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Abstract. The Michelson wavemeter is a popular instrument in many experiments where the high-precision
measurement of a cw laser wavelength is required. In this paper, we describe a simple and inexpensive
way to obtain high-precision measurements with this classical physicist’s tool. We exploit the time stamp
provided by the high-frequency clock present in modern data acquisition cards to measure the fractional
uncertainty of the interference signal. The resulting relative uncertainty value for our current set-up is of
the order of 10−8 and can be potentially improved by a factor of 100.

1 Introduction

The accurate measurement of a laser wavelength is an important step in many situations in experimental physics
involving resonant excitation of an atomic transition or an optical resonator, for example in laser cooling of a trapped
sample as in our experiments [1]. To this purpose, the laser wavelength has to be adjusted within the linewidth of
the excited atomic transition, with typical values of the order of ΔνFWHM ≈ 20MHz. A widely used instrument to
obtain such precision measurements is the scanning Michelson wavemeter, first introduced in 1976 [2,3]. Using this
type of wavemeter, it is possible to achieve accuracies of a few parts in 109 [4]. However, these high accuracies are at
the expenses of a complex set-up.

In the following, we propose an alternative to the technique used by Bennett and Gill in [5] which takes advantage
of modern data acquisition cards to achieve a calculated wavelength uncertainty below 2 ·10−8 by using a conventional
set-up.

2 Principle of operation of a wavemeter

A Michelson wavemeter is based on a travelling Michelson interferometer and is described in detail in many textbooks,
see for example [6]. Therefore only a brief review is presented here. The set-up considered (see fig. 1) involves two
corner cubes mounted on the same carriage. The translation of this carriage induces a varying path difference between
each arm of the interferometer. Two laser beams, coming from a reference laser (R) and a laser of unknown wavelength
(X) go through the interferometer on identical paths but opposite direction. The resulting interference patterns are
measured by photodiodes, amplified, and sent to a counter. In such a set-up the ratio of the laser wavelengths is
inversely proportional to the ratio of the number of interference fringes measured for each laser.

Each interference signal is modulated as

S(t) = A cos
(

8πvt

λi
+ φ

)
, (1)

where v is the speed of the carrier, and λi the laser wavelength. The number of maxima, ni, for a given path length
L of the carriage, is

2π(ni + ε) =
8πL

λi
+ φ, (2)

where ε represents the fact that the path length L is not an integer multiple of the laser half-wavelength. The phase φ
takes into account the fact that the data acquisition is not necessarily started in phase with the interference pattern.
These two quantities, ε and φ both represent the mismatch of the path length with the interference pattern. They are
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Fig. 1. Principle of a Michelson wavemeter. Two laser beams, the reference and the unknown one, are injected into a travelling
Michelson interferometer. The interference patterns are read out by two photodetectors (PDX and PDR), amplified and sent
to a counter. Detectors labelled as D1 are used to change the direction of the cubes’s carrier, while the detectors D2 define the
useful travelling path by gating the measurement sequence.

kept separate as φ represents a mismatch at the beginning while ε happens at the end of the measurement period, and
therefore the technical solutions to reduce them to zero are different.

The wavelength values in eq. (2) are taken in air and therefore the variation of the refractive index of air with the
wavelength is not taken into account. The error introduced by this assumption will be discussed later.

By applying eq. (2) to the reference laser (λR) and the unknown one (λX), we obtain

λX = λR

nR + εR − φR

2π

nX + εX − φX

2π

. (3)

It is possible, with the adequate electronics, to trigger the counter with one of the interference signals, effectively
making φR = 0. Additionally, the electronics can be configured to count an exact number of maxima, which means
that εR = 0. Therefore, eq. (3) can be simplified to

λX

λR
=

nR

nX + εX − φX

2π

. (4)

The term εX − φX

2π is often neglected due to the difficulty of measuring φX and εX . The equation used to compute the
unknown λX is then reduced to

λX = λR
nR

nX
(5)

and the error δλX due to the neglected term is bounded by

δλX

λX
≤ 2

nX
, (6)

where we have used that 0 < |ε − φ
2π | < 2.

By using this technique, a typical set-up with a travelling distance of 0.5m, using a He-Ne laser as reference
source to measure λ = 845.3460 nm, (which correspond to a given atomic transition in our set-up) gives an error of
δλX ≈ 8 · 10−4 nm corresponding to a frequency uncertainty ΔνX ≈ 300MHz. This value is far above the FWHM
of the considered atomic transition. For many atomic physics experiments, this resolution is not sufficient to tune an
exciting laser to a resonant line.

A standard way to improve the precision of the measurement is to increase nX when using the approximation
given by eq. (5), as the other parameters are fixed (λR, λX) or bounded (φR, εR). The straightforward approach is to
increment the travelling path length. This can be achieved in a compact manner as shown in [7]. Alternatively, it is
possible to multiply the nX counts by a constant factor using a Phase Locked Loop, as it was first demonstrated by [2].
The first solution involves a redesign/modification of the mechanical set-up. The second approach involves relatively
advanced electronics if one aims to obtain a precise measurement with a rate of one per second.

Another possibility is to bring down to zero εR, φR, εX and φX simultaneously using the coincidence method [8,9].
This consists in starting and stopping the measurement at an instant when the phases of both lasers are equal. When
the interval is specified in this manner, the precision of the frequency measurement is limited by the temporal resolution
of the electronics which detects the phase matching.
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Fig. 2. Diagram showing the different signals involved in the measurement, together with the different times and times intervals
which need to be exactly measured for a precise final wavelength determination.

Alternatively, εR and φR can also be determined. This has been realized in [10] by using a least-squares fit to the
data. The implementation presented in [10] requires to store the produced interference fringes, with a good enough
sampling of the signal for the curve fitting to be relevant.

A more accurate way to measure εR and φR has been given by Bennett and Gill [5]. From the electronics point of
view, the implementation presented in [5] requires advanced custom-made electronics.

In this manuscript, we show how this last type of measurements can be easily realized using commercial acquisition
cards. These cards are commonly used in industry and therefore are affordable and very well documented, simplifying
their practical implementation. Moreover, we present an improved algorithm that allows a factor 2 gain in uncertainty
respect [5]. Experimental results of this new technique are also provided and discussed.

3 Time stamp approach for high-resolution measurements

3.1 Numerical implementation of Bennett’s method

The principle of this method is illustrated in fig. 2, showing the two interference patterns after being transformed to
TTL pulses and the gate signal used to start and stop the actual data acquisition. Using the time intervals a, b, c and
d defined on fig. 2, it is possible to obtain εX and φX by [5]

εX − φX

2π
=

a

b
+

d

c
. (7)

This equation assumes that the velocity of the carrier remains constant only during the measurement of a and b and
of c and d. This eliminates the need for highly stabilized velocities during the complete measurement, a requirement
which is often found for other methods proposed in the literature. The unknown wavelength, λX , is obtained using

λX = λR
nR

nX + a
b + d

c

. (8)

3.2 Improved method

The time-stamp approach needs less measurements. As indicated in fig. 2, only four times need to be measured, instead
of six in the method in sect. 3.1. The total measuring time, tm, can be written as a function of the average period of
each interference pattern, 〈τi〉:

tm = t4 − t1 = nR〈τR〉,
tm = nXτX + (t4 − t3) + (t2 − t1) = nX〈τX〉 + t′. (9)
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Fig. 3. For each interference signal, the acquisition card saves in a buffer the time stamp for every incoming TTL pulse (SR

and SX signals). In this example, two rising edges are recorded with a time difference of 5 clock periods between both pulses.

The reason to use average values for τ is that the velocity may not be constant during the measuring time, tm.
Assuming the wavelengths are fixed, we can rewrite eq. (9) as

〈τR〉 =
tm
nR

=
λR

4〈v1〉
,

〈τX〉 =
tm − t′

nX
=

λX

4〈v2〉
, (10)

where 〈v1〉 is averaged over tm while 〈v2〉 is averaged over tm − t′. A possible difference could be introduced during
the extra time, t′. As t′/tm is of the order of 10−6, we can safely assume that 〈v1〉 = 〈v2〉 in that extra time t′.
This assumption is equivalent to the one made by Bennett and Gill, where the velocity is assumed constant over two
consecutive maxima at the start and at the end of the carriage travelling.

By replacing 〈τX〉 and 〈τR〉, we obtain the final expression

λX = λR
nR

nX

(
1 − t′

tm

)
. (11)

There is a non-negligible advantage of using the method described by eq. (11) rather than eq. (8), as it becomes clear
from the error budgets, see sect. 3.4.

3.3 Technical implementation

The implementation of the proposed improved scheme is made by a National Instrument PCIe-6363 acquisition card.
The counter associated to the card’s internal clock is started by the gate signal. Each incoming TTL pulse generates
a new register entry (stored in the card’s internal buffer), recording the number of clock cycles elapsed since the start
of the acquisition, see fig. 3. This value is referred to as the time stamp. The result is a vector of variable size, whose
dimension is the number of incoming pulses, and whose contents are the time stamps of each incoming pulse. The size
of the two vectors created in this way, will therefore give the values of nX and nR. The contents are the time intervals
in units of the acquisition card clock’s period, giving all the information needed to compute eq. (8) or eq. (11).

3.4 Error budgets

To compare error budgets of the two presented methods, common relevant values for typical wavemeters have been
used: a travelling path of 40 cm, travelled in 1 s. This implies for our unknown wavelength λX = 845.3 nm an average
interference signal period 〈τX〉 = 0.5μs and a total number of fringes nX of 2 · 106. If Δt is the error on one time
interval measurement, the maximum relative uncertainty of the measurement using Bennett’s method (eq. (8)), can
be written as: ∣∣∣∣ΔλX

λX

∣∣∣∣
B

≤
∣∣∣∣ Δt

nX

(
1
b

+
a

b2
+

1
c

+
d

c2

)∣∣∣∣ +
∣∣∣∣ΔλR

λR

∣∣∣∣ +
∣∣∣∣Δr

r

∣∣∣∣ +
∣∣∣∣ δs

Δs

∣∣∣∣ , (12)

where the last two terms are taking into account the dependency on the refraction index and misalignments [6].
Let us estimate the magnitude of each term in eq. (12). The first term corresponds to the sum of errors associated

to the different time intervals. As each time interval is determined by a subtraction of two time stamps, and each
time stamp has an error of half the clock period, τcard, we obtain Δt = τcard. By using a 100MHz internal clock,
the value of τcard is 10 ns. As a/b and d/c ≤ 1 and b and c are of the order of 〈τX〉, this term is bounded by
4τcard/(〈τX〉nX) = 4 · 10−8.
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The second term of eq. (12) depends on the reference laser. A commercial, temperature-stabilized He-Ne laser has
a nominal frequency stability of 2MHz, leading to |ΔλR

λR
| ≈ 4 · 10−9.

The third term reflects the dependency of the index of refraction of air, n0, on the wavelength. It can be estimated
using [6] ∣∣∣∣Δr

r

∣∣∣∣ ≈ 1 · 10−3 |n0(λX) − n0(λR)| . (13)

A value of λX = 845.3460 nm leads to |Δr
r | ≈ 2 · 10−9.

A possible misalignment of the laser beams resulting in signal variations is taken into account by the fourth term,
where Δs is the optical path difference for each arm of the interferometer and δs = Δs(λR) − Δs(λX). To keep the
introduced systematic relative error | δs

Δs | lower than 10−8, the tilt angle between the two beams must be smaller than
2 · 10−4 rad [6]. Let’s point out that, for a given alignment, this is a systematic error affecting the accuracy but not
the precision of the measurement. With those values, the estimated maximum relative uncertainty of λX = 845 nm is
4 · 10−8, corresponding to a frequency uncertainty ΔνX = 14MHz.

The proposed improved method relies on the measurement of the full measurement time tm. The extra time t′

cannot be longer than 2 interference signal periods 〈τX〉. It induces that t′/tm ≤ 10−6 and the maximum relative
uncertainty of the λX , expressed by eq. (11) is given by

∣∣∣∣ Δ

λX

∣∣∣∣ ≤
∣∣∣∣Δtm t′

t2m

∣∣∣∣ +
∣∣∣∣Δt′

tm

∣∣∣∣ +
∣∣∣∣ΔλR

λR

∣∣∣∣ +
∣∣∣∣Δr

r

∣∣∣∣ +
∣∣∣∣ δs

Δs

∣∣∣∣ , (14)

where the last three terms have the same meaning as in eq. (12), while the first two terms describe uncertainties due
to the technical implementation of the method. The first term is due to the error on the total measuring time. It is
determined by the on-board clock of the acquisition card. Our card has an internal 100MHz clock with a nominal
uncertainty of 50 ppm. This uncertainty is the dominating term for acquisition times much longer than the clock
period. For the chosen measurement time of 1 s, we can consider Δtm ≈ 50μs. Furthermore, the extra time t′ is the
sum of two measured intervals whose duration is of the order of 〈τX〉 leading to

∣∣Δtm t′

t2m

∣∣ ≤ ∣∣Δtm 2〈τX〉
t2m

∣∣ ≈ 5 · 10−11.

The second term arises from the measurement uncertainty Δt′ of the two intervals (t4 − t3) and (t2 − t1) which
are similar to the a, b, c and d intervals of eq. (12). The uncertainty now counts twice instead of 4 times and Δt′ is
then equal to 2τcard and |Δt′

tm
| = 2τcard

tm
= 2 · 10−8. The total estimated maximum relative uncertainty for the digital

implementation is dominated by this contribution. For this method, the uncertainty related to the measurement of
the full time tm is negligible compared to the contribution of the extra time, t′, measurement.

As the term 〈τX〉nX is nearly equal to tm, for both methods presented above, the leading term for measurement
uncertainty scales like τcard/tm, with a factor 2 instead of 4 in the improved proposed method because only 2 intervals
are needed instead of 4. The acquisition card technology limits τcard and it may be improved in the future. The
precision of the measurement can be easily increased by taking a longer measurement time tm. Note that the budget
error given by eq. (12) does not depend on the total tm, but on nx, which depends only on the length L and not on the
speed of the carrier. For tm larger than 100 s, the uncertainty budget is limited by other contributions. To improve the
error arising from the reference laser it is possible to use one of the several existing techniques to improve the stability
of a laser [11]. Indeed, with a highly stabilized 100 kHz He-Ne reference laser, |ΔλR

λR
| is reduced to < 10−10. Regarding,

the refractive index of air, several set-ups [12] exist where the wavemeter is under vacuum, making the corresponding
term in the total error budget negligible. Furthermore, advanced techniques, as shown in [10], allow to reduce the
systematic error induced by misalignment. Therefore, in a system making use of the various cited techniques, it is
possible to imagine a motorized set-up that can be operated in a “low”-precision measurements (Δν/ν ≈ 2 · 10−8)
every second, and, if needed, with a simple switch, in a “high”-precision measurement (Δν/ν ≈ 2 ·10−10) by decreasing
the carrier’s speed by a factor of 100.

4 Experimental implementation

The main advantage of the proposed method is the small number of modifications that an exisiting travelling Michelson
wavemeter set-up needs. In our particular case, we had an existing implementation with the carriage being pulled back
and forth by a DC motor. The carrier moves on a V-rail using an air flow to minimize friction. Two photo-detectors
sensitive to the passage of the carriage at each end of the rail inverse the sense of the motor (D1 on fig. 1). To
make sure to count fringes when the carriage velocity is nearly uniform, two additional detectors (D2) are placed at
a shorter distance, creating the “gate” signal for the interference signal processing. This gate is used to trigger and
stop/reset a HAMEG-8122 counter, which provides a TTL output for each interference fringe. The gate and the two
TTL signals are fed into the acquisition card. A computer code, in our case developed in LabVIEW [13], computes
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Fig. 4. Time evolution of the wavelength of a laser beam whose first harmonic is locked on the resonance transition of calcium.
The wavelength is measured with the described improved method.

eq. (11), providing a wavelength measurement every 1.5 s. Therefore, provided the acquisition card is present, the only
hardware modifications needed for the implementation of the numerical method is the incorporation of three BNC
cables with respect to the classical configuration based only on the counter itself.

In order to test this method, a diode laser emitting around 845 nm was used. The laser light was split and sent
to the wavemeter and inside a ppKTP crystal for frequency-doubling to reach the 4s2 → 4s4p transition of Ca.
The frequency doubled laser beam cross an atomic beam of neutral calcium in a vacuum chamber in a Doppler-free
configuration. The fluorescence signal of the calcium resonance line was monitored by a photomultiplier. The diode
laser was locked to the maximum of this fluorescence signal, keeping the 845 nm laser short-term frequency fluctuations
lower than 3MHz over the whole duration of the measurement. The evolution of the wavelength measurement residuals
(λ − 〈λ〉) is shown in fig. 4. The observed linear drift in fig. 4 is probably due to a drift of the lock, while the slow
oscillations are correlated to the room temperature variations due to the air conditioning cycle. The He-Ne reference
laser was temperature stabilized, providing an estimated stability of ≈ 4MHz. This leads to a theoretical uncertainty
of |Δλ

λ |the = 2.8 · 10−8. The data in fig. 4 gives |Δλ
λ |exp = 2σλ/λ̄ = 5 · 10−8, which is in very good agreement with the

expected value taking into account the measurement uncertainty, the short term fluctuations of the laser frequency
and its long term drift.

For comparison, the theoretical uncertainty for one measurement using the apparatus from [5] is |Δλ
λ |the = 4.0·10−8

with a measuring time of 20 s and a clock of 5MHz. After 60 measurements, an experimental uncertainty of |Δλ
λ |exp =

2σλ/λ̄ = 2 ·10−8 is reported, when using as reference and as unknown lasers two He-neon lasers, both of them locked to
the same hyperfine line of molecular iodine-127 [5]. More complex implementations obtain similar results. For example,
a vertical version of the wavemeter [4] provides a Δν = 1.5MHz with a measuring time of 1 hour, while Kowalski et
al. [3] obtained Δν = 8MHz with a measured time of 1 day (the reference does not give more details). By comparing our
estimated error with those values, the method proposed here provides an excellent precision with only 1.5 s of measuring
time and very little technical complexity. This is possible by using the fast clock available on the acquisition card. If a
slower clock had to be used, the same method proposed will still be applicable, but the speed, v, of the carrier would have
to be reduced in order to achieve the same performance, thus decreasing the rate at which a measurement is obtained.

5 Conclusion

A new computer-controlled method has been presented that allows for high-resolution measurement by a travelling
Michelson wavemeter with a relative simple set-up, possibly improving by two orders of magnitude the initial precision
of the apparatus. The simultaneous counting of the number of interference fringes and their time stamp allows a
precision of the order of 10MHz in the near-infrared domain, when using a 4MHz He-Ne reference laser and a 100MHz
acquisition clock. The simplicity of the method compared with those found in the literature, make it an appealing
option when building a new wavemeter. A major advantage of the presented scheme is the possibility to work either
in “low”-precision mode with a high repetition rate, or in a “high”-precision mode with a low measurement rate.
Moreover, this technique constitutes a very simple upgrade for an existing Michelson wavemeter whose interference
signal is simply processed by a counter.
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