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Abstract. The Korcak-law – first presented in an empirical form in
1938 to describe the size-distribution of various geographical objects,
including lakes and islands by Jaromı́r Korčák – was one of the ex-
amples used by Benoit Mandelbrot to show that fractals are not only
mathematical monsters, but that they are applicable to describe many
natural objects and phenomena too. In this paper, we would like to give
a brief overview about the history of the Korcak-law and its connection
to other similar rules. Moreover, we would like to show, that although
there are similarities between fractal-related laws and the Korcak-law,
the Korcak-exponent is not directly related to fractal dimension. In this
sense, the measure introduced by Benoit Mandelbrot based on Korčák’s
empirical findings is not a fractal measure.

1 Introduction

The introduction of fractals in the late 1960s and 1970s by Benoit Mandelbrot rep-
resented a major intellectual breakthrough that not only affected mathematics and
physics but penetrated to almost all areas of science and also to art. In addition to
many specific advances and applications, the emergence of science of fractals has no-
tably stimulated interdisciplinary dialogue between researchers dealing with complex
phenomena in both nature and society. A key inspiration for the Mandelbrot’s most
popular works on fractal geometry (e.g. Mandelbrot 1967, 1975, 1982) has been var-
ious empirical observations of statistical size distributions of diverse environmental
phenomena. Similarly, some of his key ideas that led him to the determination of
fractal dimension originated in the concept of geographical scale and resolution in
maps. There is a rich and partly unknown history behind Mandelbrot’s fractal geom-
etry, which provides a nice example how scientific ideas travel between disciplines and
across both space and time. As is also common in the history of scientific progress,
Mandelbrot’s original work is not free of errors waiting to be fixed.
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A physicist and a geographer are engaged in collaboration on the present paper
with the twofold objective. As the first objective we would like to communicate an
interesting piece of history that contributed to fractal geometry related to what has
Mandelbrot himself credited as the Korcak-law (Mandelbrot 1975, 1982). The original
scaling law presented by Mandelbrot as Korcak-law stated that

N (A > A0) = cA−K
0 , (1)

where N is the number of objects with size, mass or other measurable property larger
than a limiting value (A0), c is a form-factor and K is the Korcak-exponent. Thanks
to Mandelbrot, the Korcak-law and Korcak exponent has become known among other
(more popular) empirically observed scaling laws.

In addition, a particular importance of Korcak-law to fractal geometry stems from
the fact that Mandlebrot denoted K as D/2, where D is the fractal-dimension of the
measured property (Mandelbrot 1975, 1982). As the second objective of this paper,
however, we would like to show that this relationship between the Korcak-exponent
and fractal dimension is not necessarily true, not even for a set of fractal-samples.
Therefore – even when the Korcak-law can be applied – the obtained Korcak-exponent
is not necessarily related to the fractal dimension. In this sense, the exponent is not
a fractal-measure; the Korcak-law can be considered as a novel non-fractal measure.
This will be proved using Koch-snowflakes and some sets of Euclidean objects with
well-known fractal dimensions.

2 History behind the Korcak-law

It was on September 13th of 1938 when Jaromı́r Korčák,1 a 43 years old Czech geog-
rapher and statistician, presented a short paper at the 24th session of International
Institute of Statistics held in Prague. His talk entitled “Les deux types fondamen-
taux de distribution statistique” (The two basic types of statistical distribution) was
arguably the last scientific presentation at the congress, which was suspended prema-
turely on the same day (Bowley 1939). It was due to the escalation of the Sudeten
crisis (also known as the Munich crisis), a prelude to the World War II., which led
to the annexation of parts of Czechoslovakia by Nazi Germany in October 1938. Not
incidentally, no German members of the International Institute of Statistics appeared
at the Prague meeting (Bowley 1939, p. 83)2. In his Prague talk, Korčák presented
some tables, showing the existence of a “hyperbolic” empirical rule concerning the
size-distributions of lakes and islands according to their area, rivers according to their
length, or Earth surface categories according to the altitude. A short paper based on
the Korčák presentation was published two years later among other papers from the
Prague meeting in French (Korčák 1940). A considerably more elaborate paper with
many additional empirical examples appeared in Czech language in 1941 (Korčák
1941). Similar empirical regularities related to observations of highly right-skewed
size distributions dates well back before the Korčák’s work (Tab. 1). However, he was

1 We use Czech characters “č” and “á” when referring to Korčák as a person throughout
this paper. However, we don’t apply the Czech diacritic marks when referring to the Korcak-
law and Korcak-exponent.

2 In this context, it can be mentioned that in the same year of 1938 Korčák (being both
geographer and statistician) published a book entitled “The Geopolitical Foundations of
Czechoslovakia. Its Tribal Areas” (Korčák 1938). Also in reaction to intensified geopolitical
ambitions of Germany, he sought to justify the territorial integrity of Czechoslovakia on the
basis of geo-historical stability of settlement. It undoubtedly was a daring deed at that time.



A.R. Imre and J. Novotný: Fractals and the Korcak-law: a history... 71

Table 1. Some older empirical rules of highly right-skewed size distributions.

Newcomb-Benford’s-law Distribution of the leading digits of various
(Newcomb 1881; Benford 1938) numerical data-set
Pareto-law (Pareto 1896) Distribution of income
Auerbach-Zipf-law

Population size of cities
(Auerbach 1913; Zipf 1941, 1949)
Estoup-Condon-Zipf-law (Estoup 1916;

Frequency of individual words in a text
Condon 1928; Hanley 1937; Zipf 1941, 1949)
Willis-Yule-law (Willis and Yule 1922) Relative abundance of species
Lotka-law (Lotka 1926) Frequency of publications of scientists

Size of firms (and proportionate growth
Gibrat-law (Gibrat 1932)

of firms)
Kleiber-law (Kleiber Kleiber) Body mass and basal metabolic rate
Korcak-Frechet-law (Korčák 1940, 1941; Size of islands (and other geographical
Fréchet 1941) phenomena)
Gutenberg-Richter-Law (Gutenberg

Magnitude of earthquakes
and Richter 1944)
Wright-Richardson-law (Wright 1942;

Duration and magnitude of wars
Richardson 1945, 1948)
Heaps-Herdan-law (Herdan 1960; Number of distinct words in a document
Heaps 1978) as a function of the document length

Source: adapted based on Novotný (2010).

probably the first one who sought to stress more general importance of such size-
distributions for many environmental phenomena. In fact, he argued that such a form
of differentiation should be similarly considered as fundamental as the so called “nor-
mal” distribution derived from the “law of symmetrically distributed errors”. Hence
he used the notion of the “natural duality of statistical distribution” in order to stress
a philosophical or ontological importance of his empirical findings (Hampl 2000).

As a geographer working with maps, Korčák was inspired by the analysis of maps
and more specifically by the work of his colleague Láska (1928) who proposed a method
for a map-scale determination based on the examination of the frequency distributions
of objects shown in the map in question (Novotný and Nosek 2009). Also, perhaps
not incidentally, Mandelbrot’s work on fractals “was inspired, in no small part, by his
childhood love of maps; he began to think about creating “random coastlines from
a simple formula”, as he put it (Garner 2012). This coincides with what Mandelbrot
wrote a year before his death to one of the authors of this paper “More generally, my
father loved maps and geography and it had been a pleasure for me to make some of
your field’s features familiar to a different and broad public” (excerpt from an email
communication with Benoit Mandelbrot from July 17th 2009).

It should be clear that Korčák himself never attempted to formalize his empir-
ical findings mathematically by a functional form. This fact and the isolation of
Czechoslovak science during the communist regime (1948–1989) contributed to the
fact that Korčák’s work had never become internationally known. An exception is the
abovementioned short conference paper published in 1940 that attracted attention of a
famous French mathematician Maurice René Fréchet. He probably didn’t meet Korčák
personally, but read the paper in the conference proceedings. It directly motivated
him for his own publication (Fréchet 1941) in which he (following the method used
earlier by Vilfredo Pareto) displayed Korčák’s empirical data on double logarithmic
plots, calculated their respective slopes of linear fit, and suggested apparent analogies
with the distributions studied by Pareto. In addition, it was Fréchet, together with
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another famous mathematician Lewis Fry Richardson, who mediated virtual interac-
tion between Korčák findings and Mandelbrot. As Mandelbrot explained: “My work
on coastlines has been mostly affected by a paper by Lewis Fry Richardson, which I
noticed on a pile of office garbage about to be picked by the garbage man! This was
one of the main sparks that led me to Fractal Geometry. Richardson reminded me of
a talk I heard repeatedly from Maurice Frechet. The talk quoted Korčák as having
determined that the number of islands of area above “s” is inversely proportional to
the square root of s. I had already shown that, in fact, it is proportional to a power of
s different from 1/2” (excerpt from an email communication with Benoit Mandelbrot
from July 17th 2009). Unfortunately, due to the existence of the Iron Curtain between
East and West Europe, Korčák – who died in 1989 – was almost certainly not aware
that his findings contributed to the birth of fractal geometry.

The original scaling law presented by Mandelbrot is expressed above in equa-
tion (1). For a limiting value A0, a set should be chosen as A0,1, A0,2, . . ., A0,i, . . .,
A0,n. The “hyperbolic” statistic, originally proposed by Korčák is valid, when K = 1;
it is an established empirical relation for example between the surface area and abun-
dance of lakes (see for example in Downing et al. 2006, Hendriks et al. 2012, Seekell
et al. 2013). Plotting A0s vs. Ns and using double logarithmic scale, one can obtain
K as the slope of the linear fit; obviously there are several samples, where a linear
fit is not appropriate, for those samples the Korcak-law is not valid. Analysis of some
data-set used by Korčák (Korčák, 1939) can be seen in the Appendix A of this paper.

Similar power-laws were developed by various researchers, dealing with various
fields (see for example Dohnanyi 1969, Lovejoy 1982, Zaninetti et al. 1995, Reed
2001, Jones et al. 2004 or Newman 2005); some of the older ones dated earlier than
Mandelbrot’s work are referred in Table 1. Although the origin is different, mathemat-
ically equation (1) is practically identical (or very similar) to the Pareto-distribution,
except that in Pareto-distribution the c is not a form factor, but a coefficient related
to the minimal value of A and also for traditional Pareto-distribution (analyzing the
distribution of wealth), exponent K (called Pareto-index) has to be bigger than 1
(Pareto 1896). Among the many, another well-known distribution with similar form
were developed by Zipf, to describe the size-distribution of cities (Zipf 1949); in that
case, even the exponent is the same, q = 1, i.e. the distribution is hyperbolic. In
spite of this multi-naming, we are going to use “Korcak-law”, being the most con-
nected to fractal geometry. It should be noted here, that although in some cases, the
power-law description of some property originates from the fractality of the object or
objects (and therefore the exponent of the power law might be related to the fractal
dimension), but there are several cases, when these scaling laws cannot be related to
the fractal geometry or the exponent is not connected to a single fractal dimension
(see for example Avnir et al. 1998, Campo Bagatin et al. 2002, Jones et al. 2004 or
Ballesteros et al. 2015).

While Richardson’s method (Richardson-plot – see e.g. Mandelbrot 1967,
Richardson, 1961) is still widely used, Korčák’s method never gained so much popu-
larity; partly because the fractal dimension obtained by Korčák was not the expected
one. On the other hand, the form, proposed as the mathematical form of the Korcak-
law (Eq. (1)) is a widely used one to describe ranking or abundance of various size
distributions (Brakman et al. 1999, Newman 2005). The only field where the original
Korcak-method was very frequently used was the one related to ecology and a bit
widely to biology (Sugihara and May 1990, Seuront 2010); here the Korcak-law was
frequently used to describe “patchiness” created by various biological or ecological
processes. Unlike some other techniques of fractal analysis such as the perimeter-area
method, a potential appeal and practical applicability of the Korcak-analysis stems
from the fact it solely requires the knowledge of the areas of the objects in question,
which can be determined more accurately than the perimeter (Imre et al. 2012).
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Most recently – in the past four to five years – Korcak-method seems to have a “Re-
naissance” in geography, planetology, biology and ecology (Seuront 2010; Erlandsson
et al. 2011; Hayes 2011; Imre et al. 2011; Convertino et al. 2012; Imre et al. 2012;
Jang and Jang 2012; Imre 2015). Still, the incomparability of the “Korcak-dimension”
with the fractal dimension obtained by other methods (like perimeter-area relation,
box-counting, etc.) was always a problem.

3 Korcak-law and ranking

It can be easily shown that the value of the obtained K exponent can be influenced
by the choice of the limiting A0 values, i.e. the observer can influence the result (Imre
et al. 2011, Imre et al. 2012). To avoid this problem, there are three ways to choose
the A0-set:

– using a “usual” set like (2, 4, 8, 16,. . . ); logarithmically equidistant; etc.;
– using a “natural” set, given by the measurement (for example by using a set of

filters to determine particle size distribution, it is natural to use the sizes of the
filters for A0s);

– and finally as the most independent one (i.e. independent from the observer) is
the use of a measured property – Ai – of the sample as

A0,i = Ai − δ, i = 1, . . . , M, (2)

where M is the number of particles, etc. within the sample and δ is a small number.
In the limiting case of δ → 0, N will be the so-called rank or abundance.

It can be seen, that the first two methods are not really observer-independent (al-
though one can define a special K exponent, by always using one of them), therefore
the third one should be prioritized.

There are numerous signs to show, that the exponent obtained from a Korcak-fit
(K) does not have any connection with the fractal dimensions (Imre et al. 2012). It can
be often seen, that the obtained exponent in various methods (like perimeter-area or
this Korcak-method) differs significantly from the expected 2/D value, where D is the
fractal dimension obtained for the same set, for example by using the perimeter-area
method (Imre 1992, 2006). In some cases (like perimeter-area or perimeter-maximum
diameter) this can be explained by the violation of similarity, i.e. although the indi-
vidual patches are fractals, they are not similar ones; therefore the obtained exponent
is not related to the fractal dimension (Imre 1992). In those examples, it is often
anticipated, that for using a set of similar patches, the Korcak-exponent would be
surely equal to 2/D. Here we can show, that for the Korcak method, even by holding
the strictest condition of similarity and fractality of the individual patches (using
“classical” fractals, namely Koch-snowflakes), and generating the samples with well-
known fractal-generating methods recommended by Mandelbrot (see later, Fig. 2),
the Korcak exponent is not related to the fractal dimension of the individual patches.

4 Individual vs. group properties

Fractal dimension is an individual property of ONE object. For “theoretical” Koch-
snowflakes (i.e. for a snow-flake constructed by infinite step) the fractal dimension of
the perimeter is log(4)/log(3), while for the area it is 2. For “real” Koch-snowflakes
(constructed by N finite steps) there is a size-range, where the objects show properties
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similar to the ideal Koch-snowflake and in that range, the object termed as “phys-
ical fractal”, having a fractal dimension (equal to the theoretical one) in a limited
size-range.

There are methods (like the perimeter-area method (Mandelbrot 1982, see below)
where instead of having one object, we have a set of objects created during a single
physical, chemical, geological, biological, etc. process. In several cases, various size-
distributions of the set can be described by a power function in a limited size-range,
represented by a single exponent. That exponent is a group-property (or collective
property) of the set. Assuming that the objects represent various generations of a
fractal-generation (like various steps for Koch-snowflakes), one can expect that the
exponent of the size-distribution is related to the fractal dimension. In this way, one
can use the size-distribution of the set to reveal the fractal dimension of the “arche-
type fractal” of the set.

It is tempting to assume that a straightforward relationship between the power-law
size distributions and fractal phenomena exists. Such an assumption is invoked by the
notion of self-similarity inherently associated both with power laws and fractals. The
sets of objects that follow a power-law size distribution are scale-invariant in some
sense, so these objects are considered to be self-similar with respect to the measured
quantity. The notion of self-similarity used in fractal geometry is broader and more
complex and many fractals are not exactly self-similar but rather self-affine in some
sense. One should be aware that even when the size-distribution can be described
by a single exponent power-law, it is not necessary that the exponent is related to
the fractal dimension. Only in some cases (like perimeter-area and perimeter-maximal
diameter distributions) the conditions for the relation is more or less known (see for ex-
ample Imre 1992, 1995; Cheng 1995). In addition, even when a universal applicability
of the Mandelbrot’s relationship between the fractal dimension and Korcak-exponent
is questioned, it still might be assumed that it has a weaker validity, e.g. for exactly
self-similar fractals which are structurally similar at different scales. In the following,
we will nevertheless show that using the Korcak-method proposed by Mandelbrot one
can obtain a “false” fractal dimension even when the analyzed set consists of strictly
self-similar fractal objects.

5 The fractality of Koch-snowflakes

Four different data-sets will be analyzed in this part; all of them are strongly related to
the arche-type of fractals, the so-called Koch-snowflake. Koch-snowflakes are iterated
from a triangle as the zeroth iteration. In the first iteration, each side (with “a”
length) of the triangle will be divided into three equal parts (with a/3 length) and
the middle one will be replaced by two line segments (see Fig. 1). For traditional
Koch-curves, the length of the newly inserted segments are a/3 (Fig. 1a), but it can
be smaller (Figs. 1b–1d), down to a/6 (Fig. 1e); in the latter case, the “new” side
will not differ from the “original” one. Then this process can be repeated again and
again, in infinite steps. The obtained object will be a Koch-snowflake (also called
Koch-island). The fractal dimension of the perimeter of the original Koch-snowflake
– when the newly inserted segments are a/3 long – is log(4)/log(3) = 1.26186; it
can go down to log(3)/log(3) = 1, by using shorter and shorter replacements. The
area-dimension is always 2 (Mandelbrot 1982).

On Figures 2a and 2b, two different ways can be seen to construct Koch-snowflakes.
In both cases, the dividing-method, described in the previous paragraph is used and
the side-length of the initial triangle was taken as unity. On Figure 2a, an additional
step will be applied in each iteration, namely the size of the object will be increased
by a factor of 3; in this way, size-length – the linear building-blocks – will remain
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a. 
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c. 

 

d. 

 

e. 

Fig. 1. The iteration of the sides of Koch-snowflakes using various replacement-length for the
middle part. (a) Represents the traditional Koch-curve, when the length of the replacements
are equal to with the replaced part; in this case – starting from a triangle – the perimeter-
dimension of the Koch-snowflake will be log(4)/log(3) = 1.26186. (e) Represents an extreme
case, where the length of the replacements are only half of the replaced part, i.e. the two
replacements will give back the replaced part, keeping the original line. In this case starting
from a triangle – the perimeter-dimension of the Koch-snowflake will be log(3)/log(3) = 1.

constant, giving a set of snowflakes growing three times bigger in each step. In the
following part, this set will be referred to as growing Koch-snowflakes. In Figure 2b,
the simple dividing-method is used. The lateral size (the radius or the diameter of
the circumscribed circle) is kept constant, giving a set of uniformly sized snowflakes
with more and more fine-structured edge. The diameter of the circumscribed circle
(except for the initial triangle) is equal to the so-called maximal Feret’s diameter
or caliper length). In the following part, this set will be referred to as constant-size
Koch-snowflakes. In both cases, the perimeter- and area-dimension of the final object
will be log(4)/log(3) = 1.26186 and 2, respectively.

Two other sets will be also used; because they are very simple, there no need to
display them graphically. The elements of the third set are theoretically also Koch-
snowflakes, but in this case the middle replacement is only a/6 – i.e. it will remain
the same triangle – but the object is growing to three times the size with each step.
Eventually, the elements of this third set will be triangles, the smaller one with unit-
size sides, the second one is three times bigger, the third one is nine-times bigger,
etc. In the following part, this set will be referred as tripled triangles. The fourth
set will be also a set of triangles with the smallest one equal to the initial triangle
of the previous set; then each following one is double in lateral size. In the following
part, this set will be referred to as doubled triangles. In both cases of the third and
fourth sets, the perimeter- and area-dimension of the final object will be 1 and 2,
respectively.

For the sake of better handling, each sample-set considered in the subsequent
analysis contains only 20 samples; the zeroth generation original triangle and the 1st,
2nd, . . . 19th generations. In case of doubling, the set will cover more than six order
of magnitudes (from the original to original × 219), while in the case of tripling, it
will be more than ten orders of magnitude. The “physical fractal” behavior can be
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(a)

N=0   N=1   N=2   N=3 
(b)

Fig. 2. Two various ways to create Koch-snowflakes; (a) by keeping the length-size fixed
in each iteration or (b) by keeping the lateral size fixed in each iteration. The first set is
referred to as growing Koch-snowflakes, while the second size is referred to as constant size
Koch-snowflakes.

expected from the 1st to the 19th generation; the 6 and 10 orders of magnitudes are
much larger that the 2–3 orders expected to justify the use of fractal description for
physical objects (Avnir et al. 1998).

Being these objects – within each of the sets – similar, perimeter-area and
perimeter-maximal diameter relations (Mandelbrot et al. 1984; Imre 1992, 1995; Mu
et al. 1993), can be used to determine the fractal dimension of perimeter (DP ), the
fractal dimension of the area (DA) and their ratio, using the following equations:

P = CP LDp (3)

A = CALDA (4)

A = CPALDA/Dp (5)

where L is the lateral size, while CA, CP and CPA are various constants (form-factors).
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In Figures 3a and 3b one can see a double-logarithmic perimeter-maximal diameter
plot and the double-logarithmic area-maximal diameter plot for a set of growing Koch-
snowflakes. The slope of the fit for perimeter-maximum diameter (without the first
triangle) gives back the exact dimension of the Koch-curves, log(4)/log(3) = 1.26186.
For the area-maximum diameter, the slope is exactly 2, showing the Euclidean nature
of the area for this object. It is an often overlooked fact, that Koch-snowflakes are
perimeter-fractals (i.e. their perimeter shows fractal properties), while their area shows
Euclidean nature, being exactly two-dimensional.

On Figure 3c, the double-logarithmic perimeter-area plot for the growing Korcak-
snowflakes can be seen; the slope is equal to the ratio of the two (perimeter and area)
fractal dimensions (DA/DP = 1.585), as it was expected from equation (5).

In Figures 4a and 4b one can see a double-logarithmic perimeter-maximal diameter
plot and the double-logarithmic area-maximal diameter plot for a set of constant-size
Koch-snowflakes. Being the lateral size (maximal diameter) is constant, while the
perimeter goes to infinity and the area goes to an upper limit (given by a circle with
the same diameter), the slopes for these two plots are infinite, i.e. in this case the
examination of the sets containing all iterations does not provide information about
the fractality of the individual objects.

In Figure 4c the double-logarithmic perimeter-area plot for the constant-size
Korcak-snowflakes can be seen; in this case the points cannot be approximated prop-
erly with a linear fit.

In Figures 5a and 5b one can see a double-logarithmic perimeter-maximal diam-
eter plot and the double-logarithmic area-maximal diameter plot for a set of tripled
triangles. The slope of the fit for perimeter-maximum diameter (without the first tri-
angle) gives back the exact dimension of the an Euclidean triangle (1), which is the
same as the fractal dimension of a Koch-curve with a/6 replacements (i.e. zero-angle
between the original and replacement lines), log(3)/log(3) = 1. For the area-maximum
diameter, the slope is exactly 2, which is not surprising from a Euclidean object.

In Figure 5c, the double-logarithmic perimeter-area plot for the tripled triangle set
can be seen; the slope is equal to the ratio of the two (perimeter and area) dimensions
(DA/DP = 2), as expected from equation (5).

Finally, in Figures 6a and 6b one can see double-logarithmic perimeter-maximal
diameter plot and the double-logarithmic area-maximal diameter plot for a set of dou-
bled triangles. Just like in the tripled triangle case, the slope of the fit for perimeter-
maximum diameter (without the first triangle) gives back the exact dimension of an
Euclidean triangle (1), while for the area-maximum diameter, the slope is exactly 2.

In Figure 6c, the double-logarithmic perimeter-area plot for the doubled triangle
set can be seen; the slope is equal to the ratio of the two (perimeter and area) dimen-
sions (DA/DP = 2), as expected from equation (5), just like in the tripled triangle
case.

Exponents obtained from the fits (slopes of the fits) are listed in Table 2 (col-
umn 3), together with the theoretically expected values (column 4).

6 Applicability of the Korcak-law on the two sets
of Koch-snowflakes and on the two sets of multiplied triangles

In Figures 7a–7d, the Korcak-plots of maximal diameters, perimeters and area of
growing Koch-snowflakes (Fig. 7a), constant-size Koch-snowflakes (Fig. 7b), tripled
triangles (Fig. 7c) and doubled triangles (Fig. 7d) can be seen. It is clear, that a linear
fit of the log-log plotted data is not justified for any of these sets. On the other hand,
for natural sample sets it is quite common that only a part (small-size; high rank)
is fitted. In this case, that part seems to obey a linear relationship, therefore points
ranked from 11 to 19 are fitted (20th is the initial triangle, excluded from all fits).
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Fig. 3. Double-logarithmic perimeter-maximal diameter (a), area- maximal diameter (b)
and perimeter-area (c) plot for a set of growing Koch-snowflakes. For the first two plots, the
slope of the fit (without the first triangle) gives back the exact perimeter- and area-dimension
of the Koch-curves, while for the third one, the slope is equal with ratio of these two values.
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Euclidean objects, while for the third one, the slope is equal with ratio of these two values.
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Fig. 7. (a) Double logarithmic Korcak-plots (size vs. ranking) for the set of growing Koch-
snowflakes for perimeters (full squares), areas (empty squares) and maximal diameters
(stars). Linear fit for the data representing the objects with iteration number 2 to 10 are
plotted and the slopes for the lines are listed in the insert. For comparison, dashed lines with
various slopes (–1, –1/2 and –1/3) are also plotted. (b)–(d) the same plots for constant-size
Koch-snowflakes (b), for tripled triangles (c) and for doubled triangles (d). For (d), (c) and
(d) figures, lines with sample-slopes are not included.

The obtained initial slopes are listed in Table 2, column 5; the theoretical values are
in column 7. It can be clearly seen, that theoretical (–D/2, see Mandelbrot 1982)
values are very far from the experimentally obtained ones, the difference is around
one order of magnitude. On the other hand, some – presumably linear – relationship
can be seen between the initial Korcak-slopes and the expected ones. This is most
striking in the tripled and doubled triangle sets, where – within the error of fit – the
obtained slopes for perimeter and maximal diameter are twice that of the slope for
area-data, reflecting the ratio of fractal dimensions (1 for perimeter and diameter, 2 for
area). For the growing Koch-snowflakes set, the same inverse relation can be obtained
(0.5/0.63/1 and 0.033/0.053/0.064), therefore it seems to be a plausible conclusion,
that although the Korcak-slope (K) does not obey the simple relationship proposed
by Mandelbrot (1982), a K(D) function seems to exist, where the D-dependence is
probably inverse linear (1/D).

One might say that picking the high-rank end of the distribution was an error and
one would rather check the final slope (the part between rank 1 and 2). In Figure 7a
one can see three dashed lines, demonstrating linear dependences with –1. –1/2 and
–1/3 slopes. These slopes (close to the expected Korcak-exponents) seem to be similar
to the slope of the last segments. This last segment slope can be easily calculated,
even for N → ∞ iterations. The final slope (Kf) between ranks 1 and 2 on the double
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logarithmic plot is:

lim
n→∞

(
log(2) − log(1)

log (size(n)) − log(size(n− 1))

)
= Kf

where “size” is the corresponding size (maximal diameter, perimeter or area). The
numerator is log(2), while the denominator is the logarithm of the size ratio between
the objects from iteration n and n−1. For the growing Koch-snowflakes, this ratio is 3
for the diameter, 4 for the perimeter and and 32 for the area, therefore the final values
should ALWAYS be (independently from the step of iterations) log(2)/log(3) = 0.63
for the diameter, log(2)/log(4) = 0.5 for the perimeter and log(2)/log(9) = 0.315 for
the area. For tripled triangles – where the linear size-ratio in each iteration is three -
these values will be (also independently from the step of iterations) log(2)/log(3) =
0.63 for the diameter and for the perimeter, while log(2)/log(9) = 0.315 for the area.
For doubled triangles – where the linear size-ratio in each iteration is two – these
values will be always log(2)/log(2) = 1 for the diameter and for the perimeter, while
log(2)/log(4) = 0.5 for the area. Finally, for constant-size Koch-snowflakes, these
values (which depend on the step of iteration now, therefore n → ∞ cases are given)
is log(2)/log(1) = ∞ for the diameter and for the area (maximal diameter is constant
in each iteration, while the area should converge to the area of circumscribed circle,
giving a smaller and smaller ratio in each iteration), while for the diameter and for
the perimeter, it should be log(2)/log(4/3) = 2.41. The relation shown in previous
cases (i.e. that the slopes for perimeter and area is twice as high as for the area)
seems to be valid here too (except for the set of constant-size Koch-snowflakes), also
suggesting a K(D) function, where the dependence of D should be in the form of
1/D. On the other hand, it is definitely not a simple inverse linear relationship (like
the 2/D suggested by Mandelbrot). The most striking example is the comparison of
the two sets of triangles, where D-s should be equal, but the obtained slopes differ
significantly!

In Appendix B, we are demonstrating that the problems shown here are indepen-
dent from the choices of limiting sizes and therefore also appear in the traditional
Korcak-plot.

7 The effect of sampling

While as a result of a process (like aggregation, fragmentation) a complete set, con-
taining each iteration can be produced, during sample collection, some of the sam-
ples can be lost. In that case, classical fractality-based size-distributions (like max-
imal diameter vs perimeter, maximal diameter vs. area or perimeter- area) will not
change. Although some points representing the missing elements of the set will be
missing, the other points remain in the same x-y coordinates, providing the same
slope. Therefore these obtained results are not sensitive for the sampling. It can be
seen on Figure 8a, demonstrated by the perimeter-maximal diameter dependence of
growing Koch-snowflakes.

The situation is completely different in ranking. Leaving out even one sample, one
can artificially induce a “break” in the virtual fit (Imre 2015). While the x-coordinates
(size) remain for the remaining samples, the y-coordinates for samples that are smaller
than the omitted one must change. With some systematically biased sampling – like
taking every second sample – one might completely falsify the distribution. In Fig-
ure 8b one can see an example where the objects corresponding to every odd-numbered
iterations are omitted. For the sake of simplicity, only the perimeter-ranking (origi-
nal with all objects and biased after omitting the odd-numbered) of growing Koch-
snowflakes can be seen. While for the complete sets, the initial slopes are –0.053,
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Fig. 8. Effect of sampling. (a) For perimeter-area plot, omitting every second point does
not change the run of the points; the remaining point (bigger empty squares) remain on
the same coordinates. (b) For the ranking (Korcak) plot, by omitting every second points,
the new points (+signs) keeps the x-coordinates (size), but change the y-coordinates (rank).
Therefore the initial and final slopes change significantly.

keeping the even-numbered and fitting only the first five (the same size-range for the
first ten in the full sets) the slopes will change to –0.046. The final slopes also change,
even more drastically, from –0.5 to –(log(2)/log(16)) = −0.25, because due to the
missing “iteration”, the perimeter change is not 4, but 4 × 4 = 16.

From these results it can be seen, that even sampling can influence this ranking
distribution, while the “traditional” size-distributions to provide fractal dimensions
are insensitive for that. Therefore the obtained K exponent of the set-distribution
cannot be a function only of the individual fractal dimension of the samples.

8 Discussion and conclusions

The first part of the paper described the history behind what is known as the
Korcak-law. It outlined the context and the way in which one piece of inspiration
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for Benoit Mandelbrot’s fractal geometry had travelled already before he published
his most famous works on fractals in nature. The main second part then addressed
the relationship established by Mandelbrot between the Korcak-exponent and fractal
dimension. Its universal applicability was contested by the means of the calculation of
fractal dimensions using the Korcak-method and other popular techniques for several
examples of well-defined sets of fractal objects. The remainder of this section provides
some concluding comments on the findings that were obtained.

It was stressed that fractal dimension – or rather fractal dimensions, in plural -
are properties of individual objects. Sometimes various properties for a set of objects
can reflect the individual fractal dimensions of the elements of the set. Therefore some
size distributions describing various properties (like diameter, area, perimeter, etc.)
for a set can be used to determine the individual fractal dimensions. For example
perimeter-area and perimeter-maximal diameter method used for a set of objects can
obtain the individual perimeter fractal dimension of the object, but if and only if
the objects are strictly similar (Imre 1992, 1995; Cheng 1995). The application of the
Korcak-law on a set was thought to have a similar power to give back the individual
fractal dimension of the ranked property (perimeter, area or even volume).

Four different sets were analyzed in this paper. Two sets of equilateral triangles
with different sides (doubled or tripled in each iteration step), started from a triangle
with unit-side and containing the iterative elements from the zeroth to 19th element,
referred as doubled- and tripled-triangles. One set of nineteen Koch-snowflakes (also
started from an equilateral, unit-sided triangle as zeroth element); in each iteration
the lateral sizes were tripled, referred to as growing Koch-snowflakes. Finally, a set of
similarly prepared Koch-snowflakes, shrunk in each iteration to keep the diameter of
the circumscribed circle constant, referred to as constant-size Koch-snowflakes.

For the set of growing Koch-snowflakes, individual fractal dimensions can be ob-
tained by applying traditional lateral-size vs. perimeter and lateral-size vs. area stud-
ies. For perimeter-area study, the ratio of area and perimeter fractals can be obtained.

For the two sets of triangles, the lateral-size vs. perimeter or area studies also
applicable to obtain the individual fractal dimensions and the perimeter-area relation
also gave back the ratio of the area and the perimeter dimension.

For the constant-size Koch-snowflakes – although they were strictly similar frac-
tals – neither of these methods were able to provide any information about the indi-
vidual dimensions.

Because three of the four sets scored properly using the previous methods, one
might expect them to score properly by applying the Korcak-law on them. However,
the results for Korcak-method provided unsatisfactory results in several respects:

1. Korcak-law cannot be applied (i.e. the ranked properties cannot be described with
a single power law exponent) even for sets consisting of strictly similar fractal
objects.

2. Forcing Korcak-law on some part of the distribution, the obtained slope are related
to the inverse fractal dimension (1/D), but the relation is definitely not what
Mandelbrot expected (K = 2/D). The relationship seems to be more complex,
even the sampling ratio can affect the value of K, among other possible influences.

Therefore one can conclude, that Korcak-type ranking in not a simple fractal-type
description, although under strict conditions (for a set of strictly similar fractal-like
objects) it might be related to the individual fractality of the described objects.

In general, we can conclude that although the Korcak-law can be a useful tool
to describe ranking distributions, its applicability is not guaranteed even for the sets
of strictly similar fractal objects. The obtained Korcak-exponent – although proba-
bly related to the fractal dimension – cannot straightforwardly give back the frac-
tal dimensions of the individual objects. In this sense, Korcak-law is not one of the
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Fig. A.1. Traditional Korcak-plot of growing Koch-snowflakes with logarithmically equidis-
tant limiting sizes (1, 10, 100, 1000, etc.). The run of the points are significantly curved;
although one can force a linear fit on the data, but the slope does not coincide with D/2.

fractal-geometry related laws, but a separately existing, although mathematically sim-
ilar scaling-law.

Appendix A

The traditional Korcak-law is using log-equidistant limiting sizes with a step-size
large enough to fit several samples into one category (Mandelbrot 1982). Just to
demonstrate that the problems described here are not caused by our choice of limiting
sizes, we are showing here the analysis of the perimeters of the growing Koch-snowflake
set, using limiting sizes (in unity) with two-decade width, as 1, 100, 10 000, 1 000 000,
etc. The Korcak-plot can be seen in Figure A.1. The points cannot be fitted linearly;
forcing a linear fit, the apparent slope is around –0.07, still an order of magnitude
smaller than the one (−2/D = −0.63) predicted by Mandelbrot.

Obviously the slope can be influenced by the choice of limiting sizes (one can
shrink or expand the x-axis). By using logarithmically not equidistant limiting sizes,
even the tendency of the curve can be changed (for example it can be “smoothed” a
bit) and in this way one might rather accidentally construct the plot with the proper
/2/D) slope – but that can be done by sheer luck or deliberate bias.

Appendix B

It is remarkable, that the Korcak-law is not strictly valid for the sets originally pre-
sented by Korčák. For example he presented the size statistic of almost two thousand
European lakes; on a linear scale it looks more or less hyperbolic (see the insert of
Figs. B.1 and B.2; solid lines represent exact hyperbolic fit), but the distribution
cannot be described by equation (1), yielding a single linear fit with slope =−1 in
the log-log diagrams (Figs. B.1 and B.2, main figures). On the other hand, the “full”
lake-size distribution seems to obey to equation (1) (Downing et al. 2012), at least for
bigger lakes. Even for the original set of lakes presented by Korčák (using Halbfass
data – Halbfass, 1922), the “hyperbolic” (K = 1) distribution seems to be valid after
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dividing the set into two sub-sets. Using it for islands (for example for the Cyclades),
hyperbolicity is not valid, not even in the extended (K �= 1) version, although for
using bigger sample sets (all landmasses above 100 km2 area) islands and continents
obey separately to equation (1), with different exponents (Imre 2015).

Since lakes are usually compact bodies of water with irregular shores, as well as
islands are compact bodies of lands, also with irregular shores, one can expect that
the shore-line will be fractal, but the area will be more-or-less Euclidian. Therefore
applying equation (1) for an area-distribution, the slope should be around –1 (K = 1).
For an object embedded into a 2-dimensional space, the fractal dimension should be
between 1 and 2, therefore – if and only if K would be related to the fractal dimension –
K would be between 0.5 and 1. This is a characteristic difference from the Pareto-law,
where the expected K can be above 1 (although usually scatters around 1).
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de la Societé de Statistique de Paris 82: 114-122.
Garner, W. 2012. Wandering visionary in math’s far realms. ‘The Fractalist,’

Benoit B. Mandelbrot’s Math Memoir. Book review published in New
York Times on October 30, http://www.nytimes.com/2012/10/31/books/
the-fractalist-benoit-b-mandelbrots-math-memoir.html.
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Imre, A.R., J. Novotný and D. Rocchini. 2012. The Korcak-exponent: a non-fractal descriptor
for landscape patchiness, Ecological Complexity 12: 70-74.

Jang, J. and Y.H. Jang. 2012. Spatial distributions of islands in fractal surfaces and natural
surfaces, Chaos Solitons Fractals 45: 1453-1459.

Jones, B.J.T., V.J. Martinez, E. Saar and V. Trimble. 2004. Scaling laws in the distribution
of galaxies, Rev. Mod. Phys. 76: 1211-1266.

Kleiber, M. 1932. Body size and metabolism, Hilgardia 6: 315-353.
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