1 Zk:zl:
= VApd
2
—qp(Y,W) = kifgys(k,1)
oWov w22
= VBpd-

The system above is solved for the stationary case when % = 0. Four roots wy, ws, w3 and wy can be obtained by

solving the forth order equation with coefficients a, b, ¢, d specified as below:
wita-wd+b-wi4cwt+d=0,

where the coefficients a, b, ¢ and d are given in appendix B.
The stationary modified variance of the particle detections in region A can be obtained from the coupled equation
system by using the Laplace transform technique:

0

phxM = Mckvar + Apipynr + [(1 = Ba) Aagvly — Aal pxar + Aaapx x
0

v m = Agepiwnr + [(1 = BB) Apsvs — AB) oy M + Aaepix v + Aaapxy
0

ptvM = —Actv M + BarapViapx v + Aaapxv

0

aphwy = —ABekw M + BeABFVBIY M + Aadlxw

9 it = 22

atMMM = LAAdHX M -

A similar coupled equation system can be derived for the particle detections in region B:

0 /

pHxN = Mctv N + Apepy N + [(1— Ba) Aagvy — Aal px v + Apapixy
0

YN = Agetiwn + [(1 = BB) Apsvs — AB] by N + Aaeix v + Apaptyy
0

vy = —AAcv N + BaAAAFVAX N + ABapy v

0

W = —ABewN + BBABFVBHY N + ABaty w

0
— =2\ .
ot UNN BdMY N
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Thus, a final expression for the two-point one-group Feynman-alpha formula for region A and B is written below:

2 4 —w;t
0% 4(t) ( 1—e )
7220 14y 414y Y (1-— ).

w;t
i=1 v

If the detector is placed in region A, the following expressions for the functions Y; should be used:

2M 44 (Ko — wi (w1 (K3wy — K») + K1)

h= Naw; (w1 — ws) (w1 — w3) (w1 — wy)
v, - 2)\,_4d (Ko — wa (w2 (K3ws — Ko) + K7))
Naws (w2 — w1) (w2 — w3) (w2 — wy)
Ly, = 22 ad (Ko — wy (w3 (Kaws — Ky) + K1)
Naws (w3 — wi) (w3 — w2) (w3 — wa)
v, - 2A aaq (Ko — wy (wg (Kswy — K2) + K1)

Naws (wg — w1) (w4 — wa) (wg — w3)
and it can be proved that

Yo=Y +Yo+Y5+Y)
_ 2KoAad
B NAW1WQ(AJ3&)4 ’

where the coefficients K are given in appendix B.
If the detector is placed in region B, the following expressions for the functions Y; should be used:

2>\Bd (LO — W1 (w1 (ngl - Lz) + Ll))

= wi (w1 — ws) (w1 — w3) (w1 —wy) Np
Ly, = 2Apa (Lo — wa (wa (Lawa — Lo) + L1))
wa (w2 — wy) (w2 — w3) (w2 — wy) Np
v, = 2Apa (Lo — ws (w3 (Laws — Lo) + L1))
w3 (w3 — wy) (w3 — wa) (w3 —wy) Np
v, - 2ABa (Lo — wq (wyq (Lswy — L) + L))

wa (wg — w1) (wg — wa) (wa —w3) Np
and it can be proved that

Yo=Y1+Yo+Ys+Ys
2LoABa
w1w2w3w41\73 ’

where the coefficients L are given in appendix B.

4 Discussion and quantitative analysis

In the following, we shall perform a comparison of the two-point two-group version of the Feynman-alpha theoretical
formula to the two-point one-group, the one-point two-group and the one-point one-group (i.e. traditional) versions.

4.1 The simulation set-up

In order to compare the four different versions of the Feynman-alpha theory, quantitative values of the transition
probabilities and reaction intensities were obtained by using Monte Carlo simulations in a way similar to that described
in [31,35,38,39]. The simulation setup consists of two regions, region A and region B, as shown in fig. 4. Region A
represents nuclear material (radius 4.46 cm), in particular a mixture of 2.5% 23°U and 97.5% 2®U. Region B consists
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REGION A
L]

Fig. 4. Geometry used for the Monte Carlo simulations.

of a moderating material with a thickness of 21 cm. The neutron source emits the neutrons with an energy of 2.5 MeV.
Two cases are considered in the simulations, one when the neutron source is in the center of region A and another when
the neutron source is at a distance of 15 cm from the center of the nuclear material, in region B. Two point detectors,
in region A and in region B, are included in the simulation setup. Delayed neutron precursors are not included in the

simulations®.

4.2 Coefficients

Initially, the transition probabilities and reaction intensities are obtained in MCNPX simulations [40] for the two-point
two-group case by merging the information from neutron weight balance table (“print table 130” in MCNPX) with
simulated reaction rates (normalized to one starting neutron). Alternatively, one can obtain similar information by
processing MCNPX PTRAC file. Then, the values of reaction intensities of the two-point two-group case are condensed
in order to get the reaction intensities which correspond to the two-point one-group, the one-point two-group and one-
point one-group cases. Afterwards, these values are used in order to obtain the values of the Y and w coefficients in
the Feynman-alpha formulas for the cases when the source is in region A, and in region B for fast neutron detections
and thermal neutron detections, as shown in tables 1-4, respectively.

Since there is only one region considered in the two-group one-point and the one-point one-group Feynman-alpha
formulas, the coefficients are the same for the detection in the different regions of the initial system used for the
simulations. The same is true for the energy-dependent factor in the two-point one-group and the one-point one-group
Feynman-alpha formulas, the coefficients are the same for the fast and thermal neutron detection.

In the studies described below we assume that the two-point two-group version of Feynman-alpha formulas gives
the most accurate predictions as the most involved one among the four various versions, i.e. the two-point two-group,
the two-point one-group, the two-group one-point and one-point one-group theories.

4.3 Comparison of the four versions of the Feynman-alpha theoretical formulas for the case of fast neutrons
detections

Figures 5 and 6 show a quantitative illustration of the dependence of the variance to mean of the number of fast
neutron detections on the detection time for four versions of Feynman-alpha theories when the source is in region A.
Different curves in figs. 5 and 6 are created based on the parameter values from tables 1 and 2.

As it is shown in fig. 5, when fast neutrons are detected in region A, the two-point two-group, the two-point one-
group and one-point one-group versions of the Feynman-alpha theoretical formulas give very similar results. However,
the one-point two-group version of the formulas overestimates the asymptotic ratio of the variance to mean. Thus, we
can conclude that the region dependence of the model plays a more important role than the energy dependence for the

8 A Mathematica notebook for visualization of two-point two-group, two-point one-group and one-point two-group Feynman-
alpha formulas can be downloaded from dx.doi.org/10.13140/2.1.3251.5209.
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Table 1. The values of the Y; and w; calculated for four various versions of Feynman-alpha formulas (the source is in region

A, fast neutron detector is used either in region A or B).
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Source in region A

2-point 2-point 1-point 1-point
2-group 1-group 2-group 1-group
w1 1.52001 1.8083 1.45471 0.923611
w2 1.12141 0.743335 0.350087
w3 0.759289
wq 0.0983484
Fast neutron detections in region A
Y1 0.00239792 0.00154341 0.000823734 0.0126651
Yo 0.00354816 0.00938149 0.0544565
Y3 0.00061659
Y, 0.0056358
Fast neutron detections in region B
Y —0.0000243761 —0.000134373 0.000823734 0.0126651
Yo —0.000094874 0.000795215 0.0544565
Y3 0.000301926
Yy 0.000161625

Table 2. The values of the Y; and w; calculated for four various versions of Feynman-alpha formulas (the source is in region B,
fast neutron detector is used either in region A or B).

Source in region B

2-point 2-point 1-point 1-point
2-group 1-group 2-group 1-group
w1 1.00891 1.06295 1.12123 0.905974
w2 0.721378 0.0660208 0.516779
w3 0.28402
wq 0.00211384
Fast neutron detections in region A
Y 5.90179E-7 1.29166E-6 9.406E-6 0.943027E-4
Yo 4.20869E-6 0.014281 0.122662E-3
Y3 0.159498E-2
Y, 1.07716
Fast neutron detections in region B
Y1 —2.65992E-9 —2.18905E-7 9.406E-6 0.943027E-4
Yo —1.33593E-6 0.567443E-4 0.122662E-3
Y3 8.38725E-6
Ya 0.00477401

case when the source and the fast neutron detector are both placed in the region of the nuclear material. Therefore,
in this situation all three versions of the Feynman-alpha theory, the two-point two-group, the two-point one-group
and one-point one-group, can be used, although it is more time-efficient to use the one-group one-point version of the
Feynman-alpha theory. As an example, in reality this case may be related to the measurements performed in the spent

fuel pool when the detector is placed in the control tube of fuel assembly.

In the case when the fast neutron detector is in region B (fig. 6), a slight difference is observed between the two-point
two-group and the two-point one-group versions of Feynman-alpha theories. At the same time, the one-point two-group
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Table 3. The values of the Y; and w; calculated for four various versions of Feynman-alpha formulas (the source is in region
A, thermal neutron detector is used either in region A or B).

Source in region A

2-point 2-point 1-point 1-point
2-group 1-group 2-group 1-group
w1 1.52001 1.8083 1.45471 0.923611
w2 1.12141 0.743335 0.350087
w3 0.759289
wq 0.0983484
Thermal neutron detections in region A
Y1 —1.31014E-7 0.00154341 —0.806821E-4 0.0126651
Yo 9.33539E-7 0.00938149 0.00139308
Y3 —2.39735E-6
Yy 0.000052813
Thermal neutron detections in region B
Y1 0.108441E-3 —0.134373E-3 —0.806821E-4 0.0126651
Y, —0.505571E-3 0.795215E-3 0.00139308
Ys 0.663882E-3
Yy 0.258841E-3

Table 4. The values of the Y; and w; calculated for four various versions of Feynman-alpha formulas (the source is in region B,
thermal neutron detector is used either in region A or B).

Source in region B

2-point 2-point 1-point 1-point
2-group 1-group 2-group 1-group
w1 1.00891 1.06295 1.12123 0.905974
w2 0.721378 0.0660208 0.516779
w3 0.28402
w4 0.00211384
Thermal neutron detections in region A
Y1 —8.84973E-9 1.29166E-6 —4.82586E-6 0.943027E-4
Yo 4.87895E-8 0.014281 0.227173E-4
Ys —5.6035E-6
Yy 0.0974942
Thermal neutron detections in region B
Y1 1.71005E-6 —2.18905E-7 —4.82586E-6 0.943027E-4
Y —7.10267E-6 0.567443E-4 0.227173E-4
Y3 0.232948E-4
Ya 0.0170835

and one-point one-group versions of Feynman-alpha theory significantly overestimate the values of variance to mean
ratio obtained with the two-point two-group version of the formulas. Thus, in this case two versions of Feynman-alpha
theory, the two-point two-group and the two-point one-group can be used, although it is more time-efficient to use the
two-point one-group version for quantitative estimates.

The differences between the various versions of Feynman-alpha theory are significantly higher when the neutron
source is placed in region B and the fast neutron detector is in either region A or B, see figs. 7 and 8.
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Fig. 5. The dependence of the ratio of the variance to mean of the number of fast neutron detections on the detection time for
four versions of Feynman-alpha theory (the source is in region A, detector is in region A).
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Fig. 6. The dependence of the ratio of the variance to mean of the number of fast neutron detections on the detection time for
four versions of Feynman-alpha theory (the source is in region A, detector is in region B).
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Fig. 7. The dependence of the ratio of the variance to mean of the number of fast neutron detections on the detection time for
four versions of Feynman-alpha theory (the source is in region B, detector is in region A).
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Fig. 8. Dependence of the ratio of the variance to mean of the number of fast neutron detections on the detection time for four
versions of Feynman-alpha theory (the source is in region B, detector is in region B).

In all cases when the fast neutron detector is used, the two-point two-group version of Feynman-alpha formulas
produce high values of the asymptotic variance-to-mean ratio compared to results obtained with other versions, i.e.
the two-point one-group, one-point two-group and one-point one-group versions of the theory.

4.4 Comparison of four versions of the Feynman-alpha theoretical formulas for the case of thermal neutron
detections

Regarding thermal neutron detection, when the source and the detector are in region A (fig. 9), the three special
versions of the Feynman-alpha theory, the two-point one-group, the one-point two-group and the one-point one-group,
all deviate significantly from the two-point two-group version. However, the one-point one-group theory gives very
similar predictions of the ratio of the variance to mean as the two-point one-group theory. At the same time, the
two-group one-point theory provides somewhat more accurate results. Thus, the impact of the energy dependence
appears to be somewhat higher than the impact of the space dependence.
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Fig. 9. The dependence of the ratio of the variance to mean of the number of thermal neutron detections on the detection time
for four versions of Feynman-alpha theory (the source is in region A, detector is in region A).
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Fig. 10. The dependence of the ratio of the variance to mean of the number of thermal neutron detections on the detection
time for four versions of Feynman-alpha theory (the source is in region A, detector is in region B).
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Fig. 11. Dependence of the ratio of the variance to mean of the number of thermal neutron detections on the detection time
for four versions of Feynman-alpha theory (the source is in region B, detector is in region A).

When the thermal neutron detection is performed in region B (fig. 10), we may conclude that both the space-
dependent and energy-dependent aspects play important role for this case.

If the source is in region B and detection is performed in region A (fig. 11), the two-point one-group version of the
Feynman-alpha theory gives results which are closer to the one obtained with two-point two-group theory. Thus, the
impact of the space dependence to the final results is higher than the impact of energy dependence.

Although, for a case of detector and source being placed in region B (fig. 12), the two-point one-group, two-group
one-point and one-group one-point versions provide results of the variance-to-mean ratio that are significantly deviating
from the ratio obtained by using the two-point two-group theory. Thus, the space-dependent and energy-dependent
aspects, both play the important role in this situation.
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Fig. 12. Dependence of the ratio of the variance to mean of the number of thermal neutron detections on the detection time
for four versions of Feynman-alpha theory (the source is in region B, detector is in region B).

In general, one can say that for the thermal neutron detections when the detection is made in region A, the energy-
dependence has a higher impact to the ratio of the variance to mean than the space-dependent factor. On the other
hand, for detection in region B both factors should be equally taken into account.

5 Conclusions

The two-group two-point version of Feynman-alpha theory was derived with a use of the forward master equation
technique. The two-group one-point Feynman-alpha theory (with delayed neutrons) is extended by including fast
neutron detections and fast fissions. The two-point one-group variance-to-mean formula (with delayed neutrons) is
enhanced as well, by including detection and source terms in both regions. Thus, this gives the possibility of treating
fast reflected systems in a more accurate way, by treating the counts separately in the fast and the thermal groups (or
in the nuclear material (fissile region) and reflector regions).

The comparative study of the two-group two-point, the two-group one-point, the one-group two-point and the one-
group one-point Feynman-alpha models is made by using the specific reaction intensities obtained in Monte Carlo simu-
lations. It is shown that for all cases when the fast neutron detector is used in measurements, the space-dependent aspect
has a higher impact on the final results than the energy-dependent aspect. In particular, when the source and the fast
neutron detector are both placed in the region of nuclear material, three versions of the Feynman-alpha theory provide
similar accuracy in the determination of the variance to mean ratio. Namely, the two-point two-group, the two-point
one-group and one-point one-group can be used, although it is more time-efficient to use the one-group one-point version
of the Feynman-alpha theory. The situation is not so optimistic for the case when the fast neutron detector is in region
B, because a slight difference is observed between all versions of the theories. The one-point two-group and one-point
one-group versions of Feynman-alpha theory significantly overestimate the values of variance to mean ratio obtained
with the two-point two-group version of the formulas. Therefore, in this case two versions of Feynman-alpha theory, the
two-point two-group, the two-point one-group can be considered as the accurate qualitative estimates. Regarding the
use of the thermal neutron detections, both energy- and space-dependent factors are important to take into account.
However, when the detection is done in region A, the space-dependence has a higher impact to the ratio of the variance
to mean than the energy-dependence, while, for detection in region B both factors should be equally considered.

This work was supported by the Swedish Radiation Safety Authority, SSM and the FP7 EU Collaborative Research Project
FREYA, Grant Agreement no. FP7-269665. The authors want to thank Dr. Stephen Croft for useful discussions and advice.
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Appendix A.

In appendix A the analytical expressions for some of the coefficients used in two-point two-group Feynman-alpha
theory are given as follows:

a = A1+ A2+ A1+ Ap2 — Aargrar’ — Apigrsi’s

b= —Aa1edBit + Aa2Ap2 — Aazdpar — Az (Aarvar’ — A1) — Ap2 (Aarvar’ — Aa1) — Aaz Aisver’ — Ag1)
— A2 (AB1rve1’ — AB1) + (Aarfvar’ — Aa1) g1’ — A1) — AazgAarvas’ — Ap2gAgrvpe,

= —=Aa1tra2AB1t — AauABuAB2 — Aa2Ap2 (Aa1var’ — Aar) + AaziApae Aaryrar’ — Aair)
—Xa2Ag2 A1’ — A1) + Aaatdsa As1vet’ — A1) + Aaz (Aarfvar’ — Aa1) Asisver’ — Ag1)
+Ag2 (Aarrvar’ — Aa1) (Asisver’ — Ag1) — AazgAarABarvas’ + Aazgdar A1’ — Ag1) vas’
— Aa2AB2sABrvB2’ + Ap2fABr (Aa1fvar’ — Aa1) vee',

d = =Aa1tr a2 B1tAB2 + AanAazAB1AB2ar + AaoAp2 (Aa1var’ — A1) Asisvel’ — Ag1)
— MaAae (Aa1var’ — Aa1) Asisver’ — Ap1) — AantdassA2uAsrvas’ + Ao A ar g2 Ap1ve1’ — A1) vao’
— A2t AarAB1AB2sVB2 + Aa2ABagABr (Aarprar’ — Aa1) vB2' + AazgAarAB2fABrra’ v,

= Wi1WaW3Wwy,

K3
Ko = Xaosfixavadas (Xa) + Aaopxaxa — AB1xaxadp1 (XB) + AB1LX A X4 + ABUIX A X5 + AB2UX A XA
K1 = Xa2f AB1fHXavadas (Xa) d51 (XB) + Aa2fAB11x ava@ao (Xa) + A2 ABopix avadas (X a)

+ A2 A B2t x 4 v Qaz (Xa) — A2 AB1pxaxads1 (XB) + Aa2AB1ix x4 + AA2AB1tAX 4 X5

HXAXas

+ AA2AB2UX A X4 — ANAAUAB2ULX 4 X4 — ABLFAB2UXAX 4051 (XB) + AB1tAB2f X Ay T52 (XB)

— AB2fABr X 4 X402 (XB) + AB1AB2/ix s X4 + ABUAB2IX A X5 »
Ko = Xz AB1sAB2tix avadaz (X4) a1 (XB) — Aa2fAB1rAB2ttix s v Tz (Xa) 451 (XB)

— Ma2f AB2f ABr X YA a2 (X4) aBa (XB) + AazfAB1AB2x v @iz (Xa) + Aa2f AB1AB2 X 4 V5 Can (X )

+ Aa2f AB2ANBr X 4 X5 T a2 (X4) — Xa2AB1 A B2tix A x4 051 (XB) + Aa2AB1eAB2f X v 052 (XB)

— A2 AB2fABritxX 4 X402 (XB) + Aa2AB1AB2lix s X4 T AA2AB1UAB2UX A X5

+ A2 AB1AB2LX 4 X 2051 (XB) + Aa2tAB1AB2f X avadBe (XB) — A ABIAB2IX 4 X 4 — AA2ABUAB2IX 4 X 55
Ly = py, vy,
Ly = =Aarfivavadar (Xa) + Aaiyaya + Aarkixava — ABLfivavadp (XB) + AB1lyaya + AB2liyaya + AB2tlypya,
Ly = Aa1pAp1pivavadar (Xa) @1 (XB) — Mg Ap1pvavadar (Xa) — AarpAp2iyayadar (Xa)

— A1 fAB2t by vadar (Xa) — A1t AB1 iy avads1 (XB) + A1 AB1 v ys + A1 B2y va

+ AAIAB2 Y5 YA — AMAUABIE Y YA — AArABLFEAX ava 051 (XB) + AarAB1HX Ava

+ AArABLX gy + AArAB2UX Ava — AB1FAB2lYA YA dB1 (XB) — AB1fAB2t 1y YA (51 (XB)

— AB2sABriy,Yadpe (XB) + AB1AB2y, vs + ABIAB2 MY YA + AB2UABr X YA »
Lo = Aa1fAB1fAB2tyavadar (Xa) g1 (XB) + Aa1fAB1fAB2ikysvadar (Xa) dpr (XB)

+ Aa1 A B2 ABrivavadar (X4) dpo (XB) — Aa1fAB1AB2ftyavadar (Xa) — Aa1sAB1AB2ativvadar (Xa)

— A1 AB2 A Br X pya @ar (Xa) — A1 AB1rAB2yavadpr (XB) — Aa1AB1fAB2t Ly v a1 (XB)

— A1AB2ABr yava QB2 (XB) + A1 AB1AB2 Uy, va + AA1ABIAB2 Y s Ye + AATABUNBr X YA

— MUABIUAB2IY Yy — MUABIUAB2 Y YA + AAUABUABr X 4 Y2 — AMArAB1FAB2X 4 Y4051 (XB)

+ AarAB1AB2f Y YA U2 (XB) — AarAB2f ABriX avadpa (XB) + AarAB1AB2lix A va + AArABLIEAB2IX 5 YA 5
M3 = pxpxp,
My = - Xa1fpxpxsqar (Xa) + Aa1pxpxs + Arthixaxy + Aafixs X + AB2fx5ys 2 (XB) + AB2kixs X5,
My = =Aaf A a2pixp xp Qa1 (Xa) = AarpAB2sixpve @ar (Xa) dpa (XB) — Aa1fABabixy x5 dar (Xa)

+ AA1AA2f X pyaas (Xa) — Aa2fAariix s xpqas (Xa) + AartAasfix s xp + Aa1AB2f x5 v 52 (XB)

+ A1 A B2/ X s X + AATAA2IX 4 X5 + AATAB2UX 4 X5 + A2AB2 X 5y OB2 (XB) + Aa2ABapix ;x5

+ Xa2eABarlixpvadpe (XB) = N2t AB2uix 5 X5,
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My =

Ps
Py =

Py =

—Aa1fAa2AB2s x5 v dar (Xa) a2 (XB) — AaipAasApapix g x @1 (Xa)

— M1 fAA2AB2 X 5Yada1 (X4) @a (XB) + Aa1f A a2 ABatiix s x5 041 (Xa)

+ A1t Aa2f AB2iX pya az (Xa) + Aaredazf Aot x5 yp das (Xa)

— Aa2f AArAB2f X 5 Y5 Qas (X ) o (XB) — Mzf A arAB2tix s x5 Qas (Xa)

+ A1 X422 B2 r x5y QB2 (XB) + Aa1AaoApapix ;s xp + A1 Aau Barix s vadpe (XB)

— AIAAZAB2ULX 5 X5 + AA1AA2AB2X A X5 — AAUAA2UAB2UIX A X5 T A2 AAr AB2f X 4 X 5T B2 (XB)

= HypYs>

A1 ypyedar (Xa) + XMatpypye + Aaciysyve + Aa2tlypya — AB1Lf YY1 (XB) + AB1HYsYs +ABriixsYs
—Aa1fA a2y v Qar (Xa) — AarpAasetiyyya@ar (Xa) + Aa1pAs1p iy ys dar (Xa) 451 (XB)

— A1 ABUY Y Qa1 (Xa) = AarfABriix v Can (Xa) = Az Aar iy vy Cas (Xa) + a1 dazfivy vy

+ Aa1 A A2y ys — AAIABLf YRy Qa1 (XB) + Aa1AB1lysye + A1 ABriiXpys — AAUABLLLY Y

+ AAUABr X A vE — AM2ABLF Y YdB1 (XB) + A2 AB1 1y v + A2ABr X 5y + A2t AArkiX Ay

— A2 \B1f Iy yadp1 (XB) + Aa2t A1y s,

AA1fAA2ABL Iy YE Qa1 (X4) a1 (XB) — AarfAae A1ty ys €ar (Xa) — AarpAa2ABriix sy @ar (Xa)

+ A1 A2 AB1 flysvadar (Xa) @1 (XB) — M1 Aa2eAB1Hysva a1 (Xa) + Aa1eAa2f ABriyp v, @as (Xa)
+ A2 AAr AB1 Y YE Qs (Xa) @51 (XB) — Aa2f A ar AB1 1y ys Cas (Xa) — A2 AAr ABritX 5y Qs (Xa)
— A1 A2 B1 vy 51 (XB) + A1 A a2 B1lysvs + A1 A a2 Briixpys — AA1AA2AB1 flysvads1 (XB)
F AAIAARABI LYY — AMALAA2ABI Y Y + AATEAAABr UX 4V — AATEAAUABILIY Y4

— A2 Aar ABLF X Ay U1 (XB) + A2t AarAB1LX 4 Y5 + A2t AAr AB1 X 5V -

Appendix B.

In appendix B the analytical expressions for some of the coefficients used in one-group two-point Feynman-alpha
theory (with delayed neutrons) are given as follows:

a =

BadasVy — Aagvly + Aa + Aac + BeAssvg — ABsvs + A + A,

b= —/\ACAAfVQ‘ + Aadae + ﬂA/\Af)\BV,Iq — ﬂA/\Af/\BfVi‘l/lB + ﬁA/\AfﬂB)\BfV;‘I/B — AAf/@B/\BfV,,M/B

+ AAfABFVAVE — AafABVA 4 BadafA By — AafABels + AaBABvE — AadBsvs + Aads + Aadse
+ AacBBABIVE — AacABfVE + AacAB + AacABe — AatdBt — ABABfVE + ABABC,

¢ ==AacAArBBABFVAVE + AAcAafABFVAVE — AacAafABV) — AacAafABels + AadacBBABFVE — AadacABfVp

+ AaAacAB + AadacA e + BarafABABcy — BaNAfABABFVAVE + AafABABVAVE — AAfABABV
— AaABABFVE + AaABABe — AacAatABt — AacABABfVE + AacABABe — AatABcABt,

d = XAAAFABABFVAVE — AAcAAFABABV ) — AAAAABABIVE + AadacABABe — AacAatABeABt,
K3 = pxx,
Ky = Xacpixv + Mckixx + BABfUXxVE — ABFxXVE + ABIXX + ABelX X + ABLUXY s
K1 = McBBABFIXVVE — AAABFUXVVE + AcBBABFUXXVE — AMABFIXXVE + AAcABIXYV + AAcABIX X

+ AAABLXV + AAABHX X T AAcABLLXY — ABABFIXXVE + ABABelx X + ABABHXW + ABABLXY

Ko = —AAABABFUXVVE — AMAABABFUXXVE + AAcABABAXV + AAcABABeHX X

F AAABABIUXW + AAcABABLUXY

Lz = pyvy,
Loy = BadasiiyyViy — Ay yVia + Aapyy + Aachyy + Aaeiixy + ABefiyw + ey,
Li = =Xachafpyy Vi + Aadachyy + BaragApepiywry — AafApeftywvy + BadafApepiyyVy

— MAFABely Y Vs + AaXBeltyw + AaABeltyy + Aachatiixy + AacAacty v + AacABefly w
+ AacABelyy + AatABelixY s

Lo = =XAcAAfABety Wy — AacAAfABely vy VA + AaAacABeltyw + AaracABefty'y

F AAAAABXY F AAcA At By V-
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