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Abstract. This paper is concerned with the analysis of blood through an annulus, bounded between an
arterial stenosis and a uniform catheter. The nature of blood through coaxial tubes is considered as that
of a nano viscous fluid. The mild stenosis approximation and corresponding boundary conditions are used
to obtain analytic expressions for axial velocity, temperature distribution, nanoparticle volume fraction,
wall shear stress and resistance impedance to flow. The model is also used to study the consequence of
thermophoresis, Brownian motion, local nanoparticle Grashof and local temperature Grashof numbers on
the flow by plotting graphs and streamlines. The variation with different flow parameters through tables
is also discussed to understand the effects of stenosis height in constricted annular regions.

1 Introduction

The study of the physiology and anatomy of a biological system depends on the knowledge of the blood flow through
arteries. The progress and cause of various arterial diseases are related to the mechanical behavior and the flow
characteristics of blood vessel walls. The unnatural and abnormal growth in the arterial wall thickness at different
locations of the cardiovascular system is medically termed as stenosis. Its occurrence in one or more locations confines
the blood flow through the lumen of the coronary arteries. Once the reduction has matured, it brings about significant
changes in the blood flow, i.e. wall shear stress, resistance impedance to the flow and pressure distribution. The fact
that hemodynamic features play a creditable role in the growth of the disease has attracted many researchers to
explore modern mathematical models for the flow through tapered arteries by considering blood as either a viscous or
non-viscous fluid [1–6].

A small number of studies have been carried out on multiple stenosis. Mekheimer et al. [7] discussed the mathemat-
ical model for blood flow through an elastic artery with overlapping stenosis. They explored the effect of an induced
magnetic field on the blood flow through stenosis by treating blood as a viscous fluid. Chakravarty et al. [8] discussed
the problem of the blood flow through a confined vessel segment with an overlapping stenosis. They explored the two-
dimensional non-linear mathematical model of blood flow in tapered arteries in the presence of stenosis. Mekheimer
et al. [9] discussed the effects of heat and chemical reactions on the blood flow through anisotropically tapered elastic
artery with overlapping stenosis. They explored the nature of blood in small arteries mathematically by treating it as
a micropolar fluid. Ismail et al. [10] discussed the power-law model of the blood flow through an overlapping stenosed
artery where they explored the vascular wall by considering it as an elastic wall. For more details, see refs. [11–13].

The inclusion of a catheter into an artery produces an annular region between the arterial wall and the catheter
wall. A catheter is composed of polyester-based thermoplastic polyurethane, chlorides and medical grade polyvinyl,
etc. The insertion of a catheter into arteries will change the flow field and modify the hemodynamics conditions that
occur in the artery before catheterization [14,15]. Mekheimer et al. [16] carried out a study that is related with the
surgical technique for the injection of the catheter through stenotic arteries. They explored the movement of the
physiological fluid on behalf of blood in the gap between two eccentric tubes. Srivastava et al. [17] discussed the
blood flow in a narrow catheterized artery. They investigated it by using a two-phase macroscopic model of blood.
Verma et al. [18] discussed the problem of the blood flow through a symmetric stenosis during artery catheterization
by assuming blood to behave like a viscous fluid.

Nanofluid is a mixture of nanosize particles suspended in the base fluid which has a greater thermal conductivity
as compared to the base fluid. Due to their potential in the enhancement of heat transfer, nanofluids have attracted
enormous interest for researchers, such that many have investigated different features of nanofluids. Nanofluids were
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Fig. 1. Geometry of the overlapping stenosed artery.

firstly discussed by Choi [19], who explored the suspension of nanoparticles into base fluids with the typical length
scale of 1–100 nm. Later on, other researchers discussed different mathematical nanomodels, e.g., [20–24]. Nadeem
et al. [25,26] discussed the nanoparticles analysis of the blood flow through tapered arteries. They stated that the
hemodynamics effects play an important role due to the formation of the stenosis. Akbar et al. [27] performed a
theoretical analysis of nanoparticles through the composite stenosed arteries. They explored the viscous nanofluid
flow model through tapered arteries with permeable walls along the slip on stenosis. Ellahi et al. [28] discussed
the mathematical models of a Jeffrey fluid with nanoparticles in the tapered stenosed atherosclerotic arteries. They
explored convection effects of heat transfer with catheter under mild stenosis. Recently, Nadeem et al. [29] discussed
the influence of the induced magnetic field on the blood flow with stenosis. They explored the effects of nanoparticles
with heat and mass transfer on wall shear stress and resistance impedance to the flow.

Inspired by the above studies, the article reported here is devoted to the study of the nano viscous model of the
blood flow through overlapping stenosed arteries with a catheter. The non-dimensional governing equations in the
case of mild stenosis and the corresponding boundary conditions are arranged and then solved by using the homotopy
perturbation method (HPM) [30,31]. The solutions contains thermophoresis number Nt, Brownian motion number Nb,
local nanoparticle Grashof number Gr and local temperature Grashof number Br. At the end, the effects of these flow
parameters are explored for wall shear stress, resistance impedance to the flow, temperature distribution, nanoparticle
volume fraction and axial velocity.

2 Formulation of the problem

We consider the steady, laminar and the incompressible viscous nanofluid flowing through a tube of length L and a
catheter of radius a1 with overlapping stenosis. Let (r, θ, z) be defined as coordinates in the cylindrical polar coordinate
system, where the z-axis is taken along the axis of the artery, while θ and r are taken along the circumferential and
radial directions, respectively. The heat transfer phenomenon is taken into account by giving temperature T0 and
concentration C0 to the upper wall of the catheter. The geometry of the elastic arterial wall of the time-variant
overlapping stenosis for different taper angles is defined as [7]

h̄(z, t) =
[
(m∗z + e0) −

δ∗ cos φ

L0
(z̄ − d∗)

{
11 − 94

3L0
(z̄ − d∗) +

32
L2

0

(z̄ − d∗)2 − 32
3L3

0

(z̄ − d∗)3
}]

Q1(t),

= (m∗z̄ + e0)Q1(t), otherwise d∗ ≤ z̄ ≤ d∗ +
3

2L0
, (1)

where h(z, t) is the radius of the tapered arterial segment in the trapped region, e0 the constant radius in the non-
stenotic region, φ the tapered angle, 3

2L0
the length of overlapping stenosis, d the location of the stenosis, δ cos φ is

taken to be the critical height of the overlapping stenosis and m = tan φ represents the slope of the tapered vessel.
We can explore the possibility of different shapes of the artery, the converging tapering (φ < 0), non-tapered artery
(φ = 0) and the diverging tapering (φ > 0). The time-variant parameter is taken to be

Q1(t) = 1 − α(cos wt − 1) exp[−αwt], (2)

where α is a constant, w represents the angular frequency of the forced oscillation and t is the time. (See fig. 1.)
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The governing equations for the nano viscous fluid can be written as

∂ū

∂r̄
+

ū

r̄
+

∂w̄

∂z̄
= 0, (3)

ρf

(
∂ū

∂t̄
+ ū

∂ū

∂r̄
+ w̄

∂ū

∂z̄

)
= −∂p̄

∂r̄
+

(
∂2ū

∂r̄2
+

1
r̄

∂ū

∂r̄
+

∂2ū

∂z̄2
− ū2

r̄2

)
, (4)

ρf

(
∂w̄

∂t̄
+ ū

∂w̄

∂r̄
+ w̄

∂w̄

∂z̄

)
= −∂p̄

∂z̄
+

(
∂2w̄

∂r̄2
+

1
r̄

∂w̄

∂r̄
+

∂2w̄

∂z̄2

)
+ ρfgαt(T̄ − T̄1) + ρfgαc(C̄ − C̄1), (5)

(
ū

∂T̄

∂r̄
+ w̄

∂T̄

∂z̄

)
= α

(
∂2T̄

∂r̄2
+

1
r̄

∂T̄

∂r̄
+

∂2T̄

∂z̄2

)
+ τ

[
DB̄

(
∂C̄

∂r̄

∂T̄

∂r̄
+

∂C̄

∂z̄

∂T̄

∂z̄

)
+

DT̄

T̄1

{(
∂T̄

∂r̄

)2

+
(

∂T̄

∂z̄

)2
}]

, (6)

(
ū

∂C̄

∂r̄
+ w̄

∂C̄

∂z̄

)
= DB̄

(
∂2C̄

∂r̄2
+

1
r̄

∂C̄

∂r̄
+

∂2C̄

∂z̄2

)
+

DT̄

T̄1

(
∂2T̄

∂r̄2
+

1
r̄

∂T̄

∂r̄
+

∂2T̄

∂z̄2

)
. (7)

For the above equation τ describes the ratio between the material heat capacity of nanoparticles and fluid heat
capacity, DB̄ the Brownian diffusion coefficient, DT̄ the thermophoretic diffusion coefficient, αt the coefficient of
thermal expansion and αc the coefficient of thermal expansion with nanoconcentration.

Non-dimensional variables are defined as

r =
r̄

e0
, z =

z̄

L0
, w =

w̄

uo
, u =

L0ū

uoδ
, p̄ =

e2
0p

uoL0μ
, t =

t̄uo

L0
,

Ren =
L0uoρ

μ
, θ =

T − T̄1

T̄0 − T̄1
, σ =

C̄ − C̄1

C̄0 − C̄1
, Nt =

(ρc)pDT̄

(ρc)fα
,

α =
k

(ρc)f
, Nt =

(ρc)pDBC̄o

(ρc)fα
, Br =

ρgαce
2
0(C̄0 − C̄1)
μuo

,

Gr =
ρgαte

2
0(T̄0 − T̄1)
μuo

. (8)

For the above equations, Ren is the Reynolds number, Nb the Brownian motion parameter, Br the local nanoparticle
Grashof number, Gr the local temperature Grashof and Nt the thermophoresis parameter. Using the above eq. (8),
the mild stenosis case δ∗ = δ

e0
� 1 and the extra condition ε = e0

b � O(1), the constitutive eqs. (1) to (7) can be
written as

∂p

∂r
= 0, (9)

∂p

∂z
=

1
r

(
∂

∂r

(
r
∂w

∂r

))
+ Grθ + Brσ, (10)

1
r

∂

∂r

(
r
∂θ

∂r

)
+ Nb

(
∂σ

∂r

)(
∂θ

∂r

)
+ Nt

(
∂θ

∂r

)2

= 0, (11)
(

1
r

∂

∂r

(
r
∂σ

∂r

))
+

Nt

Nb

(
1
r

∂

∂r

(
r
∂θ

∂r

))
= 0, (12)

The boundary conditions and the geometry of stenosis in dimensionless form are defined as

h(z, t) =
[
(mz + 1) − δ cos φ(z − d)

{
11 − 94

3
(z − d) + 32(z − d)2 − 32

3
(z − d)3

}]
Q1(t),

= (mz + 1)Q1(t), otherwise d ≤ z ≤ d +
3
2
, (13)

w = 0 at r = h(z), w = 0 at r = Rc, (14)
θ = 0 at r = h(z), θ = 1 at r = Rc, (15)
σ = 0 at r = h(z), σ = 1 at r = Rc, (16)

where, in the above,

δ =
δ∗

e0
, σ =

d

L0
, m∗ =

mL0

e0
. (17)
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For the solution of eqs. (11) and (12), the HPM suggests that we can write these equation as follows [29,30]:

H(Σ, θ) = (1 − Σ)[Γ (θ) − Γ (θ10)] + Σ

[
Γ (θ) + Nb

(
∂θ

∂r

)(
∂σ

∂r

)
+ Nt

(
∂θ

∂r

)2
]

, (18)

H(Σ, σ) = (1 − Σ) [Γ (σ) − Γ (σ10)] + Σ

[
Γ (σ) +

Nt

Nb

(
1
r

∂

∂r

(
r
∂θ

∂r

))]
. (19)

The linear operator and the initial guesses are chosen and defined as

Γrθ =
1
r

∂

∂r

(
r

∂

∂r

)
, Γrσ =

1
r

∂

∂r

(
r

∂

∂r

)
, (20)

θ10(r, z) = −
(

r − h

h − Rc

)
, σ10(r, z) = −

(
r − h

h − Rc

)
. (21)

According to the HPM, we may define

θ = θ0 + Σθ1 + O(Σ)2,

σ = σ0 + Σσ1 + O(Σ)2. (22)

Making use of eq. (22) into eqs. (18) and (19) for Σ → 1, the temperature profile and the nanoparticle volume
fraction are written as

θ = − r − h

h − Rc
+

1
4(ln h − ln Rc)(h − Rc)2

(
4h(r ln h − h ln r + (h − r)

ln Rc) −
(
r2(ln h − ln Rc) + h2(− ln r + lnRc)

)
(Nb + Nt) − 4

(
(h + r)

ln h − 2h ln r + (h − r) ln Rc

)
Rc + (ln h − ln r)(4 + Nb + Nt)R2

c

)
, (23)

σ =
(Nb + Nt)(r ln h − h ln r + (h − r) ln Rc + (− ln h + ln r)Rc

(ln h − ln Rc)Nb(h − Rc)
. (24)

Using eqs. (23) and (24), we can find the exact solution for the axial velocity of eq. (10),

w =
dp

dz

r2(ln h − ln Rc) + h2(− ln r + lnRc) + R2
c(− ln h + ln r)

4(ln h − ln Rc)

+
1

144(ln h − ln Rc)

((
− h2(36a1 − 27a4 + h(16a2 + 9a3h)) + 9(4a1 − 3a4)r2

+ 16a2r
3 + 9a3r

4
)

ln Rc + ln r
(
h2

(
36a1 − 27a4 + h(16a2 + 9ha3)

)

+ 36a4r
2 ln Rc

)
− ln h

(
r2(36a1 − 27a4 + r(16a2 + 9a3r)

)
+ 36

a4

(
(−h2 + r2) ln r + h2 ln Rc)

)
+ (ln h − ln r)R2

c

(
9(4a1 − 3a4 + 4a4 lnRc)

+ 16a2Rc + 9a3R
2
c

))
. (25)

The flow rate is given as

F =
∫ h

Rc

rwdr. (26)

Using eq. (26) into eq. (25), we get the expression for the pressure gradient as follows:

dp

dz
=

F − A2(z)
A1(z)

. (27)

Since F is constant for all sections between the two coaxial tubes, the pressure drop across the length of the
overlapping stenosis is given as

Δp =
∫ L

0

(
−dp

dz

)
dz. (28)



Eur. Phys. J. Plus (2014) 129: 249 Page 5 of 14

0.8 1 1.2 1.4 1.6 1.8 2 2.2

0

5

10

15

20

25

z

S
rz

Diverging tapering
Converging tapering
Non−tapered artery

G
r
=1.0

G
r
=5.0

G
r
=9.0

0.8 1 1.2 1.4 1.6 1.8 2 2.2

0

5

10

15

20

25

z

S
rz

Diverging tapering
Converging tapering
Non−tapered artery

B
r
=1.0

B
r
=5.0

B
r
=9.0(a) (b)

Fig. 2. Variation of the wall shear stress for (a) Br = 2.0, for (b) Gr = 2.0; other parameters are δ = 0.1, Nt = 7.0, Nb = 0.5,
σ = 0.75, F = 0.4, α = 0.1, ω = 7.854, Rc = 0.1, t = 0.5.

Using the above eq. (28), the impedance resistance can be evaluated as

λ =
Δp

F
=

{∫ σ

0

K(z) |h=(mz+1)Q1(t) dz +
∫ σ+ 3

2

σ

I(z)dz +
∫ L

σ+ 3
2

K(z) |h=(mz+1)Q1(t) dz

}
, (29)

where
I(z) = K(z) |h=(mz+1)Q1(t) . (30)

The expression for the wall shear stress is given as [7]

Srz = −
(

∂w

∂r

)
r=h

. (31)

Using eq. (25) in the above eq. (31), we get

Srz = −dp

dz

1
144h(ln h − ln Rc)

((
36(h2(−1 + 2 ln h − 2 ln Rc)) + R2

c

)
+ h2

(
− 36a1 + 27a4 − h(16a2 + 9a3h) + 6 ln h(12a1 − 9a4 + 8a2h + 6a3

h2 + 12a4 lnh
)
− 6(12a1 − 3a4 + 8a2h + 6a3h

2 + 12a4 ln h) lnRc

)

9(4a1 − 3a4 + 4a4 ln Rc)R2
c + 16a2R

3
c + 9a3R

4
c . (32)

3 Graphical results and discussion

In order to understand the quantitative effects of thermophoresis number Nt, Brownian motion number Nb, local
nanoparticle Grashof number Gr and local temperature Grashof number Br,we have plot the graphs of wall shear
stress, impedance resistance to flow, nanoparticle volume fraction, temperature distribution and axial velocity by
considering three distinct arteries. In figs. 2 and 3 the variations of wall shear stress versus z are shown to understand
the development of arterial disease with different flow parameters. We can see that wall shear stress gives higher results
for convergent tapering as associated with other tapering arteries. The wall shear stress for different values of local
nanoparticle Grashof number Gr and local temperature Grashof number Br are given in figs. 2(a) and (b). In these
figures we observed that the wall shear stress decreases with an increase in Gr, while it increases with an increase in Br.
The variation of the wall shear stress for different values of thermophoresis number Nt, Brownian motion number Nb

versus axial distance z are given in figs. 3(a) and (b). It is illustrated from these graphs that the stress on the wall of ar-
teries decreases with an increase in Nb, while it increases with an increase in Nt. Figures 4 and 5 depict the variation of
the resistance impedance to the flow along the maximum height of stenosis δ for different values of the tapering angle ϕ.
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Fig. 3. Variation of the wall shear stress for (a) Nt = 7.0, for (b) Nb = 0.5; other parameters are δ = 0.1, Br = 2.0, Gr = 2.0,
σ = 0.75, F = 0.4, α = 0.1, ω = 7.854, Rc = 0.1, t = 0.5.
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It is analyzed that the resistance impedance to the flow gives larger values for converging tapering as comparing to
other tapering arteries. The variations of the local nanoparticle Grashof number Gr and the local temperature Grashof
number Br are given in figs. 4(a) and (b). It is analyzed that resistance impedance to flow increases with an increase
in Br, while decreases with an increase in Gr. Figures 5(a) and (b) are plotted for different values of thermophoresis
number Nt and Brownian motion number Nb. It is found from these graphs that the resistance impedance to the flow
decreases with an increase in Nb, while it increases with an increase in Nt. The variations of the nanoparticle volume
fraction for different values of thermophoresis number Nt and Brownian motion number Nb are shown in figs. 6(a)
and (b). It is observed from these graphs that the nanoparticle volume fraction increases with an increase in Nb, while
it decreases with an increase in Nt. The graphs of the nanoparticle volume fraction give larger values for divergent
tapering between the interval 0.1 ≤ r ≤ 0.27 and gives opposite results in the interval 0.28 ≤ r ≤ h. The variations
of the temperature distribution for different values of thermophoresis number Nt and Brownian motion number Nb

are given in figs. 7(a) and (b). It is shown that the temperature distribution increases with an increase in the values
of thermophoresis number Nt and Brownian motion number Nb. From these figures it is observed that temperature
distribution gives higher results for convergent tapering between the interval 0.1 ≤ r ≤ 0.35, while it gives higher
results for divergent tapering between the interval 0.36 ≤ r ≤ h. Figures 8 and 9 are plotted to observe the influence
of the axial velocity w on the blood flow through overlapping stenosis. It is observed that the velocity profile between
the interval 0.1 ≤ r ≤ 0.60 (ϕ ≺ 0), 0.1 ≤ r ≤ 0.69 (ϕ � 0), 0.1 ≤ r ≤ 0.64 (ϕ = 0) increases with an increase in the
values of the local nanoparticle Grashof number Gr, Brownian motion number Nb and it decreases with an increase
in the values of local temperature Grashof number Br and thermophoresis number Nt, while an opposite trend is
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Fig. 8. Variation of the axial velocity for (a) Br = 2.0, for (b) Gr = 2.0; other parameters are δ = 0.1, Nt = 7.0, Nb = 0.5,
σ = 0.75, F = 0.4, α = 0.1, ω = 7.854, Rc = 0.1, t = 0.5.
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Fig. 9. Variation of the velocity profile for (a) Nt = 7.0, for (b) Nb = 0.5; other parameters are δ = 0.1, Gr = 2.0, Br = 2.0,
σ = 0.75, F = 0.4, α = 0.1, ω = 7.854, Rc = 0.1, t = 0.5.

observed in the interval between 0.60 ≤ r ≤ h (ϕ ≺ 0), 0.70 ≤ r ≤ h (ϕ � 0), 0.65 ≤ r ≤ h (ϕ = 0). It is also
analyzed that the axial velocity gives higher results for convergent tapering. Figures 10 to 12 are plotted versus time
t for almost four and three cardiac phases. In these graphs we can see that the magnitude of the first cycle starts
increasing to obtain its maximum then starts decreasing to obtain its minimum then replicates its form again to obtain
the starting point of the second cycle and so on. It is also observed that these graphs decay as the time t increases.
The trapping phenomenon for the blood flow in an overlapping stenosed artery is discussed through figs. 13 to 19.
From figs. 13 to 19, it is observed that size of the trapping bolus decreases with an increase in the local nanoparticle
Grashof number Gr, thermophoresis number Nt, Brownian motion number Nb and catheter size Rc, while it increases
with an increase in time t and local temperature Grashof number Br. It is also observed that the trapping bolus moves
towards point z = 1.5. It is observed that the trapping bolus for ϕ decreases in the right-hand side of the z-axis for
divergent tapering, while it decreases in the left-hand side of the z-axis for convergent tapering. Tables 1, 2 and 3
are plotted for velocity profile, nanoparticle volume fraction and temperature distribution with different variations of
stenosis height. It is observed, from table 1, that the axial velocity increases between the interval 0.1 ≤ r ≤ 0.7 and
gives larger values for convergent tapering, while it decreases between the interval 0.8 ≤ r ≤ h and gives larger values
for divergent tapering. From tables 2 and 3, it is observed that the temperature distribution increases between the
interval 0.1 ≤ r ≤ 0.3, while it decreases between the interval 0.31 ≤ r ≤ h and nanoparticle volume fraction decreases
in the whole domain of r with an increase in the stenosis height δ.
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Fig. 13. Blood flow pattern for (a) Br = 0.4, (b) Br = 0.45; other parameters are δ = 0.1, Nt = 0.7, Nb = 0.06, σ = 0.75,
F = 0.32, α = 0.1, ω = 7.854, Gr = 3.0, Rc = 0.1, t = 0.5.

0.5 1.0 1.5 2.0 2.5
8

10

12

14

16

z

r

0.5 1.0 1.5 2.0 2.5
8

10

12

14

16

z

r

(a) (b)

Fig. 14. Blood flow pattern for (a) Gr = 2.9, (b) Gr = 3.2; other parameters are δ = 0.1, Nt = 0.7, Nb = 0.06, σ = 0.75,
F = 0.32, α = 0.1, ω = 7.854, Br = 0.4, Rc = 0.1, t = 0.5.

0.5 1.0 1.5 2.0 2.5
8

10

12

14

16

z

r

0.5 1.0 1.5 2.0 2.5
8

10

12

14

16

z

r

(a) (b)

Fig. 15. Blood flow pattern for (a) Nb = 0.055, (b) Nb = 0.06; other parameters are δ = 0.1, Nt = 0.7, σ = 0.75, F = 0.32,
α = 0.1, ω = 7.854, Br = 0.4, t = 0.5, Rc = 0.1, Gr = 3.2.
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Fig. 16. Blood flow pattern for (a) Nt = 0.5, (b) Nt = 0.8; other parameters are δ = 0.1, Nb = 0.06, σ = 0.75, F = 0.32,
α = 0.1, ω = 7.854, Br = 0.4, t = 0.5, Rc = 0.1, Gr = 3.2.
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Fig. 17. Blood flow pattern for (a) ϕ = 0.01, (b) −ϕ = 0.01; other parameters are δ = 0.1, Nb = 0.06, σ = 0.75, F = 0.32,
α = 0.1, ω = 7.854, Br = 0.4, t = 0.5, Nt = 0.5, Rc = 0.1, Gr = 3.2.
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Fig. 18. Blood flow pattern for (a) t = 0.3, (b) t = 0.6; other parameters are δ = 0.1, Nb = 0.06, σ = 0.75, F = 0.32, α = 0.1,
ω = 7.854, Br = 0.4, Nt = 0.5, Rc = 0.1, Gr = 3.2.
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Fig. 19. Blood flow pattern for (a) Rc = 0.2, (b) Rc = 0.3; other parameters are δ = 0.1, Nb = 0.06, σ = 0.75, F = 0.32,
α = 0.1, ω = 7.854, Br = 0.4, Nt = 0.5, Gr = 3.2, t = 0.3.

Table 1. Variation for the axial velocity.

ϕ Diverging tapering � Converging tapering ≺ Non-tapered artery
r δ = 0.07 δ = 0.1 δ = 0.07 δ = 0.1 δ = 0.07 δ = 0.1

0.1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0.2 0.6012620 0.6531000 0.8299610 0.9132460 0.7025470 0.7678200

0.3 0.8778750 0.9510750 1.1965600 1.3100000 1.0203600 1.1110400

0.4 1.0065300 1.0852400 1.3419900 1.4569000 1.1588200 1.2537900

0.5 1.0419000 1.1147200 1.3409600 1.4361800 1.1813700 1.2652700

0.6 1.0068600 1.0642800 1.2248700 1.2824800 1.1145900 1.1745000

0.7 0.9119760 0.9454540 1.0086400 1.0123600 0.9709270 0.9951840

0.8 0.7620900 0.7635760 0.6995110 0.6340320 0.7562470 0.7338730

0.9 0.5589840 0.5207490 0.3007410 0.1513460 0.4729530 0.3934060

h 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

Table 2. Variation for the nanoparticle volume fraction.

ϕ Diverging tapering � Converging tapering ≺ Non-tapered artery
r δ = 0.07 δ = 0.1 δ = 0.07 δ = 0.1 δ = 0.07 δ = 0.1

0.1 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

0.2 1.1785100 1.1815300 1.1904900 1.1941300 1.1842300 1.1875500

0.3 1.2348500 1.2359500 1.2377700 1.2378100 1.2367400 1.2374300

0.4 1.2236800 1.2194900 1.2030700 1.1944400 1.2152000 1.2091600

0.5 1.1621100 1.1497500 1.1055800 1.0839200 1.1376900 1.1214100

0.6 1.0577700 1.0346100 0.9538340 0.9150870 1.0122700 0.9824750

0.7 0.9147390 0.8782250 0.7524050 0.6926670 0.8432210 0.7967940

0.8 0.7354430 0.6831150 0.5040090 0.4194800 0.6331140 0.5670130

0.9 0.5214490 0.4508850 0.2104030 0.0973437 0.3836020 0.2948390

h 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
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Table 3. Variation for the temperature distribution.

ϕ Diverging tapering � Converging tapering ≺ Non-tapered artery
r δ = 0.07 δ = 0.1 δ = 0.07 δ = 0.1 δ = 0.07 δ = 0.1

0.1 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

0.2 −4.016470 −4.028920 −4.059960 −4.070080 −4.039190 −4.050740

0.3 −5.910990 −5.891550 −5.818660 −5.782140 −5.872040 −5.845160

0.4 −6.527310 −6.457840 −6.225760 −6.119360 −6.392150 −6.306370

0.5 −6.443250 −6.313810 −5.892250 −5.703250 −6.192950 −6.037050

0.6 −5.916190 −5.720480 −5.090290 −4.810630 −5.538770 −5.305670

0.7 −5.083410 −4.817100 −3.965060 −3.589190 −4.570620 −4.255410

0.8 −4.026870 −3.686780 −2.603220 −2.127060 −3.372650 −2.971770

0.9 −2.799430 −2.383130 −1.060660 −0.481109 −1.999170 −1.509860

h 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

4 Conclusion

The influence of the catheter on the blood flow through a tapered artery with overlapping stenosis is considered in this
paper. The graphical results are obtained for the axial velocity, nanoparticle volume fraction, temperature distribution,
wall shear stress distributions, resistance impedance to the flow and streamlines. The main results of the present study
can be listed as follows:

– The wall shear stress and resistance impedance to the flow give higher results for the converging tapering as
compared to diverging tapering and non-tapered arteries.

– The wall shear stress and resistance impedance possess the same behavior for thermophoresis number Nt, lo-
cal nanoparticle Grashof number Gr, local temperature Grashof number Br and Brownian motion number Nb

parameters.

– The nanoparticle volume fraction increases with an increase in the Brownian motion number Nb and decreases
with an increases in the thermophoresis number Nt.

– The temperature distribution increases with an increase in the Brownian motion number Nb and thermophoresis
number Nt.

– The axial velocity gives higher results for convergent tapering and shows opposite results for Brownian motion
number Nb and thermophoresis number Nt.

– The variations of graphs versus t for almost four and three cardiac phases shows that oscillations decay as the time
t increases.

– The number of trapping bolus decreases with an increase in cather size Rc.

Appendix A.

a1 =
(
4BrNt(h − Rc)(h ln Rc − Rc ln h) + GrN

2
b (−h2 ln Rc + R2

c ln h)Nb

(
4(Br + Gr)

ln h(h − Rc)2 + GrNt(−h2 ln Rc + R2
c ln h)

))
/4(ln h − ln Rc)Nb(h − Rc)2,

a2 = BrNt/Nb(h − Rc), a3 = −Gr(Nt + Nb)/4(h − Rc)2,

a4 = 4BrNt(−h + Rc) + GrN
2
b (h + Rc) + Nb

(
− 4(Br + Gr)(h − Rc) + GrNt(h + Rc)

)
/

4(ln h − ln Rc)Nb(h − Rc),

A1 = −720(ln h − ln Rc)Nb(h − Rc)2(h + Rc)
(
h2(−1 + ln h − ln Rc) + (1 + lnh

− ln Rc)
)
R2

c/11520(ln h − ln Rc)2Nb(h − Rc),
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A2 = 15GrN
2
b (h + Rc)(h4(9 + 8(ln h)2 + lnRc(15 + 8 ln Rc) − ln h(15 + 16 ln Rc))

+2h2(−9 + 4(lnh − ln Rc)2R2
c + (9 + 15 ln h + 8(ln h)2 − (15 + 16 ln h) lnRc

+8(lnRc)2)R4
c) − 4BrNt(h5135 + 84(ln h)2 + 2 ln Rc(95 + 42 ln Rc) − 2 ln h(95

+84 ln Rc))45h4(−3 + 2 ln h − 2 ln Rc)Rc + 10h3(−27 + 10 ln h − 10 ln Rc)R2
c

+10h2(27 + 10 ln h − 10 ln Rc)R3
c + 45h(3 + 2 ln h − 2 ln Rc)R4

c − (135 + 190

ln h + 84(ln h)2 − 2(95 + 84 ln h) lnRc + 84(ln Rc)2)R5
c) + 15Nb(12(Br + Gr)

(h − Rc)(h4(−3 + 2 ln h − 2 ln Rc) + 2h2(3 + 2 ln h − 2 ln Rc)R2
c − (3 + 6 ln h

+4(lnh)2 − 2(3 + 4 ln h) lnRc + 4(ln Rc)2)R4
c) + GrNt(h + Rc) (h4(9 + 8(ln h)2

+ ln Rc(15 + 8 ln Rc) − ln h(15 + 16 ln Rc)) + 2h2(−9 + 4(lnh − ln Rc)2)R2
c(9

+15 ln h + 8(ln h)2 − (15 + 16 ln h) ln Rc + 8(ln Rc)2) R4
c))/11520(ln h − ln Rc)2

Nb(h − Rc).
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