
Eur. Phys. J. H 39, 543–574 (2014)
DOI: 10.1140/epjh/e2014-50022-5 THE EUROPEAN

PHYSICAL JOURNAL H

From the necessary to the possible: the genesis
of the spin-statistics theorem

Alexander Bluma

Max-Planck-Institut für Wissenschaftsgeschichte, Boltzmannstraße 22, 14195 Berlin,
Germany

Received 26 March 2014 / Received in final form 8 August 2014
Published online 22 September 2014
c© EDP Sciences, Springer-Verlag 2014

Abstract. The spin-statistics theorem, which relates the intrinsic an-
gular momentum of a single particle to the type of quantum statistics
obeyed by a system of many such particles, is one of the central theo-
rems in quantum field theory and the physics of elementary particles.
It was first formulated in 1939/40 by Wolfgang Pauli and his assistant
Markus Fierz. This paper discusses the developments that led up to
this first formulation, starting from early attempts in the late 1920s to
explain why charged matter particles obey Fermi-Dirac statistics, while
photons obey Bose-Einstein statistics. It is demonstrated how several
important developments paved the way from such general philosoph-
ical musings to a general (and provable) theorem, most notably the
use of quantum field theory, the discovery of new elementary particles,
and the generalization of the notion of spin. It is also discussed how
the attempts to prove a spin-statistics connection were driven by Pauli
from formal to more physical arguments, culminating in Pauli’s 1940
proof. This proof was a major success for the beleaguered theory of
quantum field theory and the methods Pauli employed proved essen-
tial for the renaissance of quantum field theory and the development of
renormalization techniques in the late 1940s.

As witnessed by the title of the Solvay conference, the world in 1927 was considered
to consist of electrons and photons (the term electrons here refers to charged particles
in general and thus also to protons, which were at the time still frequently called
“positive electrons”). No matter what precise ontology one ascribed to either, how
one thought about their dual or complementary wave-particle nature, these entities
formed the essential building blocks of microscopic nature1.

Among other things, these two entities were distinguished by the statistics that
was applicable to them. Photons obeyed Bose-Einstein statistics, as established after

a e-mail: ablum@mpiwg-berlin.mpg.de
1 There was of course space itself or the gravitational field, but this was empirically irrel-

evant in the microscopic world and hardly studied in the context of quantum mechanics at
this time. It consequently plays only a small, albeit interesting, role in my story and I will
return to it in due time.
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Bose’s successful derivation of Planck’s law in 1924 [Bose 1924], while electrons (and
protons) obeyed the Pauli exclusion principle, which, as Fermi and Dirac had shown
in 1926, meant that they obeyed another type of novel quantum statistics, now known
as Fermi-Dirac statistics [Dirac 1926; Fermi 1926].

These two statistics could be implemented in Schrödinger’s wave mechanics by
taking many-particle wave functions which were fully symmetric (Bose-Einstein) or
fully antisymmetric (Fermi-Dirac) under the exchange of two particles. Dirac had
further shown that these were in fact the only two possibilities of constructing many-
body wave functions of “similar” particles. However, as he pointed out, “[t]he theory
at present is incapable of deciding which solution is the correct one” (p. 662).

The first part of this paper is devoted to early attempts, in the years 1927 to 1931,
at demonstrating why the assignment observed in the fundamental building blocks
of nature, photons obeying Bose-Einstein statistics, electrons and protons obeying
Fermi-Dirac statistics, is in fact the only possible assignment. Already at this time,
quantum field theory began to play an essential role in discussing the statistics of the
fundamental entities.

The difficulty of possible statistics assignments never formed a separate research
strand, but was rather treated as an interesting aside in works dedicated to other
problems. After the years 1932–1934, the rather limited question of why the three
fundamental entities necessarily had to obey the statistics they did was replaced by a
new one. These years saw the discovery and theoretical prediction of new elementary
particles, the positron, the neutron and the neutrino. With the discovery of further
new particles now a plausible, even anticipated, possibility, and thus the theoretical
prediction of new particles a legitimate theoretical method, the question arose, which
statistics one was allowed to assign to a newly discovered or hypothetical particle.

In order to map out such a general space of possibilities, it was necessary to
associate the statistics obeyed by a particle with a different, independent physical
property of the particle. Early on, this independent physical property was identified
as the particle’s spin. This was only possible through a shift in the meaning of the
concept of spin: From a specific property of electrons and protons, it now came to
be interpreted as a fundamental quantity, defined for any particle (even if its value
was zero), closely related to that particle’s transformation properties under Lorentz
symmetry.

This development, which began in 1934, when Pauli and Weisskopf realized that
particles without spin would necessarily obey Bose-Einstein statistics, culminated in
Pauli’s 1940 formulation of the spin-statistics theorem, which established the general
principle that all particles with half-integer spins were necessarily fermions, while all
particles with integer spin were bosons2. This development is described in the second,
larger part of this paper.

There have been some treatments of Pauli’s formulation of the spin-statistics the-
orem. All of them provide very useful background reading for this paper. [Duck and
Sudarshan 1997] is mainly concerned with the validity of the different arguments for
the spin-statistics connection and takes both the question and the concepts employed
in these arguments for granted. Thus, although it gives an analysis of historical ar-
guments, its approach is more philosophical and rather ahistorical, giving hardly any
context. [Tomonaga 1997] has a whole chapter on the spin-statistics theorem and
provides a few insightful historical comments, but its main focus is on a pedagogi-
cal presentation of Pauli’s argument. [Massimi 2005], finally, treats the spin-statistics

2 I will be using the anachronistic designations “fermion” and “boson” throughout, in
order to avoid the cumbersome “particle obeying Bose-Einstein/Fermi-Dirac statistics”, even
though the terms were only coined after the spin-statistics theorem provided the theoretical
foundation for cleanly dividing all the particles of the world into these two categories.
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theorem only in its relation to the exclusion principle and Fermi-Dirac statistics. It
thus focuses entirely on the statistics part of the theorem, and says very little about
the spin.

This paper goes beyond these works, by addressing both aspects of the spin-
statistics theorem and discussing in detail the conceptual developments that made
possible and motivated its formulation. It thereby also allows a new look at the his-
tory of quantum field theory in the 1930s, which focuses not primarily on the concep-
tual difficulties, such as the question of divergences, but rather looks at some of the
conceptual developments which led up to the formulation of renormalized quantum
electrodynamics (QED) in the late 1940s, and thus forms a first step towards under-
standing those later developments not simply as few brilliant, pragmatic, post-war
physicists realizing how one should have (and could have) been doing QED all along,
but rather as the continuation of conceptual advances in quantum field theory, which
continued even after the grave fundamental difficulties of the program were realized
in the late 1920s.

1 Why photons are bosons and electrons are fermions

Dirac was not the only one who considered the undecidability between Bose-Einstein
and Fermi-Dirac statistics as a defect of quantum mechanics. Werner Heisenberg
stated at the 1927 Solvay conference:

There is no reason, in quantum mechanics, to prefer one statistics to another.
[...] We feel nevertheless that Einstein-Bose statistics could be more suitable
for light quanta, Fermi-Dirac statistics for positive and negative electrons. The
statistics could be connected with the difference between radiation and mat-
ter... [Bacciagaluppi and Valentini 2009, p. 500]

It should be noted that, knowing the statistics of the fundamental building blocks, it
was of course possible to derive the statistics of composite systems from those of their
constituents and thus make general statements concerning the connection between
the statistics of composite particles and other physical properties. A spin-statistics
theorem for composite objects thus directly followed from the fact that the elementary
fermions all had a spin of 1/2 3.

As Heisenberg also pointed out, the fact that both of the two elementary charged
particles were fermions implied that all composite neutral particles would necessarily
be bosons, and thus, since the one fundamental neutral particle, the photon, was a
boson, all neutral particles would be bosons4. But this gave no indication as to how
the necessity of a certain statistics for the fundamental particles might be formulated
mathematically.

Such an indication had in fact, unwittingly, been given by Dirac earlier that year,
in a first attempt at formulating a quantum mechanical theory of electrodynamics.
His presentation of the new quantum theory of radiation [Dirac 1927] began with
and was largely based on a novel way of implementing Bose-Einstein statistics into
quantum mechanics, different from the use of symmetric Schrödinger wave functions
in many-body configuration space. Dirac demonstrated that one could interpret the
one-particle Schrödinger wave function as instead describing an ensemble of non-
interacting particles (i.e., an ideal gas). The squared Fourier amplitudes then did not

3 See for example Pauli’s famous “neutrino” letter from 4 December 1930, in which such
an argument is made explicitly.

4 This idea of a “charge-statistics theorem” was of course not pursued any further, when
developments in nuclear physics, in particular the discovery of the neutron, invalidated its
basic presuppositions.
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represent the probability of one particle being in the corresponding stationary state,
but rather gave the fraction of particles in the ideal gas that occupied that state. The
resulting ensemble was then, however, a Boltzmann ensemble. In order to implement
Bose-Einstein statistics, one could quantize the theory again – the Fourier coefficients
of the wave function now themselves became non-commuting q-numbers acting on a
new wave function, defined not in space but in “occupation number space”, i.e., its
arguments were now the number of particles for each stationary state. Dirac could
show that the new many-particle theory which emerged from this second quantization
now described a Bose-Einstein ensemble. He showed that this second-quantized theory
was in fact equivalent to the older theory of symmetrical wave functions.

This reformulation was not a means in itself for Dirac: It allowed him to construct
a quantum theory of electrodynamics formulated as a theory of an ensemble of light
quanta obeying Bose-Einstein statistics. Dirac’s method was reinterpreted by Pascual
Jordan. He read it not as a second quantization of a quantum theory, moving from
Boltzmann to Bose-Einstein statistics, but as the (first) quantization of Schrödinger’s
wave mechanics interpreted as a classical field theory. One of his guiding principles was
the necessity of a symmetric representation of matter and radiation. Consequently, he
believed that if this method was to be applied to electrodynamics, it should also be
applied to matter waves [Cini 1982; Darrigol 1986; Lehner 2011]. In order to account
for the fact that electrons obeyed Fermi-Dirac statistics, he developed a novel for-
malism of field quantization based on anti-commutators rather than on the canonical
commutators of quantum mechanics [Jordan 1927; Jordan and Wigner 1928]. This was
possible in his transformation theory, which was less closely tied to classical mechan-
icss and thus allowed for a commutation algebra which was not perfectly analogous
to classical Poisson brackets.

Dirac objected to Jordan’s approach: One could not simply invent a new quan-
tization method if the regular (“natural” in Dirac’s words at the 1927 Solvay con-
ference) method did not work because the particles involved obeyed Fermi statistics
[Bacciagaluppi and Valentini 2009, p. 501]. The difference between photons, which
corresponded to classical fields, and electrons, which corresponded to classical parti-
cles, had to be deeper than merely two different quantization procedures of classical
field theories, a point which he repeated emphatically in another paper on quantum
electrodynamics five years later [Dirac 1932]5. For Jordan, on the other hand, and this
was to be the dominating view in the next years, Dirac had a developed a method of
moving from a classical field theory to a corresponding quantum (field) theory, and
one could devise different quantization methods, depending on which statistics the
(emergent) particles of the quantum theory were supposed to obey.

Initially, this did not much change the status of the two different statistics. Instead
of (or rather, along with) two different symmetrization rules for the many-particle
wave function, there were now two different quantization procedures for a classical
field theory6. In either case, the only way how to tell which of the two was to be used
was empirical input.

In the summer of 1927, Pauli and Jordan revisited the question of quantizing
the electromagnetic radiation field, restricting themselves to the free field, but taking
great care to conserve the relativistic covariance of the classical theory [Jordan and
Pauli 1928]. It was of course clear that light quanta would have to obey Bose-Einstein

5 See also Kojevnikov [2002].
6 It should be noted at this point that either way of looking at the problem entirely divorces

it from any considerations relating to actual statistical mechanics. Already in 1928, Dirac
critically remarked that the use of the term “statistics” to describe the behavior of systems
composed of many identical particles was in fact misleading, since it has no immediate
connection with the notion of a statistical ensemble [Dirac 1929].



Alexander Blum: From the necessary to the possible... 547

statistics, so there was no ambiguity as to which quantization procedure to use. How-
ever, as Jordan later mentioned in a review article, he also soon (after finishing his
work on fermionic quantization with Wigner) checked what would happen if one at-
tempted to quantize classical electromagnetism to obey Fermi-Dirac statistics [Jordan
1928]. And he claimed to have found that this did indeed lead to a contradiction, i.e.,
that the classical field theory of electromagnetism could only be quantized accord-
ing to Bose-Einstein statistics, or as Jordan put it: “...only the Bose quantization
mathematically fits to the form of Maxwell’s field equations” (p. 206). Jordan was
extremely vague about how the classical field theory and the quantization procedure
would clash. He only explained in a footnote:

In that case [fermionic quantization] there would appear instead of the so-
called relativistic Δ-function, which is an analogue of the Dirac δ-function,
a different singularity, which is not expressible through well-defined, simple
integral properties.

Jordan was referring to the Δ-function (nowadays known as the Pauli-Jordan func-
tion), which appears in the commutator of two field quantities, e.g., the commutator
of two components of the electric field E at two different space-time points P and P ′,
found by Jordan and Pauli to be of the form

[Ei(P ), Ek(P ′)] =
i�c

4π

(
∂i∂k − δik
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t

)
Δ(P ′ − P ) (1)

where the Δ-function is defined, as mentioned by Jordan, through the “well-defined,
simple integral properties”:
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where f is an arbitrary function, V4 is all of space-time and V ±
3 are the past and

future light cones, respectively. The commutation relation for the field quantities is
obtained by setting the commutation relations for the Fourier components to be the
commutation relations for the raising and lowering operators of a harmonic oscillator.

Jordan offered no hint on how he had gone about constructing a fermionic anti-
commutator and consequently, his statement does not amount to much more than
the realization that one runs into difficulties when trying7. Jordan was anyway quite
quick to jump to conclusions in this article – he also claimed that the matter field
(described by the Dirac equation) could only be quantized fermionically, in this case
offering no rationale at all.

This second statement of Jordan’s was rebuffed by Pauli on several occasions: In his
review of the issue of “Ergebnisse der exakten Naturwissenschafen” in which Jordan’s
article had appeared [Pauli 1929] as well as in his major work on interacting quantum
electrodynamics with Heisenberg [Heisenberg and Pauli 1929]. He also mentioned
Jordan’s “großen Unsinn” in a letter to Oskar Klein (18 February 1929) [Hermann
et al. 1979], in which he counted the fact that Jordan was wrong, i.e., that there was no

7 In any case, Jordan’s formulation of these difficulties is imprecise at best: When quan-
tizing the electromagnetic field with anti-commutators there are two possibilities. Using an
expansion of the field in complex plane waves, one gets instead of the Pauli-Jordan function
the so-called Δ1 function, which can be expressed by simple integral properties, as pointed
out by Olivier Darrigol in his unpublished Ph.D. thesis. Using instead the expansion in sines
and cosines, as done by Jordan and Pauli in their paper, one gets the Δ function, just as for
the case of commutators, but with a different argument: P + P ′ instead of P − P ′. I would
like to thank Olivier Darrigol for a very interesting discussion on this subject.
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apparent way to choose between bosonic and fermionic quantization for matter waves
(besides experimental evidence for the latter), as one of the four main conceptual
difficulties in quantum electrodynamics (along with the electron’s self energy, the
difficulty of negative energies in the Dirac equation, and the fact that there were
three “logically independent” fields: the matter waves of electrons and protons, and
the electromagnetic field).

Implicitly, this meant that he accepted Jordan’s first statement, that the electro-
magnetic field could only be quantized bosonically. But neither here, nor in his work
with Heisenberg, did he make this statement explicit: He did however always mention
that matter waves could be quantized either way, and since the specific proof that
this was possible clearly failed for the electromagnetic field, it could also be read as a
proof that the electromagnetic field could only be quantized bosonically.

This proof, that the matter field can be quantized fermionically (the general proof
that all fields can be quantized bosonically had been given in the first three sections),
can be found in the fourth section of Heisenberg and Pauli’s first paper on QED. It is
based on the premise that it is essential for the quantum field theory to be a consistent
quantum theory. It is thus not a proof specific to quantum field theory or the fact
that a theory of electrodynamics should be relativistic. It only needs to postulate that
the following relation, well-known from quantum mechanics, holds:

∂F

∂t
=
i

�
[H,F ] (3)

where H is the Hamilton (energy) operator and F is an arbitrary function(al) of
the field coordinates and momenta, and their derivatives. From this relation, one can
derive both the conservation of energy and the time-independence of the canonical
commutation relations, justifying its essential status: The former is derived from the
fact that any operator (and hence H) commutes with itself, the latter is derived from
the fact that the canonical commutators are c-numbers and hence commute with
any operator. The above relation, however, holds in a fermionically quantized the-
ory (where the canonical variables obey anti-commutation instead of commutation
relations) only if the Hamiltonian H is of the form “linear function of the field mo-
menta (and their derivatives) times linear function of the field coordinates (and their
derivatives)”. It therefore does not hold for the case of electromagnetism, where the
Hamiltonian is quadratic in the field momenta. This latter fact is, however, not stated
explicitly be Heisenberg and Pauli.

It was first stated explicitly in a paper by Leon Rosenfeld, who was Pauli’s as-
sistant at the time [Rosenfeld 1930]. In this paper, Rosenfeld was concerned with
the quantization of the gravitational field according to the quantization procedure
Heisenberg and Pauli had used for the electromagnetic and matter fields. The main
issue was how to deal with the redundant (gauge) degrees of freedom, both in electro-
dynamics and general relativity, but Rosenfeld also briefly touched on the question of
how the gravitational field should be quantized – after all, here there was, as opposed
to QED, no experimental input as to which statistics the quanta of the gravitational
field should obey. Rosenfeld concluded that, since the Hamiltonian of the gravita-
tional field was quadratic in the canonical field momenta, the above relation (which
Heisenberg and Pauli had shown to hold for fermionically quantized matter) would
not hold for fermionically quantized “gravitons”, and one had no choice but to quan-
tize the gravitational field bosonically. This was stated as a theorem for general field
theories in a series of lectures which he gave at the Institut Henri Poincaré one year
later [Rosenfeld 1932].

At this point, Rosenfeld thus presented a criterion applied to the classical field the-
ory (to its Lagrangian or Hamiltonian) with which it was possible to test whether that
theory could be quantized fermionically or not. However, as he himself pointed out,



Alexander Blum: From the necessary to the possible... 549

this theorem was still lacking in two major respects: First, the criterion was purely
formal, i.e., there was no physical interpretation of the required special form of the
Hamiltonian. And second, the criterion only determined whether fermionic quantiza-
tion was possible – it could not decide whether bosonic or fermionic quantization was
to be applied in a given case. Rosenfeld noted that, apparently, whenever fermionic
quantization was possible it was also realized in nature, but could not explain this
fact. Pauli’s main worry remained.

In the following years, matter described by the Dirac equation became more and
more closely wedded to Fermi-Dirac statistics and the Pauli principle: Dirac’s hole
hypothesis [Dirac 1930] and the discovery of the positron in 1933 made the idea of a
bosonic electron more and more unthinkable. Several works dealt with the description
of electrons and positrons in a second-quantized framework in the years after 1930
[Fock 1933; Furry and Oppenheimer 1934; Heisenberg 1934; Weyl 1931] – none of
them even mentioned the possibility that the electron field might also be quantized
bosonically.

This is not to say that there was any notion that the negative energy states
of the Dirac equation formally implied or were even equivalent to fermionic
quantization – it was just that hole theory and thus the newly discovered positron
could not be incorporated into a bosonic quantum field theory of matter, and hence
the possibility of bosonic quantization was apparently not even entertained. The most
explicit statement of what hole theory meant for the necessity of the assignment of
statistics was given, unsurprisingly, by Pauli, in his comments on Dirac’s talk on hole
theory at the 1933 Solvay conference [Miller 1994, p. 142]:

The theory of holes always seemed very interesting to me on account of the
essential role played in it by the exclusion principle. Whereas this principle was
formerly only an isolated rule, of which the validity was independent of those
of the other bases of quantum theory, the theory of holes, introduced by Dirac
in order to escape the difficulty of negative masses, would have been impossible
if we had not wished to exclude all wave functions that are not antisymmetric.

At around the same time, in his celebrated Handbuch article [Pauli 1933, p. 258], Pauli
also for the first time came out with an explicit argument for why the electromagnetic
field needs to be quantized bosonically: Since here the field quantities themselves are
observable, they need to fulfill commutation relations, just like any other quantum-
mechanical observable. An analogous argument, he explained, did not hold for the
electron, whose wave function, the field being quantized, was not a direct observable.

The story might end here: There are photons described by Maxwell’s equations,
which are necessarily quantized as bosons, and the fundamental massive particles,
described by the Dirac equation, which necessitates fermionic quantization in order
to get rid of the negative energy states. But a central tenet of this resolution was being
called into doubt, namely that the Dirac equation was the one equation describing
the fundamental particles. This doubt had three distinct origins:
1. The difficulties of the Dirac equation, i.e., the negative energy states. They were

taken as an indication that it was not the final word on the equation describ-
ing electrons. This view became rarer after the discovery of the positron and the
vindication of Dirac’s hole hypothesis; but hole theory did leave several physi-
cists, in particular Pauli, quite unsatisfied and searching for a different theoretical
description of electrons (and, after 1933, positrons).

2. The actual discovery of new particles. While the positron naturally had to be
described by the Dirac equation, and the neutron was also generally taken to be
a spin 1/2 fermion in order to explain the properties of nuclei8, the discovery

8 Bethe and Bacher in their famous review article [Bethe and Bacher 1936, p. 91] state:
“The neutron spin might, from experimental evidence, be just as well 3

2
as 1

2
. However,
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of these particles expanded the basic electron-photon horizon of 1927 and made
the existence of further fundamental particles, possibly obeying different wave
equations, thinkable.

3. The difficulties of nuclear physics. These were taken as an indication that in the
nucleus quantum mechanics had to be if not entirely abandoned then at least
heavily modified. A further indication of this was that the Dirac equation did not
even seem to hold for the other fundamental charged particle, the proton, as it was
discovered in 1933 that the proton had an anomalous magnetic moment [Tomonaga
1997]. In the attempt to describe nuclear phenomena, new theoretical entities,
the neutrino and Yukawa’s meson, were postulated, which were not necessarily
described by the Dirac equation.

Although these three points can of course not be cleanly separated, they do roughly
correspond to three independent heuristics, which demarcated the space of possible
descriptions of a new particle, when such a particle, the cosmic ray meson, was discov-
ered in 1937. We will discuss these three points in the next three sections, and then
turn to the discovery of the meson, which in a way united all three strands, paving
the way for Pauli’s formulation of the spin-statistics theorem.

2 Improving the Dirac equation

The most prominent critic of the Dirac equation, and of hole theory in particular, was
Pauli. He was unsatisfied with hole theory from the start. What bothered him most
was the fact that it appeared to place the asymmetry between positive and negative
charge in the initial conditions (i.e., the occupied negative energy states) rather than
in the physical laws (Letter to Heisenberg, 16 June 1933 [Hermann et al. 1985]); after
the discovery of the positron, he still hoped that it might turn out to be a boson
(Letter to Peierls, 22 May 1933), thus contradicting Dirac’s hypothesis9. And when
his new assistant Victor Weisskopf pointed him to a curiosity in the behavior of the
Klein-Gordon equation, the spinless (scalar), relativistic matter-wave equation, which
had largely been abandoned in favor of the Dirac equation, he immediately saw this
as a possibility to show that hole theory was not necessary to describe electrons and
anti-electrons.

Weisskopf had been working on a review article for “Die Naturwissenschaften” on
the current difficulties of electron theory, in which he led from the Schrödinger equa-
tion to the Dirac equation via the Klein-Gordon equation [Weisskopf 1935]. In dis-
cussing the Klein-Gordon equation, he realized that the main reason it had been aban-
doned was that it predicted negative probability densities. It was, however, now widely
accepted that a single-particle probability density could no longer be defined (due to
pair annihilation and creation) in hole theory. The only sensible object one could talk
about was charge density. And with electron-positron theory one actually wanted to
have a charge density which could have both signs. He discussed this with Pauli10

simplicity is a strong argument in favor of the value 1
2

which we shall, therefore, assume
throughout this article.” This appears to have been a general consensus, even before Julian
Schwinger [1937] brought forth empirical arguments from neutron-hydrogen scattering for
assigning a spin of 1/2 to the neutron.

9 Interestingly, he immediately associated its being a boson with it having an integer spin,
based on the evidence from atomic physics (the hydrogen atom) and thus on the type of
proto-spin-statistics reasoning mentioned in the beginning of the last section.
10 Interview of Weisskopf by Thomas Kuhn and John Heilbron on 10 July 1963, Niels Bohr
Library & Archives, American Institute of Physics, College Park, MD USA, http://www.
aip.org/history/ohilist/4944.html.

http://www.aip.org/history/ohilist/4944.html
http://www.aip.org/history/ohilist/4944.html
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and out of this realization Pauli-Weisskopf theory developed [Pauli and Weisskopf
1934]. They found that not only could the charge density become negative, but also
the energy density was always positive (if one treated the Klein-Gordon equation as
a classical field equation, and not as a relativistic analogue of the Schrödinger equa-
tion). One could thus have a theory which needed no infinite Dirac sea (since the
energy density was positive definite), but could still accommodate positrons and pair
creation through second quantization (since the charge density was not positive defi-
nite, as opposed to the Dirac case). Pauli famously called their paper the “Anti-Dirac
Theory” [Pauli 1936c].

Since one did not need the Dirac sea, it certainly was not necessary to quantize
fermionically. But Pauli and Weisskopf realized that it was not even possible. Now
actually, they could have immediately seen this by applying Rosenfeld’s criterion to
the Klein-Gordon field theory (The Klein-Gordon Hamiltonian is quadratic in field
momenta and coordinates). Since they did not do this, we have to conclude that no
one had really noticed that Rosenfeld had done more than restate the fact that the
electromagnetic field could not be quantized fermionically. Sadly, just as Jordan had
been six years earlier, Pauli and Weisskopf were initially terribly sketchy about how
they had reached the conclusion that the Klein-Gordon field could not be quantized
fermionically, both in their paper and in private communication (Letter from Pauli
to Heisenberg, 7 November 1934).

I will try to reconstruct their original argument at least somewhat (they did offer a
bit more information than Jordan had) and see how it relates to Rosenfeld’s criterion.
In fact, they give two separate ways of arguing, which they claim to be related.
The first one is very close to Rosenfeld’s argument. Due to the structure of the Dirac
Lagrangian, the complex conjugate field ψ∗ is the canonically conjugate variable to ψ.
The two quantities therefore do not anti-commute. For the Klein-Gordon case, the field
and the complex conjugate field are not canonically conjugate variables – they are two
independent field coordinate degrees of freedom, and should therefore anti-commute
upon fermionic quantization. Just as in the Dirac case, the field also anti-commutes
with itself. One can quickly see that this leads to a contradiction. Starting from the
conditions just outlined

ψ(x)ψ(x′) + ψ(x′)ψ(x) = 0 and ψ(x)ψ∗(x′) + ψ∗(x′)ψ(x) = 0 (4)

one gets11

(ψ(x) + ψ∗(x))2 = 0. (5)

Thus ψ(x) + ψ∗(x) is hermitian (by construction) and nilpotent. As a hermitian
operator it can be diagonalized, as a nilpotent operator it only has zero eigenvalues,
thus it is the zero operator and ψ(x) = −ψ∗(x). The same rationale holds for the anti-
hermitian operator ψ(x)−ψ∗(x), thus ψ(x) = ψ∗(x). It follows that ψ(x) = 0, i.e., the
theory is trivial. This elementary contradiction is very closely related to Rosenfeld’s
criterion; it is the same structural property of the Hamiltonian which is responsible
for the contradiction in both cases. Pauli and Weisskopf, however, did not try to make
this realization into a general argument. Instead they tried to go beyond structural
arguments and understand the physical reason why the Klein-Gordon field could not
be quantized fermionically.

11 This step, going from the field operators at different points to the field operators at the
same point, is actually non-trivial and the singular behavior when taking this limit was not
investigated by Pauli and Weisskopf. Their proof (and later proofs discussed in this paper,
which employ a similar limiting argument) was thus not rigorous by the later standards
of mathematical physics and axiomatic quantum field theory. These questions were thus
revisited after the rise of axiomatic QFT in the 1950s.
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And here it was the relativistic invariance of the theory that moved to the center
of attention. Pauli and Weisskopf realized that if they started from a Hamiltonian
expressed through the Fourier coefficients of the field (which was not manifestly rel-
ativistically invariant), then imposed anti-commutation relations on these Fourier
coefficients and from here reconstructed the full field theory, the theory turned out
not to be relativistically invariant12. This relativistic non-invariance first manifested
itself in non-invariant field commutation relations.

Pauli and Weisskopf were, however, looking for an even more physical expression
of the incompatibility. They claimed to have reconstructed from the anti-commuting
Fourier coefficients not only the field strengths, but the observable charge-current
density four-vector, and found that this quantity no longer had the right (Lorentz)
transformation properties. Thus, not only were the more abstract commutators no
longer invariant, but also observable quantities were no longer covariant13.

Through Pauli and Weisskopf’s work, the analysis of the fact that certain field
theories cannot be quantized fermionically was taken to a new level: First, the in-
compatibility was moved from structural properties of the classical field equations to
physical arguments, in particular relativistic covariance. And second, the question was
now closely tied to spin: Even if the original reason for rejecting the Klein-Gordon
equation (density not positive definite) was no longer valid in a world of quantized
matter waves and pair creation, it was still deficient since it did not describe the
electron’s spin. So on the one hand one had Dirac’s theory, which described spin and
needed an infinite fermionic sea of negative-energy particles to describe pair creation,
on the other hand one had the Pauli-Weisskopf theory, which did not describe spin,
could describe pair creation without a Dirac sea and could only be quantized boson-
ically. Pauli wrote to Heisenberg: “An important and interesting point is the fact
that our theory can only be performed with Bose statistics, because here a necessary
connection between spin and statistics is beginning to dawn.”

Pauli expanded on the arguments for the impossibility of fermionically quantizing
the Klein-Gordon field in a talk he gave on Pauli-Weisskopf theory a few months later,
in March 1935, at the Institut Henri Poincaré (as mentioned in a letter to Klein from
17 July 1935). In this talk he treated the question of fermionic quantization in detail
[Pauli 1936b].

It is interesting to note at this point that as isolated elements of the spin-statistics
theorem were discovered they were mostly treated as novelties, certainly not worthy
of being treated in a publication of their own, or even of being expanded on at great
length in a major publication: Jordan only mentioned his results in a review article,
Pauli and Rosenfeld expanded on them only in lecture series or (Pauli) as a sidenote
in a review article.

12 This procedure would also already have worked for the electromagnetic field; in fact it
would have been the natural starting point for Jordan in constructing a fermionic electrody-
namics. Strangely, no-one seems to have considered it.
13 It is not clear to me, how to reconstruct the charge-current density four vector from the
Fourier coefficients of the total charge and current, and hence I have not been able to repro-
duce their result. However, one can quite easily reconstruct the total charge and current (i.e.,
the space integrals of the density vector) and find that they do not have the right transfor-
mation properties (scalar and three-vector, respectively). In any case, this reasoning never
shows up in print again and is replaced by other arguments, possibly indicating that it was
not as conclusive as Pauli and Weisskopf originally thought. Another argument Pauli and
Weisskopf possibly pursued can be found on an undated manuscript in the Pauli Archives at
CERN (5/486), where an argument is attempted that the impossibility of fermionic quanti-
zation arises due to the interaction with an external field. This argument is, however, never
found in print and may even possibly be from a later date.
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In beginning his talk, Pauli specified which properties one should expect from a
quantum theory a priori. These considerations were inspired by Dirac, who had used
such reasoning to reject the Klein-Gordon equation and derive his own relativistic
wave equation. Dirac’s a priori conditions (positive definite density, first order wave
equation) were, as Pauli pointed out, however, only applicable to a one-particle theory.
For a many-particle quantum matter-field theory, in which pair creation could be
described, Pauli suggested positing two different conditions: A charge density with
varying sign (to describe pair creation) and a positive definite energy density. Both of
these conditions were conditions on the classical field theory. They were satisfied in the
Klein-Gordon theory – the Dirac theory needed the additional postulate of the Dirac
sea. Pauli only very briefly touched on the Dirac theory, but from his brief comments
one can surmise that he was now thinking differently about hole theory, a change
of view already hinted at by his 1933 Solvay comments cited above: No longer as a
ludicrous hypothesis to save a flawed theory, but as a necessary consequence of having
a quantum field theory using the Dirac equation obey his two axiomatic conditions14.
This understanding was to form an important element in moving from theorems on
the impossibility of quantizing certain field theories fermionically (as had been the
case so far), to a general spin-statistics theorem, in which also the impossibility of
quantizing the Dirac field and others bosonically could be demonstrated.

For the time being, however, Pauli was mainly concerned with expanding on his
findings concerning the Klein-Gordon field. As already mentioned, the Klein-Gordon
field fulfilled Pauli’s two conditions, already as a classical field theory. Pauli then added
a third condition referring to the quantum theory proper: The charge densities at two
different points with a space-like separation should commute. Using this condition
he then set himself to derive that the Klein-Gordon field could not be quantized
fermionically.

The condition that the charge densities at different space points commute with
each other is certainly a new type of argument, moving still further away from the
formal (Lorentz covariance properties) towards the physical, most related (in its ap-
peal to observability) to the argument in the Handbuch, but a lot more general in
that it applies, in particular, to a complex scalar field, which by itself is just as un-
observable as the electron wave function. In his talk, Pauli himself did not give much
motivation for choosing this condition, merely stating that it was necessary in order
to be able to speak of a measurable charge density at all. In his later papers on the
connection between spin and statistics, where this commutation condition (applied
now in general to all observable quantities) continued to play an important role, he
got more specific:

The justification for our postulate lies in the fact that measurements at two
space points with a space-like distance can never disturb each other, since no
signals can be transmitted with velocities greater than that of light [Pauli 1940,
p. 721].

It was thus later identified as an argument based on the relativistic notion of causality
[Weisskopf 1983] or microcausality [Massimi 2005], even though Pauli himself does not
seem to have used that word at the time15. It is, however, a very specific argument from
14 One difficulty still remained: At the time, there was still the conviction that one could in-
corporate hole theory and the Dirac Sea in the “first-quantized” theory, i.e., fulfill Pauli’s con-
ditions without second quantization, leading to the elaborate scheme of subtraction physics.
This still made hole theory seem to be an additional hypothesis on the classical theory, rather
than a necessary element for a sensible quantum theory. Only gradually did it become clear
that talking about the Dirac Sea only made sense in the second-quantized theory.
15 In a talk he gave for the Zurich philosophical society in 1936 [Pauli 1936a], he certainly
used the term causality in the sense of determinism.
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causality: Rather than argue from the propagation velocities of the physical entities
(be they particles or waves) and demanding that they not propagate faster than the
speed of light, Pauli only invoked measurements at different space-time points which
should not influence each other, if they are space-like separated. As he later explained
in a letter to Dominique Rivier, a student of Stueckelberg’s, he adopted this specific
notion of causality in order to avoid problems concerning the localizability of particles
in theories where those particles (be they electrons or photons) could be annihilated
or created (Letter to Rivier, 3 August 1948 [von Meyenn 1993]).

In order to derive something from his causality condition, Pauli first had to deal
with one problem: He and Weisskopf had realized that already the construction of
a charge density with the correct transformation properties would be difficult in the
fermionic theory. Such reasoning, however, was always based on the presupposition
that observables would have the same form (either as functions of the field variables
or as function of the Fourier coefficients) in a bosonic and a fermionic theory. It was,
however, quite possible that the observable charge density would have to have a
different form in either case.

This serves as an illuminating example of how one is to understand Pauli’s program
of moving from formal to physical arguments. One might, after all, be inclined to say
that, e.g., it makes no sense to talk about physical inconsistencies if a theory is already
shown to be quantized in the wrong manner and is thus formally inconsistent16. Pauli’s
method was, however, to initially loosen the formal requirements and then show that
more physical arguments still lead to the desired conclusions. In this case, that meant
dropping the very narrow definition of the charge-current density vector of the Klein-
Gordon field, originally derived (or rather justified) by Gordon as the derivative of
the Hamiltonian with respect to an external electromagnetic potential [Gordon 1926].
Instead, Pauli took a much looser formal definition of the charge-current density: All
he demanded was that it be a hermitian vector fulfilling the continuity equation.This
allowed him to give a more general form of the charge density and then narrow down
the new realm of possibilities through the causality condition.

Pauli split the regular (Gordon) four-current density S of the bosonic theory into
three summands, S1, S2, S3, corresponding to the current due to particles, anti-
particles and pair production17. All three summands are hermitian, covariant and
satisfy the continuity equation by themselves. Pauli then generalized the four-current
to the form

S = c1S1 + c2S2 + c3S3. (6)

In the bosonic theory, all three coefficients ci are equal to 1. Pauli now allowed for
them to be arbitrary real numbers and identified c1 as the charge of the particle, c2
16 This is how Olivier Darrigol in his unpublished Ph.D. thesis interprets later criticism of
Pauli’s argument by de Wet.
17 This splitting is quite problematic, as Pauli himself conceded. Pauli was heavily scolded
for this by Duck and Sudarshan sixty years later [Duck and Sudarshan 1997]. It seems to
me, however, that they are slightly missing the point: Pauli could easily have shown that
the charge densities at different points do not commute, by simply assuming that the charge
density has the same functional form in the fermionic theory, i.e., that the functional form
of the charge density is entirely determined by the classical field theory and is independent
of the quantization procedure used (using Gordon’s justification). Pauli was trying to go
beyond this, by allowing for alternate expressions for the charge density. That he had to use
somewhat questionable mathematics to obtain such alternate expressions only goes to show
how restricted one is in constructing the charge density from the classical field theory. A
similar point is made in a review of Duck and Sudarshan’s book by Arthur S. Wightman
[Wightman 1999]. Wightman also points out that the problem is rather that Pauli by no
means showed that he had exhausted the possibilities of alternate expressions for the charge
density.
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as the charge of the anti-particle and c3 somewhat vaguely as “the frequency of pair
production processes.” On this generalized current, Pauli now imposed the condition
that the commutator of the charge density at two different space points should vanish.
He could show that this uniquely led to c1 = c2 = c3 = 1 for the bosonic theory and
to c1 = c2 = c3 = 0 for the fermionic theory, furnishing the first proof (based on
Pauli’s conditions) that the Klein-Gordon field could not be quantized fermionically.

Pauli was aware that his conditions might still be too restrictive: He mentioned the
possibility of abandoning the commutability of the charge density at different space
points, but stated that this would lead to difficulties when coupling to an electro-
magnetic field. In his correspondence with Klein, he also discussed the possibility of
having the charge-current density be non-hermitian, but felt that path to be “ziemlich
phantastisch” (Letter to Klein, 7 September 1935). All in all, he was quite convinced
of having conclusively proven his statement.

Pauli-Weisskopf theory was not at all meant to be a realistic theory. In his talk,
Pauli stated: “One has to admit that it is not certain that one can apply the theory in
question [Pauli-Weisskopf theory] to reality, since the particles without spin – like the
α particle – are all complex [not fundamental]”. To these complex particles it could not
be applied, because their behavior was complicated by the unknown nuclear forces.
And Pauli himself did not believe in the existence of elementary charged bosons –
when the meson was discovered in 1937, he immediately concluded that it had to
be a fermion (Letter from Pauli to Heisenberg, 14 June 1937) – a remainder of old
notions of a correlation between charge and statistics. The theory remained for the
time being a mere intellectual game, to prove that pair production could arise in a
theory without a Dirac Sea. Weisskopf remembered:

We thought that this theory only served the purpose of a nonrealistic example
of a theory that contained all the advantages of the hole theory without the
necessity of filling the vacuum. We had no idea that the world of particles would
abound with spin-zero entities a quarter of a century later. That was the reason
we published it in the venerable but not widely read Helvetica Physica Acta.
[Weisskopf 1983, p. 70]

This did not prevent others from considering Pauli-Weisskopf theory as a possible
starting point for a theory of the electron. Heisenberg thought that maybe the field
quantization process had to be modified, so that, in quantizing the Klein-Gordon field,
spin and Fermi statistics entered at the same time (Letter to Pauli, 16 June 1934),
but did not pursue this thought much further.

A different modification of Pauli-Weisskopf theory was pursued by the Romanian-
born French physicist Alexandre Proca, after attending Pauli’s 1935 Paris talk18. The
idea was simple: Could one not find a classical field theory that on the one hand ful-
filled Pauli’s demands (a positive definite energy density and a charge-current density
with varying sign) but at the same time incorporated the electron spin? In order for
his classical wave equation to include spin, he added another demand to Pauli’s two:
The wave field should have four complex components, just like the Dirac field. Since a
spinor field was out of the question (this would lead to the Dirac equation, which did
not have a positive energy density), he was left with only one possibility: A complex

18 Proca was a researcher at the Institut Henri Poincaré [dos Santos Fitas and Videira 2007]
at the time and later cited Pauli’s lecture even before its publication. We thus have strong
reason to believe that he attended the talk. And even if he did not, he was involved in the
editorial decisions of the Annales de l’Institut Poincaré, where Pauli’s talk was published, so
he certainly knew of it before its publication. This last fact was kindly pointed out to me by
Adrien Vila Valls, who is currently preparing an in-depth study of the history of the Proca
equation.
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vector field ψs
19. He derived the relativistically invariant wave equations for such a

field and presented them in a paper submitted in May 1936 [Proca 1936]. The central
equations of this theory were (in the absence of an external electromagnetic field)20:

Frs = ∂rψs − ∂sψr

∂rFrs =
m2c2

�2
ψs. (7)

These equations are quite blatantly (even more blatantly if one considers the
Lagrangian from which they can be derived) a generalization of Maxwell’s equations
to a “massive field” (in the sense that the quanta of the field will have a non-vanishing
mass m). One would thus think that Proca should have immediately realized that,
while his theory described massive particles with spin, this spin would have the wrong
magnitude: It would be 1 instead of 1/2, since after all the quanta of the electromag-
netic field, the photons, have an intrinsic angular momentum of 1. But, as we will
see in the next section, the general theory of the one-to-one correspondence between
representations of the Lorentz group and the physical quantity of spin was at this time
only slowly developing. Proca’s path to a correct interpretation of his wave equation
was quite tortuous21; it was only one and a half years later that he published a paper
identifying the particles described by his equation as possessing an integer spin [Proca
1938]. But even at this point, he did not simply state the analogy with the photon. He
had to explicitly demonstrate the spin value of his field by taking the non-relativistic
limit of the Proca equation and showing how many components remained (three) and
how they coupled to an external magnetic field.

By this time, the fact that he had failed to produce a new relativistic theory
of the electron was not that much of a tragedy (it may thus well be that he had
discovered his mistake earlier, but only decided to publish now): With the discovery
of the meson, his equation was now a candidate for the description of that particle,
as was the Klein-Gordon equation. Thus the attempts to develop a new theory of
the electron which avoided the difficulties of hole theory ended up giving candidate
theories for the newly-discovered “heavy electron.”

3 Generalizing the Dirac equation

A somewhat similar development was taken in the theory of generalized Dirac equa-
tions: When these were first studied by Bartel van der Waerden, he did not have in
mind the description of new particles, but rather wanted to analyze how unique the
Dirac equation was, and whether the presuppositions made by Dirac might also lead
to a different relativistic wave equation. Van der Waerden’s work was a response to
the initial reactions upon the publication of the Dirac equation in 1928. The appear-
ance of the four-component wave functions, which transformed non-trivially under the
Lorentz group but were not four-vectors, caused quite some confusion. C.G. Darwin
wrote

Now the relativity theory is based on nothing but the idea of invariance, and
develops from it the conception of tensors as a matter of necessity; and it is

19 In fact, he mentioned the possibility of having a pseudo-vector field in a footnote, but
did not pursue it any further.
20 Basically all the statements on Proca’s paper in Mehra and Rechenberg [2001] are false.
They claim that the fundamental equation is simply the Klein-Gordon equation for a vector
field and that this vector field can be derived from a scalar field by taking derivatives. They
also imply that Proca quantized the field in his paper, which he did not.
21 It will be described in detail in the forthcoming paper by Adrien Vila Valls, already
mentioned in footnote 18.
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rather disconcerting to find that apparently something has slipped through the
net, so that physical quantities exist which it would be, to say the least, very
artificial and inconvenient to express as tensors. It does not seem possible to
make anything further out of the matter until it has developed more... [Darwin
1928, p. 657]

and, in a similar vein, John von Neumann

Dass eine Größe mit vier Komponenten kein Vierervektor ist, ist ein in der
Relativitätstheorie nie vorgekommener Fall, im Diracschen ψ-Vektor tritt das
erste Beispiel einer solchen auf. [von Neumann 1928, p. 876]

Von Neumann did not pursue the question much further, but did point out that
this new representation of the Lorentz group was reducible into two two-dimensional
representations. This observation was extended upon by Hermann Weyl: In his 1928
book “Gruppentheorie und Quantenmechanik” [Weyl 1928], he demonstrated that
all representations of the Lorentz group could be constructed from two inequivalent
(conjugate) two-dimensional representations, now known as Weyl spinors. In partic-
ular, Weyl showed how a four-vector Xμ could be constructed from a Weyl spinor
χ = (χ1, χ2) as:

Xμ =

⎛
⎜⎜⎜⎜⎜⎝

χ∗
1χ1 + χ∗

2χ2

χ∗
2χ1 + χ∗

1χ2

i (χ∗
2χ1 − χ∗

1χ2)

χ∗
1χ1 − χ∗

2χ2

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

χ†χ

χ†σ1χ

χ†σ2χ

χ†σ3χ

⎞
⎟⎟⎟⎟⎟⎟⎠

= χ†σμχ (8)

where the σi are the Pauli matrices, and in the Pauli matrix four-vector σμ the time
component σ0 is simply the identity matrix. The Dirac four-component wave function
in turn could be decomposed into a Weyl spinor and a conjugate Weyl spinor, the
two two-dimensional representations that von Neumann had identified.

It was Paul Ehrenfest who pushed for further clarification. He was at this time
already quite desperate due to his inability to keep up with the developments in
modern physics. One of his major worries were the unintuitive transformation prop-
erties of the Dirac wave function – for which he coined the name spinor – which
seemed so at odds with the simplicity of the well-known vector and tensor calcu-
lus of relativity. At Ehrenfest’s request, van der Waerden, a mathematics professor
at the nearby Groningen university, provided a spinor calculus, to complement the
well-known tensor calculus [van der Waerden 1929]22. A Lorentz-covariant object now
carried, according to its construction from Weyl spinors, spinor instead of tensor in-
dices, which determined its transformation properties and the invariants that could
be constructed from it. This allowed the treatment of tensorial objects (such as four-
vectors) on the same footing as objects that could not be expressed as tensors (such
as the Dirac wave function). The main difference to the tensor calculus was that one
had to introduce two different types of indices, corresponding to the two inequivalent
two-dimensional representations. Van der Waerden distinguished between the two by
assigning dotted indices to the conjugate Weyl spinors.

Ehrenfest was still not satisfied and repeated his plea for a simple overview over
spinor theory in his “Erkundigungsfragen” [Ehrenfest 1932], published in the year
before his suicide. Van der Waerden’s overview, unwieldy as it was at points, however,
did form the basis for the generalization of the Dirac equation in the following decade.

22 For a detailed discussion of van der Waerden’s work, see [Schneider 2010].
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It was van der Waerden himself who realized that the spinor calculus offered
the possibility of constructing more general, relativistically invariant wave equations.
However, as already mentioned, he only considered the possibility of alternate wave
equations for the electron (the proton always being implied as well, the Dirac equa-
tion thus being understood as the universal equation describing the fundamental
constituents of matter), i.e., he was dealing with the question whether one could re-
produce Dirac’s original reasoning in the spinor formalism. His generalization was
thus quite limited: The only possibilities he allowed for the electron wave function
were a Weyl or a Dirac spinor23.

Van der Waerden found (whether independently of Weyl or not is unclear
[Schneider 2010, p. 128]) that one could write down a wave equation for a two-
component electron, but that this was only possible for a vanishing mass. In order to
describe a massive electron, one was led to a (slightly generalized) Dirac equation, if
one further assumed a first-order wave equation, in order to rule out a Klein-Gordon
type equation for a Dirac spinor. This (slightly generalized) Dirac equation was of the
form (in the absence of an external field)24:

∂α̇κχκ =
im′c

�
ψα̇

∂α̇κψ
α̇ =

im′′c
�

χκ (9)

i.e., was written as two separate equations coupling the two Weyl spinors χκ and ψα̇

(κ and α̇ taking the values 1 or 2) that form the Dirac spinor. Here, ∂α̇κ is a 2×2 matrix
differential operator, obtained by taking the relativistic scalar product of the four-
divergence ∂i with the four-vector of the Pauli matrices, whilem′ andm′′ are arbitrary
constants. As van der Waerden pointed out, the regular Dirac equation is retrieved if
one sets m′ = m′′ = m.

The idea of more daring generalizations of the Dirac equation, to incorporate
also particles with spin values different from 1/2, was apparently pursued for the
first time by Majorana [1932]. It does not really belong into our story, as it did not
use the spinor formalism and ended up using infinite-dimensional representations of
the Lorentz group, which played no role for either the description of the meson or the
development of the spin-statistics theorem. However, it serves as a perfect example
for the change of perspective that took place after 1932. While Majorana made rather
vague statements on the applicability of his generalized wave equations, and the paper
reads rather as a study of hypothetical wave equations that could evade the problem
of negative energies (and thus fits better into the last section), Dirac’s 1936 paper on
generalized relativistic wave equations [Dirac 1936] clearly states that these equations
might be useful for describing new particles to be discovered in the future, a possibility
that had become quite acceptable after the discovery of the positron and the neutron
in the preceding years.

23 His primary interest was to see whether one could simplify the Dirac equation by reducing
it to two components [Schneider 2010, p. 125], and certainly not to complicate it by adding
more. He apparently did not consider Proca’s idea of a vector electron, which would not
have been a simplification (also four components) and would have eliminated the need for
the spinor calculus altogether, while the whole paper is of course based on the idea that a
relativistic description of the electron needs a spinor description.
24 I have written van der Waerden’s equation using Dirac’s later notation, to make the two
more easily comparable. This is simply a relabeling.
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At this time, Dirac was quite disillusioned by the great difficulties of quantum elec-
trodynamics [Kragh 1990], and returned to a principle which he had first formulated
in 1931 [Dirac 1931, p. 60]:

There are at present fundamental problems in theoretical physics awaiting so-
lution, e.g., the relativistic formulation of quantum mechanics and the nature
of atomic nuclei (to be followed by more difficult ones such as the problem of
life), the solution of which problems will presumably require a more drastic
revision of our fundamental concepts than any that have gone before. Quite
likely these changes will be so great that it will be beyond the power of hu-
man intelligence to get the necessary ideas by direct attempts to formulate
the experimental data in mathematical terms. The theoretical worker in the
future will therefore have to proceed in a more indirect way. The most pow-
erful method of advance that can be suggested at present is to employ all the
resources of pure mathematics in attempts to perfect and generalise the math-
ematical formalism that forms the existing basis of theoretical physics, and
after each success in this direction, to try to interpret the new mathematical
features in terms of physical entities...

This was precisely what he did: He took the existing basis of theoretical physics (rela-
tivistic invariance, the Dirac equation and its formulation using the spinor formalism),
generalized it (to spin values greater than 1/2, both for massive and massless parti-
cles) and tried to interpret the new mathematical features in terms of physical entities
(“the possible future discovery of an elementary particle with a spin greater than a
half, or for approximate application to composite particles”) in the above-mentioned
paper, which he published in the summer of 1936. It was quite unsurprising that he
should apply his generally stated research principle to this specific problem. After all,
it was the original development of the Dirac equation (and hole theory) which was
for him the paradigmatic example for the potential of this method. However, both
the question of the generalization and of the subsequent interpretation need to be
addressed in somewhat more detail, as they are not quite as straightforward as they
may seem.

What did Dirac mean by a generalization to spins greater than one half? In fact,
the question of the physical quantity of spin does not enter in this work at all. He did
not deal with the question of how to extract the actual physical spin value from the
relativistic wave equation, as had Majorana or, as we saw in the last section, Proca.
Instead he simply assumed that spinors with more than one spinor index would cor-
respond to spin values greater than that of the Dirac electron (which consisted of
two Weyl spinors with only one spinor index each). What precisely was the corre-
spondence between physical spin and spinor representation did not concern him. This
thus directly also touches the question of interpretation: After he had written down
the equations in a general form, while (in typical Dirac fashion) giving hardly any in-
dication as to how he had arrived at them, Dirac discussed their physical implications
no further – he had simply prepared them in a very general form (indexed according
to the number of spinor indices of the wave field) in case they might come in handy
at some future date.

The lack of further elaboration on where these equations come from is less dis-
concerting in this case than it is in others, because it can clearly be seen that the
equations Dirac ended up with are a direct generalization of van der Waerden’s for-
mulation of the Dirac equation given above. Dirac simply allowed for both component
fields A (a generalization of van der Waerden’s χ) and B (generalized ψ) to now have
an arbitrary number of spinor indices, both dotted and undotted25, where A has one
25 He adopted van der Waerden’s convention, where undotted indices are left-handed Weyl
spinor indices, and dotted indices are right-handed Weyl spinor indices.
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dotted index less and one undotted index more than B. The generalized wave equation
then reads26:

∂α̇κAβ̇γ̇···
κλμ··· =

im′c
�

Bα̇β̇γ̇···
λμ···

∂α̇κB
α̇β̇γ̇···
λμ··· =

im′′c
�

Aβ̇γ̇···
κλμ··· (10)

where both A and B are taken to be symmetrical in both their dotted and their
undotted indices. With these equations, Dirac’s paper basically ends. He did not go
on to quantize these equations as field equations, rather regarding them still as one-
particle equations of the Schrödinger type. This then remained the state of the art
in equations for particles with general spin until the new particles Dirac had been
hoping for were actually discovered – again just as fast as the positron had appeared
after its original prediction by Dirac.

4 Nuclear physics

While the last two sections dealt with research concerned with the mathematical
description of (possibly new) particles, I will now, before turning to the discovery
of the meson, discuss research that was more concerned with the postulation of new
particles in order to explain phenomena in nuclear physics. Initially, the description
of these new particles hardly used any of the novel elements discussed in the last two
sections, but was rather based on the tried and trusted equations used to describe
the well-known particles. But as the nuclear theories involving new particles came to
be studied in detail, the old equations often tended to be unable to explain the fine
points and so these nuclear theories were combined with the new equations in order
to fully exploit their potential.

A case in point is the neutrino: Originally postulated by Pauli in 1930 in order
to explain the continuous β ray energy spectrum and then included by Fermi in his
1934 quantum field theory of β decay, it was initially assumed by default to have spin
1/2 and to be describable by the Dirac equation, just like the electron. When the
basic Fermi theory, however, began to show some difficulties in reproducing the exact
shape of β spectra27, modifications were pursued. The most popular and successful
one, was the Uhlenbeck-Konopinski theory, which changed nothing in the description
of the neutrino itself, but rather modified the interaction term. Another possibility for
modifying the Fermi theory was to instead change the equations for the free neutrino,
so that it would no longer be described by the Dirac equation; there was after all
the possibility that the neutrino could have a (half-integer) spin greater than 1/2
and still couple invariantly to a neutron, a proton and an electron. This possibility
was pursued by a PhD student of Rudolf Peierls in Cambridge, Fred Hoyle (Letter
from Rudolf Peierls to Hans Bethe, 13 February 1937 [Lee 2007])28. In doing this,
Hoyle discovered a difficulty in constructing such a theory: A spin 3/2 field, the next

26 In a similar, but somewhat more involved, way, Dirac’s generalized equation for massless
fields is a generalization both of the Weyl equation and Maxwell’s equations, which had first
been written in spinorial form by Laporte and Uhlenbeck [1931].
27 These deviations were later found to be due to energy loss within the radioactive sources
and could be removed by using thinner sources [Franklin 2005].
28 This work appears to have been done initially in total isolation from Dirac, even though
Peierls and Hoyle were both also in Cambridge at the time. But as Peierls wrote to Bethe,
Dirac was quite distracted by his marriage.
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simplest possibility, had neither a positive-definite energy density (and could thus not
be quantized bosonically according to the Pauli-Weisskopf procedure), nor a positive-
definite (charge) density and could thus also not be quantized fermionically using
hole theory. Hoyle extended his research to study particles with arbitrary spin and
found this to be a generic problem (Letter from Pauli to Peierls, 19 March 1938) for
particles with spin greater than 1.

We thus observe how a study of the new particles postulated in nuclear physics
led to research questions closely related to those discussed in the last two sections.
Hoyle’s research (or rather dissatisfaction with it) was an important starting point
for Pauli’s research on higher spins, as we will see later on. But much more prominent
in bringing such questions to the forefront of attention was another nuclear particle,
for the simple reason that it was (believed to be) discovered within a few years after
being postulated.

I refer of course to the Yukawa particle, envisioned by Hideki Yukawa in 1935 as
the quantum of a new U field, which mediates the interaction between protons and
neutrons, in analogy to the electromagnetic field, the only difference being that the
interaction would in this case lead to a proton being transformed into a neutron and
vice versa, in accordance with Heisenberg’s conceptualization of the nuclear force as
resulting from a “Platzwechsel” [Yukawa 1935]. The quanta of this U field, as Yukawa
pointed out, necessarily had to be bosons, in order to be responsible for such an
exchange force29 between two fermions (the proton and the neutron)30. As for the
spin of these quanta, Yukawa did not comment on that at all: He envisioned the force
field to be vectorial, in full analogy to the electromagnetic field, but in his paper only
considered the scalar potential (i.e., the time component) of the force field, as he was
treating the nucleons non-relativistically and thus neglected their interaction through
the vector potential of the U field. However, he did make quite specific statements on
both the charge and the mass of the U quanta. The charge had to be ±e, in order
to account for the change in charge of the nucleons involved in the interaction. And
the mass could be determined from the range of nuclear interactions to be about
200 times the mass of the electron.

Even more than Fermi’s theory, Yukawa’s theory still had a number of short-
comings in describing the nuclear interactions; among other things, it could not yet
describe the the spin dependence of these forces. These difficulties were however not
addressed until Yukawa’s U quanta came to be associated with the newly confirmed
intermediate mass (between electron and proton) particles, responsible for the pene-
trating component of the cosmic radiation, the mesons or mesotrons.

How this association came to be has been studied in detail in [Rechenberg and
Brown 1990] and need not further concern us here. What is important for our purposes
is that when this connection had been made, making Yukawa’s general approach
highly relevant and plausible, work immediately began on improving and extending
Yukawa’s rudimentary non-relativistic field theory to a fully relativistic theory of
mesons, which would describe all aspects of the nuclear interaction. Here now, the
resources whose development was described in the last two sections became essential,

29 See [Carson 1996] for an insightful analysis of the problematic term “exchange force,”
and how the concepts of Heisenberg and Yukawa relate to modern ideas on forces arising
from the exchange of virtual quanta.
30 Yukawa had actually originally disregarded this point in earlier attempts to describe
the nuclear interaction through the exchange of electrons. Apparently it was pointed out to
Yukawa by Nishina that the exchange particle should be a Bose particle [Hayakawa 1983,
p. 85]. More important was, however,Yukawa’s move to a stronger analogy with the electro-
dynamic force, where the mediating particle, the photon, was of course known to be a boson
Darrigol [1988].
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and as we will see in the next section, our three research strands combined very quickly
with ongoing research on cosmic rays to form a whole new field of research: meson
physics.

5 Meson physics

That the work on meson physics, beginning in 1937, involves the intersection of dif-
ferent programmatic approaches was already stated some time ago by Cassidy [1981].
He differentiates between two distinct traditions, the cosmic ray physicists, intent on
applying an admittedly flawed QED in order to describe cosmic ray phenomena, in
particular energy loss, and the field theorists, intent on exploring the theoretical limits
of QED in order to find the final theory of the interaction of matter and radiation.

In the last three sections, I have shown that the “field theorists” identified by
Cassidy by no means had a shared program: While Pauli, Weisskopf and Proca
were looking for a new QFT in which hole theory could be avoided, Dirac was ba-
sically doing one-particle quantum mechanics without any direct aim at reforming
QED.

Also, Cassidy is somewhat dismissive of the role played by Yukawa and thus of the
role of nuclear theory as a separate tradition in its own right, rather than as a mere
application of quantum electrodynamical methods. Partly his dismissal is based on
a misunderstanding of Yukawa’s original work (which he wrongly identifies as being
based on scalar Pauli-Weisskopf theory, when in fact it is the non-relativistic limit of
a vector field theory), partly on the neglect of Yukawa’s later work: In fact, Yukawa
was a trailblazer for meson physics, for the simple reason that he believed in a relation
between his U quanta and the penetrating cosmic radiation before most others did,
already in the fall of 1936.

Since the cosmic ray data gave very little input as to the construction of such
a theory (it really did not offer much more than compatibility with the mass and
charge values derived by Yukawa already in 1935), the range of possibilities was wide
open, and Yukawa consequently followed a many-pronged approach. In manuscripts
mentioned by [Hayakawa 1983] and [Rechenberg and Brown 1990], he further pursued
the development of his vectorial theory, also incorporating the work of Proca. At the
same time, he was investigating the possibility of a scalar theory along the lines of
Pauli and Weisskopf – such a theory of spinless bosons could of course also describe
the interaction between two spin 1/2 fermions. And finally, he also studied the general
wave equations that Dirac had presented, even publishing a paper on this subject, in
which he investigated in more detail the physical observables, such as velocity and spin
[Sakata and Yukawa 1937a]. By the summer of 1937, however, Yukawa was focussing
specifically on the scalar theory [Sakata and Yukawa 1937b]. A simple reason for this
narrowing of focus is probably the fact that the scalar field theory had already been
formulated as a full quantum field theory by Pauli and Weisskopf. Yukawa’s focus
on the scalar theory was shared by those theorists in the west who first adopted the
identification of the cosmic ray meson and Yukawa’s particle [Fröhlich and Heitler
1938; Oppenheimer and Serber 1937; Stueckelberg 1937].

However, as already pointed out in 1937 by Oppenheimer and Serber
[Oppenheimer and Serber 1937], a scalar Pauli-Weisskopf theory of the meson as
the source of nuclear interactions seemed incapable of explaining all the empirically
ascertained characteristic properties of that force. In particular, these difficulties arose
due to the lacking spin dependence of the nuclear force mediated by a scalar meson.
Heitler and Fröhlich in Bristol attempted to solve this by making the coupling be-
tween the nucleons and the mesons depend on the kinetic angular momentum of the
(scalar) meson Fröhlich and Heitler [1938]. The decisive step, however, which really



Alexander Blum: From the necessary to the possible... 563

kickstarted meson physics, was to quantize Proca’s massive vector field theory and
thus obtain a quantum theory of mesons with nonzero spin. This quantization was
presented in four (more or less)31 independent papers that appeared in early 1938,
by Nicholas Kemmer [1938], who had briefly been Pauli’s assistant in the summer of
1936 and was now working at Imperial College, London, by the Cambridge physicist
Homi J. Bhabha [1938]32, by the Swiss physicist E.C.G. Stueckelberg [1938] and by
Yukawa and his group [Yukawa et al. 1938]33,34.

It is Kemmer’s work which is of interest to our story. While Bhabha, Stueckelberg
and Yukawa confined themselves to constructing a quantum theory of vector (Proca)
mesons, Kemmer took a more a general approach; he wanted to map out the entire
space of possible meson quantum theories spanned by the two main restrictions: The
mesons had to be bosons and have an integer spin35. According to his reminiscences,
Kemmer had in fact constructed a quantum theory of vector particles, based on the
work of Pauli, Weisskopf and Proca, even before hearing of Yukawa’s theory and
before the discovery of the meson, but had not published it [Kemmer 1983].

As a first step towards obtaining a general quantum theory of integer spin bosons,
Kemmer combined the results of Pauli, Weisskopf and Proca with Dirac’s formalism.
In Dirac’s scheme particles with different spin are classified according to two half-
integer or integer (nonzero) numbers, k and l, which determine the number of dotted
and undotted indices of the generalized Weyl spinors A and B, where A has 2k undot-
ted and (2l−1) dotted indices and B has (2k−1) undotted and (2l) dotted indices (cf.
equation 10). The transformation properties of a field were thus fully defined by the
numbers k and l, which can be integers or half-integers. Naturally, the four-component
Dirac spinor is obtained when k and l both take the smallest possible value of 1/2.
Kemmer now showed [Kemmer 1938], how Dirac’s scheme included Proca’s massive

31 Certainly Bhabha and Kemmer, both in England, were in rather close contact with
each other and with Heitler [Kemmer 1983]. Also, in a footnote of his paper, Stueckelberg
acknowledged having communicated with Kemmer.
32 Not to be confused with the contemporary Post-Colonialist Homi K. Bhabha.
33 It may seem surprising that neither Proca nor Dirac were directly involved in this de-
velopment. While Proca simply was too slow (his paper on the vectorial nature of his field
was submitted around the same time as these four, but did not yet include any work on the
quantization of that field), Dirac had recently been burned when emphatically embracing
experimental results by the American experimentalist Robert Shankland, which seemed to
indicate energy non-conservation in the nucleus. These results were quickly disproven, leav-
ing Dirac wary of novel experimental results [Farmelo 2009]. Along with his general distrust
of matter-wave quantization and his growing distrust of quantum field theory in general, this
appears to have kept him from applying his wave equations to the meson, even though he
had expressly prepared them for just such an occasion.
34 Maybe Robert Serber in Berkeley needs to be included in this list: He claims to have been
the first one to have used Proca mesons [Serber and Crease 1998, pp. 45–46], but his only
publication on the matter is a short abstract, which does not indicate whether he actually
developed a quantum theory of such a field, which he called “dynaton” [Serber 1938].
35 Again, we encounter here something that looks like an application of a spin-statistics
theorem, but is not. It is simply the fact that if one wants to describe the interaction
between the two nucleons by a field, that field has to be bosonic and of integer spin for
the simple reason that the nucleons are fermions and have half-integer spin. If the spin-
statistics connection is thus established for a few fundamental building blocks, it spreads to
all the particles and fields these elementary building blocks couple to (nuclei, atoms) and
with (mesons). Pauli in fact was initially quite opposed to existence of elementary charged
bosons (Letter to Heisenberg, 14 June 1937) and expected the mesons to be fermions. But
their association with Yukawa’s U quanta put the bosonic nature of the mesons beyond
doubt for the time being.
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vector field (now identified as a spin 1 field) as the next-simplest case36, namely k = 1
and l = 1/2. Aκλ is then identified with Proca’s field strength tensor Frs, while Bα̇

λ
is identified with Proca’s vector field ψr. He further showed that there was a second
way of transcribing the spinor theory with k = 1 and l = 1/2 into vector notation:
Since the spinor notation said nothing about the transformation properties of the
field under parity transformations, Bα̇

λ could also be identified as a pseudo-vector.
He further showed that Dirac’s framework could be used to describe a Klein-Gordon
field – one only had to loosen the condition that A and B were totally symmetric in
their undotted and dotted indices, and allow for fully antisymmetrized spinor indices
as well. Since the spinor indices can only take the values 1 and 2, antisymmetry is only
an additional option for fields with exactly two indices37. Allowing for antisymmetric
indices thus gives exactly one additional option, with the same index numbers as the
Proca theory, k = 1 and l = 1/2. Aκλ with antisymmetrized indices then has only one
degree of freedom, which is identified with the scalar (or pseudo-scalar) Klein-Gordon
field, while Bα̇

λ is identified with the divergence of that scalar field. B can be elimi-
nated from the field equations, and one obtains the Klein-Gordon equation. Kemmer
had thus identified four additional cases in Dirac’s formalism: Vector (Proca), Pseudo-
Vector (new), Scalar (Klein-Gordon-Pauli-Weisskopf) and Pseudo-Scalar (new).

He then claimed that this was in fact all: These were all the sensible field theories
one could formulate for the meson. Fields with a spin greater than 1 would lead to
serious difficulties, since their energy densities were not positive definite, which was
of course, according to Pauli’s criteria, a deathblow for any bosonic theory. Kemmer
therefore stuck with these four, analyzed the corresponding quantum theories in anal-
ogy to Pauli and Weisskopf, and finally concluded that of these four only the vector
(Proca) theory (which had also been studied by Bhabha, Stueckelberg and Yukawa)
would be able to correctly reproduce the correct sign and spin-dependence of the
proton-neutron interaction. It was thus this theory of the meson which he further
pursued, together with Heitler and Fröhlich, and which became the initial theoretical
basis for meson theory.

The further development of meson physics is again described by Cassidy and also in
Kemmer’s reminiscences. It is no longer of immediate relevance to our story. Instead,
it is again time to assess the status of the spin-statistics connection in the year 1938, as
it presented itself to Wolfgang Pauli, who now once again becomes the central figure
of this paper. He was aware of the results of both Kemmer and Hoyle (the latter
being unpublished), and he was in direct contact with the former and also exchanged
letters with the latter’s supervisor, Rudolf Peierls. Similar results had been obtained
by Pauli’s own diploma student, Joseph Maria Jauch [Jauch 1938]. These results
seemed to indicate that there was only a very limited number of possible relativistic
quantum field theories, describing particles of spin 0, 1/2 or 1. For the scalar case, he
himself had shown that only bosonic quantization was possible, while for the spinor
case the necessity of fermionic quantization was a result of Dirac’s hole theory38.
Finally, no formal proof had been brought forth concerning the necessity of bosonic
quantization for the Proca (i.e., the massive vector) equation, but the existence of
36 There is always the possibility of switching k and l, which gives the complex conjugate
representation, which is however equivalent in all cases considered.
37 Fields with less than two indices have no symmetry properties, while fields with more
than two indices must always have at least two identical indices and can thus not be
antisymmetrized.
38 As pointed out by Duck and Sudarshan, the latter argument was turned into a more
formal argument, akin to the original reasoning of Pauli and Weisskopf, by Iwanenko and
Socolow in 1937, using a charge-symmetric theory of electrons and positrons. Their paper
appears to have been ignored by Pauli, who continued to prefer the seemingly more physical
argument based on the Dirac Sea.
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that necessity was certainly generally believed in, especially due to the close relation
of the Proca theory with both the Maxwell and Pauli-Weisskopf theories. The latter
analogy had, in fact, been pointed out to Proca immediately after he first published
his equation in 1936, in a letter from Rosenfeld (August 1936):

[I]t seems to me that the quantization of your complex vector will cause, as
far as the exclusion principle is concerned, the same difficulties as the scalar of
Pauli-Weisskopf; Fermi statistics will not be obtained for the same reasons as
those given in the work of these authors. (Archives de l’Académie des Sciences
de Paris, fond Alexandre Proca, correspondance scientifique)39

To conclude, in 1938 the space of possible particle descriptions, both concerning the
allowed underlying classical field theories and the respective allowed quantization
procedures, seemed to be entirely mapped out.

Pauli, however, believed that the arguments by Hoyle and Kemmer which ex-
cluded spins greater than 1 were not conclusive, and that it should be possible after
all to construct quantum field theories from Dirac’s (classical) wave equations for an
arbitrary spin. Together with his new assistant Markus Fierz, he set himself to con-
structing general quantum field theories for arbitrary spin, thus in turn opening up
the possibility of a general spin-statistics theorem, which did not simply categorize a
limited number of possible field theories, but provided a general classification of an
infinity of relativistic QFTs according to their spin and the statistics they necessarily
obeyed.

6 Quantum field theories for an arbitrary spin

How is it that Pauli started to distrust the arguments of Hoyle and Kemmer? After
all, they were based on the conditions he himself had formulated in 1935, namely that
a sensible quantum field theory would need either a positive energy density (bosonic
quantization) or a positive charge density (fermionic quantization). But, in discussing
Hoyle’s work with Peierls, he began to wonder whether these conditions might not
be too restrictive, if they really ruled out quantum field theories with a spin greater
than 1. As he would later write to Heisenberg (28 May 1938):

It also seems logically satisfying to me, that in a theory in which the rest
masses of the particles are arbitrary, the spin should be arbitrary as well.

Pauli argued (Letter to Peierls, 19 March 1938) that one could well have a (bosonic)
theory with an energy density that was not positive definite, as long as the total
energy, i.e., the integral of the energy density over space, was positive definite40.
And he claimed that this was the case for integer spin quantum fields with spin
greater than 1. Hoyle’s results seemed to indicate the opposite, and a debate between
Pauli and Peierls/Hoyle ensued. Hoyle had been working with zero-mass fields, most
probably since his original interest had been in describing higher spin neutrinos, and
Peierls originally hoped that this fact might explain the discrepancies (Peierls to Pauli,
24 March 1938), but it turned out that Hoyle had neglected the effect of the auxiliary

39 Many thanks to Adrien Vila Valls for making this letter available to me and helping with
the translation.
40 It was not the first time that Pauli had brought forth such an argument: In his review
article on relativity theory [Pauli 1921], which had made his fame as a young man, Pauli
had already (with greater rigor than Einstein before him) made an analogous argument
concerning the energy of the gravitational field. It is uncertain whether he already realized
or suspected at this point that the difficulties in general relativity and in field theories with
arbitrary spin were related: This only became evident when Fierz and he identified the
massless spin 2 field with the gravitational field somewhat later.
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(gauge) conditions (Peierls to Pauli, 14 May 1938). Similarly, the total charge of half-
integer spin fields with spin greater than 1/2 also turned out to be positive definite.
There was thus nothing in the classical field theory that prevented spins greater than 1.
Peierls and Hoyle briefly claimed that new difficulties would arise after quantization
(Peierls to Pauli, 14 May 1938), but this claim could also be rebuffed: Hoyle had been
calculating with canonical (equal-time) commutation relations of the sort introduced
by Heisenberg and Pauli; these were however not relativistically invariant. When Fierz
performed the same analysis with relativistically invariant commutators (analogous
to those first employed by Jordan and Pauli for the free electromagnetic field in
1927), the problems encountered by Hoyle disappeared (Pauli to Peierls, 25 May
1938). Peierls and Hoyle finally conceded, and Hoyle had to give up his Ph.D. thesis,
as his results had turned out to be deeply flawed. He ended up never obtaining his
PhD.41 Fierz, on the other hand, published his results on the quantization of field
theories with arbitrary spin using manifestly Lorentz-invariant commutators as his
Habilitationsschrift [Fierz 1939], handed in on 28 July 1938 [Enz et al. 1997, p. 83].
This work included a first formulation of the spin-statistics theorem for arbitrary spins.

As was to be expected, the proof of the necessity of fermionic quantization for half-
integer spin was again a one-line proof: By explicitly constructing energy-momentum
tensors from the spinor fields, Fierz could show that theories with half-integer spins
greater than 1/2 shared the property of the Dirac equation of having a non-definite
total energy. The exclusion principle was thus necessary in order to implement hole
theory. Concerning the converse proof for bosonic fields, on the other hand, Fierz pre-
sented a new derivation, which was however closely related to the original proof in the
1934 Pauli-Weisskopf paper, referring directly to an inconsistency in the formulation
of the commutation relations and thus lacking a clear physical interpretation.

Why did not Fierz attempt a generalization of Pauli’s 1935 method, which had
been the most physical proof of a connection between classical field theory and bosonic
quantization so far? The simplest explanation seems to be the following: Pauli’s proof
as it stood appeared to rely essentially on varying the expression for the charge-
current density, and this variation, which, as has been pointed out, was problematic
from the start, was very difficult to generalize to the more complicated expression for
the charge-current density of a field with arbitrary integer spin. Fierz thus instead
opted to retreat to a purely formal proof, which made no use of observable quantities,
not even of the energy.

A first step was to take a new look at Dirac’s 1936 equations, which were really
equations for fields with an arbitrary number of spinor indices, and investigate how
they related to the actual physical quantity of spin. The connection between the
vectorial field and spin 1, about which Proca had been confused a few years earlier,
was now common knowledge, thanks to meson theory. Fierz, however, was the first to
systematically establish a general relation between spinor index configurations and the
physical spin. Physical spin here means mechanical spin only, since the magnetic spin is
only defined for fields coupled to an electromagnetic potential; Fierz’s paper, however,
dealt only with free fields, for reasons which I will discuss later on. The mechanical spin
could be determined by going to the rest frame of a classical wave and determining the
number of linearly independent plane wave solutions (i.e., polarizations); a spin of f
then corresponds to 2f + 1 possible polarizations42. Fierz could thus identify many
redundancies in Dirac’s equations, where different index configurations corresponded

41 The question whether his later claims that this was mainly for tax reasons are accurate
is beyond the scope of this paper.
42 The existence of a rest frame of course necessitates a nonzero mass for the quanta asso-
ciated with the field. Fierz dealt with the special case of vanishing rest mass, which had so
troubled poor Hoyle, in an appendix.
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to the same physical field: While Dirac had categorized his fields according to two
integer or half-integer numbers k and l, Fierz could show that their physical properties
only depended on the sum k+ l and that the spin f was equal to k+ l− 1

2 . He could
then, from demands of relativistic invariance (generalizing the work of Jordan and
Pauli), construct a general (i.e., for arbitrary spin) commutation bracket between the
(Fourier coefficient of the) field a(k) and its complex conjugate, which in the rest
frame took the simple form:

[a(k), a∗(k′)] = Cδkk′ω2f−1
k (11)

where C is a positive constant, ωk is the frequency of the wave (which in the rest frame
is only periodic in time and not in space), and the bracket on the left-hand side can (a
priori) signify either a commutator or an anti-commutator. The wave equations allow
for two possible frequencies for the plane wave solutions, namely ±mc2/�, as was well
known from the Klein Gordon and Dirac equations. This meant that the right-hand
side was positive definite only for half-integer spin. On the other hand, if the bracket
on the left-hand side was taken to be an anti-commutator it was certainly positive
definite for k = k′43. Consequently, Fierz deduced that fermionic quantization with
anti-commutators was not possible for integer spin theories and concluded:

The above considerations appear to furnish a proof of the long-conjectured
connection between spin and statistics.

Our story is now almost done: Fierz had proven the spin-statistics connection for
arbitrary spins; all possible quantum field theories with which microscopic particles
could be described had been mapped out. There were of course still major desiderata:
In particular the simple but major fact that Fierz’s results applied only to free fields.
Setting up the general field equations for the interaction with an electromagnetic
field was the next major focus of research in Zurich – and the difficulties encountered
thereby again put into doubt for a while the existence of spins greater than 1. These
developments, which culminated in a joint paper by Pauli and Fierz [Fierz and Pauli
1939], nowadays mainly famous for identifying the spin 2 field with the gravitational
field of general relativity, are already beyond the scope of this paper.

I will concern myself with one last development: Pauli’s proof of the spin-statistics
theorem, also limited to the case of non-interacting fields. Pauli’s proof went beyond
that of Fierz in the same way as Pauli’s considerations of his 1935 Paris talk went
beyond those stated in the paper with Weisskopf: Instead of presupposing the precise
form of the commutators, the energy densities, etc., Pauli deduced his proof from very
general properties of the different spin field strengths and also returned to the phys-
ical reasoning of his 1935 talk, namely to the commutability of space-like separated
observables.

7 Pauli’s proof
Even Pauli’s celebrated proof was not originally intended as the subject of a stan-
dalone paper on the spin-statistics theorem. It was originally only written as part of a
joint presentation of Pauli and Heisenberg for the 1939 Solvay Conference. The topic
of the conference was to be the theory of elementary particles, and Heisenberg had
been asked to give a report on “general questions, limits of the current theory, the
notion of elementary particle” (Letter from Heisenberg to Pauli, 20 April 1939). In
preparing this report, Heisenberg asked Pauli whether he might not be willing to take
43 The same statement about lacking rigor by modern standards that was made for the
analogous Pauli-Weisskopf proof applies here – the singular behavior for equal arguments of
the operators necessitated a more involved treatment in later years.
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on the first part of the report, which Heisenberg envisioned as dealing with the “gen-
eral properties of elementary particles”, in particular, mass, spin, statistics and wave
equations (with and without interaction), a subject area which Heisenberg rightly
felt Pauli to be an expert on (Heisenberg to Pauli, 23 April 1939). Pauli grudgingly
accepted:

As much as it goes against my laziness to write such a report myself, I do
believe that there are no objective reasons which would allow me to decline
your suggestion [...] I do, however, want to make the counter-suggestion that
I do not deal with interactions [...] and call the whole section [...] “Relativistic
Wave Equations of force-free Particles and their Quantization.” I would then
also treat the connection between spin and statistics [...]

So Pauli set to work. We must now briefly address the question whether the proof
of the spin-statistics theorem he thus provided was predated and possibly influenced
by other demonstrations of the spin-statistics connection which appeared around the
same time. The first was by Fredrik Jozef Belinfante [1939], at the time PhD student
of Hendrik Kramers in Leiden. Since Belinfante’s proof of the spin-statistics theorem,
based on the novel conception of charge conjugation invariance, which his PhD su-
pervisor had recently proposed [Kramers 1937], was published before Pauli’s, it has
been assumed [Schweber 1994] or at least implied [Duck and Sudarshan 1997] that
Pauli’s work was influenced by Belinfante. However, a closer look at the chronology
shows that this is highly improbable44.

On June 10th, Pauli sent a preliminary table of contents for his part of the report
to Heisenberg and remarked on the paragraph containing the “connection between
spin and statistics” that the proofs contained therein (he was already finished with
that part) “ought to be new in this form.” Three days later, he wrote to Kemmer that
he had finished the Solvay report. The report was then sent out at some point before
the official deadline (July 1st) and a copy of the manuscript, which was forwarded
to Niels Bohr, either by Pauli himself or by the conference committee, is extant and
reprinted in [von Meyenn 1993]. It differs from the final published version of Pauli’s
proof [Pauli 1940] only in minor details. Belinfante did not submit his paper until a
few weeks later, on July 15. It was published in the October Issue of Physica. There
is absolutely no indication that Pauli was aware of Belinfante’s work prior to its
publication.

It thus seems legitimate to end this paper by only discussing Pauli’s proof, while
leaving Belinfante’s proof to a future work on the history of the spin-statistics connec-
tion after Pauli, where the connection with charge-conjugation (and CPT) invariance
takes center stage. However, Belinfante’s work is relevant to our story in an indirect
way: After its publication, Pauli wrote to Kramers that Belinfante’s proof was incor-
rect (sketching his own, as yet unpublished, proof as the correct one) and asked him to
have Belinfante write a retraction. Instead, Belinfante (according to his recollections
[Enz 2002, p. 334]) wrote a paper in which he clarified the relation between the two
proofs, which was then published under the name of both Belinfante and Pauli [Pauli
and Belinfante 1940]. It was only in this paper (or rather in the letter to Kramers that
had led to it) that the two axioms on which Pauli’s proof was based were explicitly
stated, in order to distinguish Pauli’s proof from Belinfante’s, which was based on the
axiom of charge conjugation invariance – I will return to Pauli’s axioms in due time.

The other demonstration of the spin-statistics theorem which appeared around
this time, again in the context of a Ph.D. thesis, was by Jacobus Stephanus de Wet

44 This is not to say that Pauli’s decision to publish his proof in a separate paper was not
influenced by the appearance of Belinfante’s proof. That, I would say, is highly probable,
but the evidence is entirely circumstantial.
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[1940], who got his PhD in Mathematics at Princeton in 1940, though he was in
close contact with the local physicists, in particular Eugene Wigner. Again, we can
basically exclude an influence of de Wet on Pauli; de Wet’s results weren’t published
until 1940, and there is no indication that Pauli was aware of his work until he himself
moved to Princeton in the same year.

So, again it seems legitimate to delegate a full discussion of de Wet’s proof to
a future paper. Also de Wet’s work, however, is relevant to our discussion in one
aspect: Pauli addressed de Wet’s proof in a footnote added to his own proof when it
was – the Solvay Conference 1939 having been cancelled because of the outbreak of
the war – translated to English and published in the Physical Review after Pauli’s
move to Princeton in the summer of 1940. Pauli criticized de Wet for his use of
canonical equal-time commutation relations. These, Pauli argued, did not apply to
spins greater than 1, as he had learned in his discussions with Peierls and Hoyle. From
a contemporary viewpoint, de Wet’s proof may seem superior to the one of Pauli [Duck
and Sudarshan 1997]: Physicists have learned to accept the special importance of field
theories with spin equal to or less than 1, due to considerations of renormalizability,
and feel comfortable with a proof of the spin-statistics theorem which confines itself
to the small spin values and then generalizes by constructing the higher spins from
the smaller ones. This criticism, however, misses the point of what Pauli’s proof is
all about in its historical context: It is the capstone in the development of a general
quantum field theory for arbitrary spins, with which any conceivable new particle
might be described and categorized.

And indeed it is this universality which Pauli himself saw as the main merit of his
work: The principles Pauli’s proof was based on offered no new insights with respect to
the deliberations of the preceding decade; the two cases still had to be proven by two
separate lines of argument, and in a letter to Heisenberg from 7 August 1939, Pauli
consequently spoke of “proofs” rather than “proof.” The major advance, as Pauli
stressed in the same letter, was the “generality” of the proof. Since Fierz had already
explicitly constructed a “relativistic theory for particles with spin > 1, fulfilling all
physical requirements” (Letter from Pauli to Weisskopf, 10 March 1940), Pauli could,
in order to get as simple, elegant and general a proof as possible, return to Dirac’s
original conception, where the field quantities were only defined by the number of
dotted and undotted spinor indices, and did not have to concern himself with questions
of redundancy and the actual physical spin, except in some introductory remarks.

With this classification alone, he was able to determine general properties of ten-
sors constructed from the fields, in particular of second-rank tensors. He was thus
able to prove the essential properties of the energy-momentum tensor without having
to construct it explicitly, as Fierz had done. To this end, he first identified a transfor-
mation that would leave any homogeneous and linear field equation (i.e., describing a
field interacting neither with an external source nor with itself) invariant. Although
Pauli did not do so explicitly, this transformation can be identified as a simultaneous
spatial and temporal reflection at the origin, a TP transformation in modern par-
lance45. Since this transformation left the field equations invariant, it transformed
solutions of the field equations (i.e., physically allowed field configurations) into other
solutions. Pauli then showed that any second-rank tensor constructed from fields with
half-integer spin would change sign under such a transformation. This implied that for
any physically allowed classical field configuration with a positive total energy there
was another physically allowed field configuration with negative total energy. The
necessity of fermionic quantization then followed in the usual way, through appeal to
hole theory and the first of the axioms that Pauli had identified in his paper with
Belinfante, namely the demand for positive total energy.

45 See [Duck and Sudarshan 1997], who refer to this transformation as strong-reflection.
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The second axiom, which was needed to prove the integer spin part of the theorem,
was identified by Pauli as the commutability of space-like separated observables. This
was a generalization of the axiom postulated in his 1935 Paris talk, where he had sin-
gled out the commutability of the charge density at points with space-like separation.
While his motives for this step most certainly included the wish for generality, there
is also an indication that he might have been uncomfortable focussing on the charge
density: This quantity was really only observable when there was an external elec-
tromagnetic field, and, as already indicated, there were still substantial issues to be
solved in such an interacting theory (see in particular a letter from Pauli to Kemmer
from 24 November 1939). This axiom allowed Pauli to derive the general structure
of the field commutation brackets, again avoiding the kind of explicit construction
that Fierz had performed in his paper. The general structure he obtained for the
commutation bracket of an integer spin field U with his complex conjugate was

[U(x), U∗(x′)] = even number of derivatives of D(x− x′) (12)

where the D function is the generalization of Jordan and Pauli’s original Δ function,
which had been only applicable to massless fields such as the electromagnetic field,
and, as with Fierz, it is a priori undefined whether the bracket denotes a commutator
or an anti-commutator. However, using arguments akin to those used originally by him
and Weisskopf and later by Fierz, Pauli could show that the even number of derivatives
of the D function (for half-integer spin, he found an odd number of derivatives) was
only compatible with interpreting the bracket as a commutator, and thus with Bose
statistics.

8 Conclusions

Pauli’s paper famously concludes with the words

In conclusion, we wish to state, that according to our opinion the connection
between spin and statistics is one of the most important applications of the
special relativity theory.

When Gregor Wentzel presented Pauli’s result at the end of his highly influential
textbook on quantum field theory three years later [Wentzel 1943], he almost copied
Pauli’s appraisal, but with a telling shift of emphasis:

It is doubtless one of the most beautiful successes of the quantum theory of
fields that it – in connection with the postulates of the theory of relativity –
delivers a general theoretical explanation for the connection between spin and
statistics.

Pauli’s proof was seen as a great achievement for quantum field theory – a theory
which in the first decade or so of its existence had been almost universally distrusted
and dismissed (see for example [Rueger 1992]). Building on Fierz’s explicit construc-
tion of quantum field theories for arbitrary spin, it established quantum field theory
as a universal framework, able to describe any particle imaginable that might pop up
in cosmic rays, and more than that, it was even able to function as a guide by limiting
and organizing what could be considered imaginable in the first place. Most succinct,
even in its understatement, is perhaps Pauli’s own assessment of the relevance of the
spin-statistics theorem and its impact on the status of quantum field theory, which
he expressed in a letter to Heisenberg on 28 May 1938 (that is, after Fierz’s proof):

It is rather interesting that by itself the integer spin has to be quantized ac-
cording to Einstein-Bose, the half-integer according to Fermi-Dirac [...] for that
has not been put in by hand. (Emphasis by the author)
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By setting aside for the time being the difficulty of field interactions, these results also
appeared untarnished by the divergence difficulties of quantum field theory, allowing
Pauli to also use manifestly covariant methods, usually set aside in favor of the more
tractable rough-and-tumble canonical methods when calculating actual physical pro-
cesses. This return to manifest covariance, furthered then by Wentzel’s textbook, was
an important element in the reinvention of quantum electrodynamics by Tomonaga
and Schwinger a few years later.

Certainly Pauli’s proof was lacking in one fundamental aspect, not just by modern
standards: It basically consisted of two separate proofs for half-integer and integer
spin particles. This established a dichotomy between fermions and bosons, which
has persisted despite more modern proofs in the context of axiomatic QFT which
derive the entire spin-statistics theorem in a unified manner [Massimi 2005]. The
enduring status of Pauli’s proof and the importance that has been assigned to it ever
since, can only be appreciated if one sees it as what it was in its historic context:
A triumph for quantum field theory and, after a decade of grave difficulties, that
theory’s (re-)establishment as a candidate for a theory of everything.
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