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Abstract Plant cell growth is regulated through manipulation of the cell wall network, which consists of
oriented cellulose microfibrils embedded within a ground matrix incorporating pectin and hemicellulose
components. There remain many unknowns as to how this manipulation occurs. Experiments have shown
that cellulose reorients in cell walls as the cell expands, while recent data suggest that growth is controlled
by distinct collections of hemicellulose called biomechanical hotspots, which join the cellulose molecule
together. The enzymes expansin and Cel12A have both been shown to induce growth of the cell wall;
however, while Cel12A’s wall-loosening action leads to a reduction in the cell wall strength, expansin’s
has been shown to increase the strength of the cell wall. In contrast, members of the XTH enzyme family
hydrolyse hemicellulose but do not appear to cause wall creep. This experimentally observed behaviour
still awaits a full explanation. We derive and analyse a mathematical model for the effective mechanical
properties of the evolving cell wall network, incorporating cellulose microfibrils, which reorient with cell
growth and are linked via biomechanical hotspots made up of regions of crosslinking hemicellulose. Assum-
ing a visco-elastic response for the cell wall and using a continuum approach, we calculate the total stress
resultant of the cell wall for a given overall growth rate. By changing appropriate parameters affecting
breakage rate and viscous properties, we provide evidence for the biomechanical hotspot hypothesis and
develop mechanistic understanding of the growth-inducing enzymes.

1 Introduction

Faced with climate change and population growth,
humanity needs plants that can cope with extreme
weather events, diseases and rising demands on yield.
As a result, understanding plant growth is essential
to secure a sustainable future [1,2]. Modification and
adaptations to the plant genomes can provide a solu-
tion to optimising plant development. However, there
remain many intriguing mysteries behind the mecha-
nisms underlying plant growth.

As plants grow, their cell walls need to be strong
enough to resist bursting but weak enough to allow
permanent expansion. Controlled cell wall growth is
an amazing feat, where some cells can increase in vol-
ume by over 30,000 times as they move from the meris-
tem into maturation [3]. The driving force behind cell
growth is the isotropic turgor pressure maintained by
the uptake of water into the vacuole accompanied by an
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increase in cytoplasmic volume. This pressure inflates
the cell membrane whose expansion is then restricted by
the cell wall (a balloon in a box) creating a great tension
in the cell wall, equivalent to 100–1000 atmospheres of
tensile stress [3]. A stressed cell wall will deform elasti-
cally or plastically depending on the cell wall mechan-
ical properties. Plastic deformation or growth begins
when the mechanical load (turgor pressure) exceeds
some critical value (yield threshold). This extension
leads to thinning of the cell which can be balanced by
the deposition of new wall material to maintain cell wall
integrity. Since turgor acts in all directions, cell walls
must be highly anisotropic to allow directional growth.

One of the earliest models of plant cell growth in one
direction was the Lockhart equation, which states that
the relative elongation rate, α∗, is proportional to the
turgor pressure, P ∗, if it is above a yield threshold, Y ∗
[4]. This idea is expressed in the form:

α∗ =
1
L∗

dL∗

dt∗
=

{
0, P ∗ ≤ Y ∗,
φ∗(P ∗ − Y ∗), P ∗ > Y ∗,

(1)

where L∗ is the length of the cell and φ∗ is the extensi-
bility. If the pressure does not exceed the yield thresh-
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old, the cell does not grow as the turgor cannot over-
come the strength of the wall. In this article, we use
the word “strength” to imply the cell wall’s ability to
resist deformation. This formulation was a useful ini-
tial model, but our understanding of plant growth has
now improved. Rather than changes in turgor pres-
sure, growth is often controlled via careful manipulation
of the cell wall, which results in changes to the yield
threshold or the extensibility [5]. General reviews on
mechanical modelling of plant growth can be found in
[6–8], while further information on the biological details
can be found in [5,9–11].

In this paper, we create a mathematical model to
investigate the interplay between cell wall structure and
enzyme action in order to understand experimentally
observed behaviour. Enzyme action is a crucial pro-
cess in cell wall growth; however, it is generally under-
researched in the biological context with even less mod-
elling undertaken [6,12].

The cell wall consists of three main components,
cellulose (CMF), hemicellulose (e.g arabinoxylan or
xyloglucan) and pectin [5,9,13–15]. The cell wall prop-
erties are carefully mediated via active control of the
wall’s mechanical structure (e.g. by enzymatic action
or new material deposition), altering either the yield or
the post-yield behaviour and ultimately affecting the
direction and rate of growth.

On the microscale, bond breakage and polymer net-
work rearrangement (wall loosening) result in the relax-
ation of wall stress, allowing for the viscous flow
of the cell wall. Cell wall loosening can be medi-
ated by the action of proteins or enzymes, such as
expansins, xyloglucan endotransglucosylase/hydrolase
(XTH), and pectin-modifying enzymes, and are regu-
lated by the action of hormones (morphogens), such as
auxin, gibberellins, and abscisic acid [3,10].

Cellulose are long and stiff molecules embedded in
a matrix of hemicellulose and pectin. Cellulose are
deposited in the cell wall in lamella layers at a vari-
ety of angles [16], typically perpendicular to the growth
direction, circling the cell, where they reinforce the
cell against radial expansion [9]. Cellulose molecules
are also responsible for resisting the majority of the
cell wall tension [17]. Experimental observations of the
cell wall have found that cellulose molecules are trans-
versely directed after deposition in the inner cell wall
and reorient to a longitudinal direction as they move
to the outside of the cell wall during growth [18–22],
however this might not always occur [23].

How the rings of cellulose are connected is not pre-
cisely known [12]. It was previously thought that cellu-
lose molecules are joined together via a tethered net-
work where the cellulose fibres run parallel to each
other and are continuously joined together by hemicel-
lulose, which form hydrogen bonds with the cellulose
and peel off when the network is deformed [10]. There
are several problems with this theory. Simulations have
revealed that assuming a tethered network structure
results in a much weaker cell wall than experimentally
observed [24]. It was also found that some plants that
lack xyloglucan (mutant forms of Arabidopsis and cel-

ery) displayed only a small amount of growth reduction
[14] implying the role of xyloglucan in cell wall strength
could have been exaggerated. According to a finite ele-
ment model featuring a network of cellulose molecules
tethered together by hemicellulose via hydrogen bonds,
a deformed network is not strong enough to withstand
the strain caused by turgor [25]. These studies present
evidence that the tethered network model is not a feasi-
ble explanation as to how the cell wall retains integrity.
These results emphasise the mechanical role of other
molecules like pectin and suggest that when xyloglucan
is present, it could be concentrated around a limited
number of distinct biomechanical hotspots (hotspots)
where cellulose molecules come into close proximity
with one another [14].

These concentrated hotspots could allow for con-
trolled extension of the cell wall where these distinct
spots are selected to allow slippage [9,10,14,26]. Pectin
is also theorised to have a role to play in these hotspots
[16]. A model testing this theory considered a network
of cellulose connected by hotspots represented as lin-
ear springs [27]. The model hypothesises that a group
of short xyloglucan strands is stiffer than a single long
strand, and when combined with pectin, the cell wall
can produce the requisite wall stiffness to oppose tur-
gor. The hotspot hypothesis claims that a small amount
of degradation of the hotspots could lead to the load
being carried by pectin, which then enables the viscous
flow of the cell wall, providing a possible mechanism for
growth.

Some enzymes affect the cell walls and possibly inter-
act with the hotspots. Note that in this article, we
refer to “wall loosening” as the action that directly
causes stress relaxation, creep and hence growth, and
“wall softening” as a decrease in the Young’s modu-
lus [10]. XTH has been shown to have a hydrolysing
action on the cell wall where it can cut and rejoin
xyloglucans; despite this observed effect, it strangely
does not induce significant cell wall extension [3,10].
Cel12A, an enzyme present in fungi, has been shown to
cause wall loosening. It has been suggested that Cel12A
targets the hotspots by performing hydrolysis at these
sites and leads to a reduction in wall strength [10,28]
and thus causes both wall loosening and wall softening
[12]. Modelling efforts have offered an explanation of
why these two enzymes hydrolysis action’s have differ-
ent effects; using coarse-grained molecular dynamics it
was found that cellulose is the main load-bearing com-
ponent, which could be the reason why enzymes purely
targeting xyloglucan are ineffective [17]. Expansin is a
pH-controlled wall-loosening protein [3]. Some exper-
iments have shown expansin action to induce growth
[12,29], while in contrast, other tests have observed the
cell walls withstand more force without bursting [10].
Unlike Cel12A, Expansin action seems to loosen but
not soften the wall [12], but the mechanism remains
unknown. There has been no observed enzymatic action
by expansin [30], so this effect could be due to force dis-
sipation by α-expansin. It is hypothesised that expansin
targets the hotspots as there is evidence that they
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act on cellulose–cellulose sites [12,26] where they may
induce slippage of the fibres [30,31].

This paper aims to produce a proof-of-concept model
to test the plausibility of the hotspots hypothesis as an
explanation for observed enzyme behaviour. We focus
on inner tissues cells with predominately transversely
orientated CMF with negligible cell division, for exam-
ple cells within the root elongation zone [32–34]. We
model the primary cell wall as a continuum incorporat-
ing crosslink dynamics (between cellulose and hemicel-
lulose) and calculate the stress resultant when acted on
by a prescribed growth rate. Using the model, we exam-
ine hypothesised expansin, Cel12A and XTH enzyme
action, and investigate the consequences of cellulose
reorientation. This model is designed to be a simplifica-
tion of the system in order to test the feasibility behind
proposed wall structure and protein mechanisms. The
focus is therefore on the cellulose crosslinks and not
on the pectin ground matrix, whose direct contribu-
tion (which was discussed in [35]) shall be neglected
in the model, while its possible cellulose crosslinking
will be incorporated. We begin with an explanation
of the mathematical model of the cell wall in Sect. 2.
This is followed by an analysis of the model outputs
and a discussion of the implications of these findings in
Sect. 4. We summarise the results and draw conclusions
in Sect. 5.

2 Model formulation

The model comprises three distinct aspects of cell
wall dynamics: the emergent macroscopic stress and
CMF orientation evolution from the microscopic cell
wall network (Sect. 2.2.1), hotspot bond density evo-
lution (Sect. 2.2.2) and enzyme action (Sect. 2.2.3).
We will first detail the assumptions behind each aspect
(Sect. 2.1), before deriving the relevant governing equa-
tions (Sect. 2.2). This model is based on the framework
originally developed in [35], with significant differences
in the treatment of material properties, network compo-
sition and fibre orientation evolution. We will simplify
the governing equations through nondimensionalisation
(Sect. 2.3) and solve the resulting system (Sect. 3). The
solutions are further simplified via asymptotic reduc-
tion (Sect. 3.2) providing insights into the principal
components controlling cell wall behaviour.

2.1 Model assumptions and set-up

The crucial output of the model is an expression for the
axial stress resultant Σ∗ of the cell wall (see Fig. 1).
This stress resultant captures the strength of the cell
wall generated by the underlying polymer network, as
well as the relationship between turgor pressure and
the growth rate; higher values of turgor increase the
load on the cell wall, resulting in raised stress levels
and possible further extension of the wall. The stress
resultant is calculated by summing up the stress held
by each component of the cell wall polymer network

Fig. 1 An idealised segment of the cell wall. The two
curved (light blue) surfaces are the two boundaries of the
cell wall. The thick (purple) rods represent the cellulose
molecules reorienting as they approach the outside of the
cell wall. The groups of thin (orange) fibres represent the
hotspots which become increasingly stretched as they tra-
verse to the outside of the cell. Equation (2) imposes this
movement and deformation in the x-y plane. Note that the
figure represents a simplification of biological reality as per
the model, where biomechanical hotspots are distributed
throughout the domain according to some dynamical den-
sity

at all points in the cell wall. We assume that the cell
wall is an evolving continuum with embedded cellulose
molecules that are initially orientated perpendicularly
to the axial direction. As the cell wall elongates, with
growth rate α∗, all molecules are stretched, and the cel-
lulose molecules are additionally reoriented. These cel-
lulose molecules are connected by a mix of cell wall com-
ponents including hotspots crosslinks as described in
Sect. 1 where the hotspot bond density and the hemicel-
lulose number functions are n∗

hot and n∗, respectively. (∗
denotes dimensional quantities throughout.) All func-
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tions that represent the whole hotspot are denoted with
a subscript hot ( hot ) where functions that represent
a single fibre are without. This bond density is depen-
dent on the energy held in the fibres, meaning that as
they get increasingly stretched via cell wall extension,
they become more likely to break. As we are examin-
ing the principal growth direction, forces are resolved
in this direction. Therefore, only axial hemicellulose
are included since mechanically they matter the most.
Enzyme action will be modelled by changes in the bond
density evolution parameters. The wall segment is ini-
tially unstressed at time t∗ = 0 and undergoes uniform
stretching in such a way that the cell wall grows with a
fixed growth rate α∗. We now explain how this growth
rate is imposed.

We introduce the coordinate system (x∗, y∗, z∗) with
the origin positioned on the edge of the outer wall
(Fig. 1). The cell wall is stretched in the axial x∗
direction with the y∗, z∗ directions being perpendicu-
lar to the growth direction, such that y∗ points radially
inwards, and z∗ tangential to the cell wall. We define θ
to be the angle between the cellulose fibres and the z∗
axis. New wall material is deposited on the inner sur-
face of the wall at y∗ = h∗, moves through the wall at
rate α∗ until it reaches the outer wall surface at y∗ = 0.
We therefore model the growth via the incompressible
flow field,

u∗ = α∗(x∗,−y∗, 0) for 0 < y∗ < h∗, (2)

meaning that dx∗/dt∗ = α∗x∗ and dy∗/dt∗ = −α∗y∗.
This flow describes the material moving through the flat
x-y plane in a thin segment of the cell wall (Fig. 1 and
see figure 2 and 3 in [35] for further details). Due to the
modelling domain being thin, we assume the cellulose
molecules do not bend radially, and since there is no
stretching in the z∗ direction, the model simplifies to a
2D system.

We now consider how a generic element of cell wall
material changes in length as the cell wall stretches. Let
L∗(y∗, t∗) be the length of such a segment lying in the
x∗ direction. The material extends with rate

α∗ =
1
L∗

∂L∗

∂t∗
, (3)

and so segment is therefore under an axial strain of
s∗ = L∗

L∗
0

− 1 where L∗
0 is the natural length of the

material segment. If the initial length of a segment
positioned at y∗ = y∗

i at the non-constant deposi-
tion time t∗ = τ∗ is L∗

i , the segment length evolves
according to L∗ = L∗

i e
α∗(t∗−τ∗) on the characteristic

y∗ = y∗
i e−α∗(t∗−τ∗) (from Eq. 3). The evolving segment

length is then related to its position in the cell wall by
L∗ = L∗

i y∗
i

y∗ , encoding both its extension and trajectory.
As a result of this formulation, the system of equations
described in Sect. 2.2 will all be partial differential equa-
tions dependent on both time and space.

To consider the amount of wall material contained in
the wall segment and its deposition, we assume that at

the inner surface of the cell wall, material is deposited
such that constant cell wall thickness is maintained.
This new wall material then gets pushed through the
wall towards the outer surface via the flow (2). We
find that wall density remains uniform for all time,
assuming appropriate initial conditions (see appendix
A for details). When new fibres are deposited, they are
assumed to have zero stress and oriented in the z direc-
tion as they are yet to be subjected to tension or the
material flow. This assumption will be reflected in the
boundary conditions in Sect. 2.2.

2.2 Principal equations

2.2.1 Stress resultant from the composite cell wall

The total stress resultant from the composite cell wall in
the axial direction when growing in the axial direction
depends on the mechanical properties of each consti-
tutive (and evolving) part: the CMF which are bound
together by both the hotspots and other cell wall com-
ponents, the hemicellulose within the hotspots and the
surrounding pectin ground matrix. We assume a stan-
dard linear solid-like system, so the total stress σ∗
(taken from the stress components in the axial direc-
tion) is the sum of the stresses arising from the biome-
chanical hotspots σ∗

hot and the cellulose molecules σ∗
C

(Fig. 2).
We let σ∗

H be the stress held in a hemicellulose fibre
which we assume to be characterised by a Maxwell ele-
ment where the hemicellulose strain, sH , is equal to the
wall strain, s = sH . The Maxwell assumption means
that the hemicellulose strain is the sum of the elastic
and viscous contributions (stretching a spring and vis-
cous damper/dashpot in series), sH = sH,e +sH,v, with
the hemicellulose stress being equal to its elastic and
viscous stress, σ∗

H = σ∗
H,e = σ∗

H,v. This implies that

1
ν∗

H

∂σ∗
H

∂t∗
+

1
μ∗ σ∗

H =
∂s

∂t∗
, (4)

with the boundary and initial conditions of σ∗
H(h∗, τ∗)

= σ∗
H(y∗, 0) = 0 where τ∗ is the time the fibre is

deposited, h∗ the wall thickness, ν∗
H the hemicellulose

Young’s modulus and μ∗ the material constant of vis-
cosity. As each hotspot is a compact collection of hemi-
cellulose fibres, we assume that the stress arising from
the hotspots, σ∗

hot, is then the sum of the hemicellu-
lose stresses contained within it, meaning σ∗

hot = n∗σ∗
H .

Here it is assumed that the wall strain is uniformly dis-
tributed across all the fibres and that the deformation
is smooth, i.e. the strain in the fibres is the same as the
wall strain. It has been proposed that the strain dis-
tribution through the wall may be discontinuous, being
smaller at the hotspots [11]. This effect could be incor-
porated through extension of the fibres, for example
sH = δs or sH = s−δsC where sC is the cellulose strain
and δ < 1 and is some parameter to scale the amount
of strain imposed onto the hotspots. This would, how-
ever, incorporate yet another unknown parameter while
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Fig. 2 On the left a depiction of a single unit of the contin-
uum model with the cellulose (box A) and hotspot (box B)
contributions to the stress joined in parallel. The hotspot
stress σ∗

hot arises from a collection of hemicelluloses rep-
resented as Maxwell elements, consisting of a spring and
viscous damper/dashpot, crosslinked with bond number n∗

(where the red cross represents a bond breakage). The cel-
lulose stress σ∗

C is represented by a box that resists the
strain elastically proportionally to the cellulose’s angle θ.

The whole unit’s stress is then dependant on the biome-
chanical hotspot density n∗

hot such that when it is zero, the
only contribution is coming from cellulose crosslinked by
other molecules. On the right a representation of the cell
wall continuum consisting of the single units being progres-
sively stretched as they move through the cell wall causing
the individual hemicelluloses bonds and hotspots to break
(red crosses)

introducing little impact on the results. (It would scale
the breakage rate down and the stress resultant up
due to cellulose’s contribution.) Thus, discontinuity of
the strain is not considered. Importantly, even though
these hotspots are being strained the same amount, this
strain is being released by the viscous slippage of the
dashpots; so these fibres are under less elastic strain
than the wall. And as the fibre breakage rate is solely
dependent on this elastic strain (see Sect. 2.2.2), some
aspects of the discontinuity are already included in the
model.

Assuming the cellulose molecules are elastic, the
stress term for the CMF in the axial direction is then,

σ∗
C = ν∗

CsC sin θ, (5)

where ν∗
C is the Young’s modulus, θ the fibre angle,

sin θ a modifier that changes the cellulose stress as they
become increasingly reoriented to the axial direction,
and sC the strain of cellulose fibre, such that

sC =
L∗

C

L∗
C,0

− 1. (6)

where L∗
C,0 is the cellulose resting length.

The cellulose fibre angle θ and length L∗
C are ori-

entated and deformed by the flow u∗. Letting a be

the cellulose direction vector, we shall assume the cel-
lulose network is uniform in the x∗ and z∗-direction
as they are in the plane of the wall, and thus, a =
(sin θ, 0, cos θ). Assuming the cell wall is a composite
material with a preferred direction under an incom-
pressible, transversely isotropic viscous flow, the evo-
lution of the fibre director field, a, can be described by
[36],

∂a
∂t∗

+ (u∗ · ∇∗)a + ζ∗a = (a · ∇∗)u∗, (7)

where ζ∗ = a · e∗ · a represents the strain rate in the
direction of the matrix, with e∗ =

(∇∗u∗ + ∇∗u∗T
)
/2.

We now have an expression that describes how cellu-
lose fibres convect, stretch and reorient as they move
through the cell wall via the flow, u∗. Equation (7)
can be re-expressed in terms of θ using the definition
of a meaning ζ∗ = α∗ sin2 θ, and upon substituting in
Eq. (7) we obtain

cos θ
∂θ

∂t∗
− α∗y∗ cos θ

∂θ

∂y∗ + α∗ sin3 θ =α∗ sin θ,

(8)

− sin θ
∂θ

∂t∗
− α∗y∗ sin θ

∂θ

∂y∗ + α∗ sin2 θ cos θ =0. (9)
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Computing sin θ × (8) + cos θ× (9) and dividing the
result by sin θ cos θ yield

∂θ

∂t∗
− α∗y∗ ∂θ

∂y∗ − α∗ sin θ cos θ = 0, (10)

with boundary and initial conditions, respectively,
being θ(h∗, τ∗) = θ(y∗, 0) = θ0 (note θ0 �= 0, else the
solution is simply θ = 0 for all t∗ > 0).

From the derivation of Eq. (7), we also have an
expression that describes the evolution of the cellulose
length L∗

C when stretched via the flow as

1
L∗

C

dL∗
C

dt∗
= a · ((a · ∇∗)u∗) = α∗ sin2 θ, (11)

with boundary and initial conditions being L∗
C(h∗, τ∗) =

L∗
C(y∗, 0) = L∗

C,0.
Finally, the total stress resultant in the cell wall is

then the sum of the stress of all components when
crosslinked in each “layer” of the cell wall, i.e. inte-
grating over the thickness of the wall, which gives

Σ∗ =
∫ h∗

0

ρ∗(1 + A∗n∗
hot)σ

∗
C + n∗

hotσ
∗
hot dy∗ + Γ∗α∗,

(12)

where ρ∗ is the density of cellulose and (1 + A∗n∗
hot) is

the modification of the cellulose stress due to crosslink-
ing, noting that cellulose can only contribute to the
wall stress if they are connected to one another, other-
wise they are just pulled apart.. The cellulose modifi-
cation term in (12) has two contributions: the first rep-
resents non-hotspot crosslinks and the second hotspots
crosslinks, with A∗ controlling the magnitude of the
contribution. The integral is the contribution from the
CMF (first term with σ∗

C) and the xyloglucan hotspots
(second term with σ∗

hot), with the xyloglucan term
dependent on the hotspot density for the same reasons
as cellulose; the final term is the pectin matrix con-
tribution which is assumed to provide an extensional
viscosity due to its properties [37,38], with Γ∗ being
the stiffness density of the matrix. This concludes the
description of the stress resultant, so we proceed to
characterise the crosslinking dynamics.

2.2.2 Bond density evolution equation

We now introduce equations that describe the hotspots
density and hemicellulose number, n∗

hot and n∗ respec-
tively. Assuming that the CMF do not break before
the hotspots, it is then the hotspots connections that
rupture to allow slippage of the cell wall components.
We assume that no new bonds are formed inside the
cell wall. To address this potential limitation, we could
have included a stochastic bond reformation term. How-
ever, this would be equivalent to uniformly decreasing
all bond breakage rates, so it would introduce more
unknown parameters without producing new effects on

the results in Sect. 4. The hotspots and the hemicel-
lulose fibres within them are advected through the cell
wall according to a Smoluchowski equation [39], with
both n∗

hot and n∗ undergoing energy-dependant break-
age:

∂n∗
hot

∂t∗
− α∗y∗ ∂n∗

hot

∂y∗ = − k∗
off,hotn

∗
hot, (13)

∂n∗

dt∗
− α∗y∗ ∂n∗

∂y∗ = − k∗
offn∗, (14)

where n∗
hot(h

∗, τ∗) = n∗
hot(y

∗, 0) = n∗
0,hot, and n∗(h∗, τ∗)

= n∗(y∗, 0) = n∗
0, with the breakage rates defined as

k∗
off,hot = k∗

0,hot exp

(
β̂2

k∗
bT ∗ U∗

hot(y, t)

)
, (15)

k∗
off = k∗

0 exp
(

γ2

k∗
bT ∗ U∗(y, t)

)
. (16)

In Eqs. (15) and (16), k∗
bT ∗ is the thermal energy (k∗

b
being the Boltzmann’s constant and T ∗ the absolute
temperature), k∗

0,hot and k∗
0 are the breakage rates when

the fibres are unstressed, U∗
hot and U∗ the deformation

free energies and β̂ and γ are parameters controlling
how strongly the energies affect the breakage rates. This
formulation entails a direct relationship between the
stress held in the fibres and the breakage rates and
has been used successfully in other models of adhe-
sion dynamics [40–43]. To ensure that the crosslinks
stretch a significant length before breaking [35], we take
β̂, γ � 1; alternatively, taking larger values of these
parameters allows us to model increased breakage rates
caused by, for example, heightened hydrolysis action.
As hemicellulose bonds break, the hotspots become eas-
ier to rupture, and as a result, we take β̂2 = (n∗

0
n∗ −1)β2.

We also assume that the hotspots are stronger than the
hemicellulose crosslinks, so β < γ.

To calculate the free energy potential in a single fibre,
we consider the force F∗ on a fibre as it moves along
the trajectory x∗(t∗) = (x∗(t∗), y∗(t∗), z∗(t∗)). We set
y∗(t) = z∗(t) = 0 as the molecules are only being
extended in the axial direction, so

x∗(t∗) = s∗
H,e, (17)

with s∗
H,e being the elastic extension. The work done

by F∗ is then

W ∗ =
∫ s∗

H,e

0

F ∗
x dx∗. (18)

Since the bond breakage is dependent on elastic strain,
the force is also elastic, meaning F ∗

x = −κ∗x∗ where κ∗
is the stiffness of the springs and is equal to the area
multiplied by ν∗

H divided by the length of the cellu-
lose molecules. Since temperature is constant, the free
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energy equals the potential/work done and so U∗ =
κ∗
2

(
s∗

H,e

)2. For the hotspot density potential, the force
applied is F ∗

x = −κ∗
hotx

∗ for some stiffness κ∗
hot, which

should be affected by the number of intact fibres in
the hotspot, n∗; we therefore take κ∗

hot = n∗κ∗, as the
springs are in parallel so stiffness is additive and hence
F ∗

x = −κ∗n∗(y∗, t∗)x∗. Then it follows that

W ∗ =
∫ s∗

H,e

0

F ∗
x dx∗ = −κ∗

2
n∗(y∗, t∗)(s∗

H,e)
2,

(19)

and U∗
hot = κ∗

2 n∗(y∗, t∗)(s∗
H,e)

2; therefore,

k∗
off,hot = k0,hot exp

⎛
⎝κ∗β2n∗

0

(
1 − n∗

n∗
0

)
2k∗

bT ∗ (s∗
H,e)

2

⎞
⎠ .

(20)

This completes the description of crosslinking, and we
proceed to detail the implementation of enzyme action.

2.2.3 Enzyme action

We consider a simple model of enzyme action. Recall
that the enzymes Cel12A and XTH perform hydroly-
sis/cutting action, where Cel12A targets the hotspots
junctions (cutting both cellulose and hemicellulose) and
XTH targets the hemicellulose fibres. We simulate the
Cel12A and XTH actions by increasing β and γ, respec-
tively, in Eqs. (15) and (16). As Cel12A also digests the
cellulose molecules, it might also decrease the cellulose
density ρ. As the focus is on the hotspots, the modelling
of this effect will be left to the appendix E.

Due to the lack of consensus on how expansin works,
we try two different simple methods of enzyme action.
As mentioned in Sect. 1, expansin may work by allow-
ing slippage in the fibres [31]. The first method entails
decreasing the viscosity of the dashpots, i.e. decreasing
their resistance to the flow. This effect is modelled by
the equation

∂μ∗

∂t∗
= E∗μ∗

(
1 − μ∗

μ∗
1

)
, (21)

with the conditions μ∗(h∗, τ∗) = μ∗(y∗, 0) = μ∗
0, where

E∗ is the expansin action rate, μ∗
0 the initial viscosity

and μ∗
1 the target viscosity with μ∗

1 < μ∗
0. We choose

this form to keep the model as simple as possible while
ensuring that μ∗ decreases and that μ∗ �= 0.

The second method imposes expansin action by
increasing the resting length of the springs in the sys-
tem allowing for stress relaxation. We assume that the
resting length growth rate depends on the strain of
the spring, rather than the extension; this assumption
avoids the resting length exceeding the actual length.

Thus,

∂L∗
0

∂t∗
= E∗

(
L∗

L∗
0

− 1
)

, (22)

with the boundary and initial conditions, L0(h∗, τ∗) =
L∗

0(y
∗, 0) = l∗0. With the system of equations fully

described, we now proceed to simplify them through
nondimensionalisation.

2.3 Nondimensionalisation

We nondimensionlise the system according to

t∗ =
t

k∗
0,hot

, τ∗ =
t

k∗
0,hot

, n∗
hot = n∗

0,hotnhot,

n∗ = n∗
0n, y∗ = h∗y, y∗

i = h∗yi,

L∗ = L∗
0L, L∗

C = L∗
C,0LC , Σ∗ = E∗Σ,

α∗ = k∗
0,hotα, k∗

off,hot = k∗
0,hotkoff,hot,

k∗
off = k∗

0,hotkoff, σ∗
H = ν∗

HσH ,

σ∗
C = ν∗

CσC , L∗
0 = l∗0L0,

Γ∗ =
E∗Γ

k∗
0,hot

, μ∗ = μ∗
0μ,

and E∗ = k∗
0,hotE (when using the mechanism

described in Eq.(21))
or E∗ = k∗

0,hotl
∗
0E (for the description in Eq.(22)),

(23)

where we define E∗ = ν∗
Ch∗ρ∗. Equations (3)–(22) are

simplified as follows and are later solved in Sect. 3. The
wall length Eq. (3) becomes,

∂L

∂t
= αL, (24)

with L(1, τ) = L(y, 0) = 1. For the hemicellulose stress
Eq. (4), after nondimensionalisation we have,

∂σH

∂t
+ ωσH =

∂s

∂t
, (25)

with σH(1, τ) = σH(y, 0) = 0, where ω = ν∗
H

μ∗
0μk0,hot

and

s = L
L0

− 1 (where L0 = 1 when expansin is not acting
upon it). The cellulose stress Eq. (5) is then simply

σC = sC sin θ, (26)

where sC = LC − 1. The length of the cellulose fibres
Eq. (11) is then

1
LC

∂LC

∂t
= α sin2 θ (27)
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where LC(1, τ) = LC(y, 0) = 1. Equation (10) describ-
ing the cellulose angle becomes:

∂θ

∂t
− αy

∂θ

∂y
− α sin θ cos θ = 0, (28)

with θ(1, τ) = θ(y, 0) = θ0. The evolving hotspots bond
density and hemicellulose bond number Eqs. (13) and
(14) are now

∂nhot

∂t
− αy

∂nhot

∂y
= −koff,hotnhot

where koff,hot = exp
(
β2

hotςhot(1 − n)s2
H,e

)
, (29)

∂n

∂t
− αy

∂n

∂y
= −koffn where koff = k̆0 exp

(
γ2ςs2

H,e

)
,

(30)

with nhot(1, τ) = nhot(y, 0) = 1, n(1, τ) = n(y, 0) = 1,
βhot =

√
n∗

0β, σH = sH,e, k̆0 = k∗
0

k∗
0,hot

and ςhot = ς =
κ∗L∗2

0
2k∗

b T ∗ . Enzyme action on the viscosity on the dashpot
(21) is now

∂μ

∂t
= Eμ (1 − Mμ) (31)

with μ(1, τ) = μ(y, 0) = 1 where M = μ0
μ1

. The enzyme
action on the resting length (22) becomes:

∂L0

∂t
= E

(
L

L0
− 1

)
(32)

with L0(1, τ) = L0(0, y) = 1.
Finally, the stress resultant Eq. (12) is now

Σ =
∫ 1

0

(1 + a1nhot)σC + a2nnhotσH dy + Γα,

(33)

where a1 = A∗n∗
0,hot is the modification of the cellulose

stress due to hotspot crosslinking, and a2 = n∗
0n∗

0,hotν
∗
H

ρ∗ν∗
C

is the ratio of the cellulose and hemicellulose stiffness
densities. We therefore have a closed system of 10 Eqs.
(24)–(33) with a total of 10 unknowns, Σ, nhot, n, σC ,
σhot, L0, μ, s, sC and θ. In the next section, we will
solve the system of equations.

3 Model analysis

To evaluate the effect of the hotspots and enzyme action
on the stress resultant and hence the overall mechan-
ical behaviour, we proceed to analyse the model as
described in Sect. 2.2. The equations may be solved via
a (lengthy) semi-analytic method; we merely state the

solutions in Sect. 3.1 and leave full details to the Appen-
dices B, C and D. Since breakage rates are assumed
to be small, we also employ asymptotic expansions to
determine the leading-order behaviour of the cell wall,
as shown in Sect. 3.2; as before full details are consigned
to F for brevity.

3.1 Semi-analytical solutions

Throughout the analysis, we recognise two contrast-
ing regions of cell wall material: the thinning region
0 ≤ y ≤ e−αt contains material already present at
t = 0, while the expanding e−αt < y ≤ 1 region contains
newly-deposited material which has been added to the
y = 1 surface at some t > 0. Recall from Sect. 2.1
that due to the fluid flow, fibres deposited at time
t = τ (which is non-constant) lie on a characteristic
y = yie

−αt̄, where t̄ = t − τ . For the initially present
material, the deposition time is τ = 0 and initial posi-
tion is 0 ≤ yi ≤ 1 meaning the extension is described
by L = yie

αt. For the later-deposited material, we have
τ > 0 and yi = 1, and thus, the extension can be given
in terms of its position in the wall as L = 1

y .
Beginning with the fibre stress terms, in the absence

of enzymatic action, L0 and μ are constant, and hence,
Eq. (25) may be solved using an integrating factor to
find the axial hemicellulose stress,

σH =
α

α + ω

(
L − L− ω

α

)
. (34)

In contrast, when enzyme action is incorporated, L0

and μ are no longer constant, and hence, the solution
(34) is invalid. To solve for variable spring rest length,
we first divide Eq. (32) by dy

dt = −αy to reformulate the
differential equation for L0 in terms of y. This equation
does not have an analytical solution, and hence, we pro-
ceed to derive a (forward) finite difference expression
for L0, which can be used for solving Eq. (25) with an
integrating factor, yielding

σH = L− ω
α

∫ t̄

0

L
ω
α

(
αL

L0(L)
− L

L2
0(L)

dL0(L)
dt̂

)
dt̂,

(35)

where L0 is treated as a function of L.
For expansin action on the viscosity, μ, we begin by

solving Eq. (31) using separation of variables to get

μ =
1

M + (1 − M)e−Et
(36)

which means that ω = ω0

(M + (1 − M)e−Et
)

where
ω0 = ν∗

H

μ∗
0k∗

0,hot
. Equation (25) is then solved to give
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σH = y
ω0M

α exp
(ω0

E
(1 − M)y

E
α

)

×
∫ 1

y

αy−2− ω0M
α exp

(
−ω0

E
(1 − M)y

E
α

)
dt̂,

(37)

To determine the evolving bond densities and num-
ber, we solve (30) for n using the method of character-
istics and combining Eqs. (24) and (C18) yields

n = exp

(
− k̆0

α
G

(
1
L

))
(38)

with G(y)

=
∫ 1

y

exp(γ2ςs2
H,e)

ŷ
dŷ. (39)

Similarly from Eq. (29),

nhot = exp
(

− 1
α

Ghot

(
1
L

))
(40)

with Ghot(y)

=
∫ 1

y

exp
(
β2

hotςhot

(
1 − exp

(
− k̆0

α G(ŷ)
))

s2
H,e

)
ŷ

dŷ.

(41)

Solving Eq. (28) gives the cellulose angle from the
horizontal,

θ = arctan (tan θ0L) , (42)

and thus, the cellulose extension length is,

LC = exp

(
α

∫ t̄

0

sin2 θ(t̂) dt̂

)
. (43)

The stress resultant is hence constructed by separat-
ing the domain into two regions ε ≤ y ≤ e−αt and
e−αt < y ≤ 1, to give

Σ =
(
e−αt − ε

) ((
1 + a1 exp

(
− 1

α
Ghot

(
e−αt

)))

×
(

exp
(

α

∫ t

0

sin2 θ(t̂)dt̂

)
− 1

)

sin
(
arctan

(
tan(θ0)eαt

))

+ a2 exp
(

− k0

k0,hot

1
α

G
(
e−αt

))

exp
(

− 1
α

Ghot

(
e−αt

))
σH(t)

)

+
∫ 1

e−αt

(
1 + a1 exp

(
− 1

α
Ghot (y)

))
(

exp
(∫ 1

y

sin2 θ(ŷ)
y

dŷ

)
− 1

)

× sin
(

arctan
(

tan(θ0)
y

))

+ a2 exp
(

− k0

k0,hot

1
α

G (y)
)

exp
(

− 1
α

Ghot (y)
)

σH (y) dy + Γα. (44)

where σH is given by Eqs. (34), (35) or (37) for the
different expansin mechanisms. The small parameter ε
denotes a cut-off for the outer region of the cell wall;
this ensures that the cellulose stress does not go to infin-
ity and that the molecules will eventually break rather
than becoming infinitely long. The steady-state stress
resultant as t → ∞ is

Σ∞ =
∫ 1

ε

(
1 + a1 exp

(
− 1

α
Ghot (y)

))
(

exp
(∫ 1

y

sin2 θ(ŷ)
y

dŷ

)
− 1

)

× sin
(

arctan
(

tan(θ0)
y

))

+ a2 exp
(

− k0

k0,hot

1
α

G (y)
)

exp
(

− 1
α

Ghot (y)
)

σH(y) dy + Γα. (45)

where the contributions from the fibres present at t = 0
have now disappeared.

3.2 Leading-order cell wall behaviour

An asymptotic expansion simplifies the model and
extracts the leading-order component of the stress
resultant integral when expansin is neglected (i.e. tak-
ing σH from Eq. 34). The reader can skip this section
or directly go to Eq. (57) for the final form. Since both
γ, β � 1 by definition, we can expand the steady-state
solution (45).

We first expand the integral G (Eq. 38) considering
the respective regions γ � y ≤ 1 and ε ≤ y � γ. By
bounding the integral for G, integrating by parts and
neglecting higher-order terms, we find

G(y) ≈
⎧⎨
⎩

y2

2ᾰ2γ2 exp
(
ᾰ2 γ2

y2

)
, ε ≤ y � γ

ln
(

1
y

)
, γ � y ≤ 1,

(46)

where ᾰ = α
α+ω for notational simplicity. From Eq. (38),

the asymptotic approximation of n is then,

n =

⎧⎪⎨
⎪⎩

exp
(

− k̆0
α

y2

2ᾰ2γ2 e
ᾰ2 γ2

y2

)
, ε < y � γ

y
k̆0
α , γ � y ≤ 1.

(47)

The expansion of Ghot proceeds similarly to give
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Ghot(y) ≈

⎧⎪⎨
⎪⎩

y2

2ᾰ2β2
hot

exp
(
ᾰ2 β2

hot
y2

)
, ε < y � βhot

ln
(

1
y

)
, βhot � y ≤ 1.

(48)

Combining, we find

nhot =

⎧⎨
⎩

exp
(

− 1
α

y2

2ᾰ2β2
hot

e
ᾰ

β2
hot
y2

)
, ε < y � βhot

y
1
α , βhot � y ≤ 1.

(49)

Notice that the simplification of nhot is not dependant
on n. To complete the approximations for all y, we find
switch-over values where the asymptotic behaviour of n
and nhot changes from one regime to another (denoted
χ and χhot for the hemicellulose and hotspots bond den-
sities respectively). These are the y-values close to γ or
βhot such that the derivatives of the dominant expo-
nents in n and nhot exceed some threshold Q, causing
n and nhot to rapidly decrease. Thus,

χ =

√√√√ γ2ᾰ2

ln
(

α
k̆0

Q
) and χhot =

√
β2

hotᾰ
2

ln (αQ)
. (50)

Approximations of the trigonometric term describ-
ing how much cellulose contribute to the axial stress
and the cellulose extension are also required. To bal-
ance simplicity and accuracy, the following expansions
are taken to such an order that they achieve a mean-
squared error of ≈ 10−3 with respect to the numeri-
cal solution, and the domain is split into three regions
corresponding to tan θ0

y �,≈,� 1. In the first region,
tan θ0 + δ < y ≤ 1, where δ is a small number of our
choosing to optimise the expansion’s overall accuracy,
we Taylor expand sin and arctan in Eq. (45), where θ is
described by Eq. (42). In the second and third regions,
where tan θ0

2 < y ≤ tan θ0 + δ and ε ≤ y ≤ tan θ0
2 , we use

the expression sin
(
arctan

(
tan θ0

1
y

))
= tan θ0√

tan2 θ0+y2

and Taylor expand around y = tan θ0 and y = 0, respec-
tively. Hence,

sin
(

arctan
(

tan(θ0)
1
y

))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

tan θ0
y − 1

2
tan3 θ0

y3 + 3
8

tan5 θ0
y5 − 5

16
tan7 θ0

y7 , tan θ0 + δ < y ≤ 1,

1√
2

− y−tan θ0

2
√

2 tan θ0
+ (y−tan θ)2

8
√

2 tan2 θ0

+ (y−tan θ)3

16
√

2 tan3 θ0
− 13(y−tan θ0)

4

128
√

2 tan θ4
0

, tan θ0
2 < y ≤ tan θ0 + δ,

1 − y2

2 tan2 θ0
+ 3y4

8 tan4 θ0
− 5y6

16 tan6 θ0
, ε < y ≤ tan θ0

2 .

(51)

By substituting Eq. (51) into Eq. (43), integrating
and Taylor expanding the exponential, we find the
leading-order terms of LC to be,

LC(y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

b1
(
1 + tan2 θ0

2ŷ2

)
, tan θ0 + δ < y ≤ 1,

b2

yb0
(1 − H(y) + H(y)2

2 ), tan θ0
2 < y ≤ tan θ0 + δ,

b3
y

(
1 + y2

2 tan2 θ0

)
, ε ≤ y ≤ tan θ0

2 ,

(52)

where b0, b1, b2 and b3 are constants and H(y) is a

function of the form
∑

i pi

(
y

tan θ0

)qi

, with the qis being
integers; all bi, pi, qi and H are defined in appendix F.

The stress resultant consists of three terms each rep-
resenting a physical effect. Firstly, the cellulose contri-
bution independent of the hotspots connections is:

Σ∞
1 =

∫ 1

ε

(Lc − 1) sin θ dy =
∑

i

ci, (53)

where ci are constants dependent on tan θ0 or ε (defined
in Table 2). Secondly, the cellulose contribution when
crosslinked by the hotspots is:

Σ∞
2 =

∫ 1

ε
a1nhot(Lc − 1) sin θ dy

= a1

((
∑

i

d1,i(α)

)

+ α tan0 (b1 − 1)

+

(
∑

i

d2,i(α)

)

(δ + tan θ0)
1
α

+ α tan θ0 (1 − b1) (δ + tan θ0)
1
α

+

(
∑

i

d3,i(α)

) (
tan θ0

2

) 1
α

+ b3α

(
tan θ0

2

) 1
α

+

(
∑

i

d4,i(α)

)

(χhot)
1
α − αb3(χhot)

1
α

)

. (54)

The generic form of the constants dj,i is w1

w2( 1
α +w3) ,

where w1, w2 and w3 are known constants often depen-
dant on tan θ0, δ and χhot (see Table 3). Lastly, the
contribution from the hotspots is then
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Table 1 Model parameter values

Parameter Value Description References

ν∗
C 140Gpa Young’s modulus of cellulose [45–48]

ν∗
H 7Gpa Young’s modulus of hemicellulose [45–48]

θ0 0.1 Cellulose’s initial angle at deposition [49]

k̆0 1 k̆0 =
k∗
0

k∗
0,hot

, hotspots & hemicellulose breakage

rates ratio when unstressed

ςhot & ς 1 ςhot = ς =
κ∗L∗2

0
2k∗

b
T ∗ , a breakage rate constant [35]

n∗
hot,0n∗

0
ρ∗ 0.5 Ratio of fibre densities in a2 [50,51]

μ∗
0 0.15 The initial viscosity [52]

μ∗
1 0.05 The target viscosity [52]

ε 0.0001 Cut-off value for the outer region of
the cell wall

a1 0.1 − 0.6 a1 = A∗n∗
hot,0, cellulose stress modification

from hotspot crosslinking

a2 0.025 a2
n∗
0n∗

0,hotν∗
H

ρ∗ν∗
C

, cellulose and hemicellulose stiffness

densities ratio

In the model, we will be using the relevant parameters for the roots of Arabidopsis thaliana. We assume k̆0 =
k∗
0

k∗
0,hot

≈ 1 so

that the breakage rates of the hotspots and the hemicellulose fibres at rest are approximately the same. We set a1 = 0.1
in most simulations as this number does not affect the results apart from the expansin action simulations where we shall
comment on the affect of this parameter and its implications in Sect. 4

Σ∞
3 =

∫ 1

ε

a2nnhotσH dy

= a2ᾰ

(
α

k̆0 + 1

(
1 − χ

k̆0+1
α

)
(55)

− 1
1
α

(
k̆0 + ω + 1

)
+ 1

(
1 − χ

k̆0+ω+1
α +1

)⎞
⎠ .

(56)

Further simplifications to the stress resultant can be
made by examining the cases for small and large strain
rate, α � 1 and α � 1, respectively. When α � 1,
all terms of the form Z 1

α that appear in the expan-
sions are negligible, since Z is less than one for all such
expressions. When α � 1, all the terms of the form

w1

w2( 1
α +w3)Z 1

α are negligible compared to terms of the

form αZ 1
α . As a result,

Σ∞ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i ci + a1α tan θ0 (b1 − 1)

+a2ᾰ

(
α

k̆0+1
− 1

1
α

(k̆0+ω+1)+1

)

, α � 1,

∑
i ci + a1α (tan θ0 (b1 − 1)

+ tan θ0 (1 − b1) (δ + tan θ0)
1
α

+b3

(
tan θ0

2

) 1
α − b3(χhot)

1
α

)

+a2ᾰ

(
α

k̆0+1

(

1 − χ
k̆0+1

α

)

− 1
1
α (k̆0+ω+1)+1

)

,

α � 1.

(57)

Equation (57) gives the leading-order terms that control
the dominant cell wall behaviour for small and large

strain rates, neglecting the effect of expansin action.
This expression is used to validate the numerical scheme
presented in Sect. 4, where we also discuss the biological
implications.

4 Results and discussion

The complexity of the plant cell wall and its growth
process present many modelling challenges. We have
therefore created a simple model to focus our atten-
tion on the cell wall structure and its implications on
possible enzyme action.

The system of Eqs. (38)–(44) is solved for the bond
number and densities n and nhot, the CMF angle θ, and
the stress resultant Σ, subject to a choice of expansin
action where σH is determined by one of the Eqs.
(34)–(37). Where the steady-state stress resultant is
required, we use (45) instead of (44). The asymptot-
ically simplified expressions (53)–(57) for the steady-
state stress resultant are used where applicable. This
study focusses on the cellulose crosslinking dynamics;
hence, we neglect the effect of pectin on the cell wall
dynamics by setting Γ = 0 throughout. All other fixed
parameter values are listed in Table 1. All solutions are
obtained using MATLAB; in particular, the integrals
are computed numerically using the Legendre–Gauss
Quadrature code by Greg von Winckel [44].

We begin the discussion of the results by first
analysing the model’s implications on the cell wall
structure and yield threshold in Sect. 4.1. Secondly, we
explore possible enzyme mechanisms and the likelihood
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Fig. 3 The effect on the stress resultant Σ∞ plotted
against the strain rate α of expansin acting with rate E on a
the resting length, L0, which decreases the stress resultant
and thus the yield threshold; or b the viscosity, μ, where
the small (large) a1 value represents reduced (enhanced)

cellulose crosslinking by the hotspots and hence decreased
(increased) the stress resultant and yield threshold. Other
parameters: βhot = 0.01, γ = 0.05, and others found in Table
1

of hotspots structures in the cell wall in Sect. 4.2. We
finish with some final remarks in Sect. 4.3.

4.1 Implications for cell wall structure

Before delving into the results, we outline the logic as
to how the stress resultant links to the cell wall yield
threshold and growth rate using expansin’s effect as
an example. A fixed turgor pressure in a growing cell
wall (constant strain rate α) will result in a specific cell
wall tension and therefore a set stress resultant. When
expansin acts on the hotspots resting length, L0, the
same cell wall stress/turgor pressure produces differ-
ent strain rates (growth rate) (Fig. 3a, solid line ver-
sus dashed line); Eq. (1) then implies that the yield
threshold has changed. We know this from the plateau-
ing effect; the extensibility determines the gradient, but
it is the yield threshold that scales the plateau up and
down as α � 1. Further analysis of the stress–strain-
rate relationship and the crosslinks influence on the cell-
wall yield threshold can be found in [35]. For the pur-
pose of this article, it suffices to know that a decrease in
stress resultant implies a decrease in the yield thresh-
old.

From the collective results presented here, we observe
some general trends. As the strain rate increases, the
stress resultant plateaus (e.g. Fig. 3). This relation-
ship arises due to the bond number and densities (n,
nhot) behaviour when α is changed, despite the inclu-
sion of linear elasticity. Specifically, for low values of
α, the bond density nhot remains low for much of the
domain (see Fig. 6b). However, as α is increased, the
bonds become increasingly loaded and remain intact for
longer (increasing the overall stress held in the cell wall)
before finally breaking. Eventually the hotspots reach
a limit as to how much stress they can withstand with-
out breaking, and the bond density drops to 0 when

y ≈ 0; the amount of stress held across the cell wall
has reached capacity (Fig. 6b). Reaching this capacity
consequently limits further increases to the stress resul-
tant, implying that the cell wall’s yield threshold has
a maximum, where further increasing the growth rate
has limited effect. This result demonstrates that cell
wall strength is capped by the mechanism of cellulose
crosslinkage, despite the cellulose fibres being the major
load-bearing component in the cell wall.

We now examine the effect on the stress resultant of
cellulose reorientation during growth. For lower strain
rates, we find that the stress resultant increases as time
progresses (Fig. 7a) due to a combination of all the
fibres being increasingly strained and the cellulose reori-
entating. For larger strain rates, α, the stress has very
little variation over time because the large reorienta-
tion rate allows fibres to converge to the same distri-
bution. For smaller times, the stress has a sharp maxi-
mum (Fig. 7a). This peak occurs because increasing the
strain rate stretches and reorients the fibres uniformly,
due to the equivalent effect of α and t on the fibres
from the term eαt. On the other hand, fibres deposited
at t > 0 are progressively stretched and rearranged as
they move to the outside of the wall. Thus, for cer-
tain times/strain rates (between α = 10 − 30), the
sum of the stress arising in this family of fibres is less
than those present at t = 0. This raised stress resul-
tant does not last as the crosslinks present at t = 0
eventually break, causing a rapid decrease in the cell
wall strength and producing a sharp peak in the stress
(Fig. 7a). The effect of cellulose reorientation can also
be seen when the initial fibre angle, θ0, is increased
(Fig. 7b). According to Eq. (42), for any fixed fibre posi-
tion y, the CMF increasingly reorient as θ0 increases.
Consequently, increasing θ0 also significantly increases
the stress resultant (Fig. 7b). From these results, we
conclude that cellulose reorientation leads to a higher
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Fig. 4 The effect on the hotspots density, nhot through the
cell wall thickness y of expansin with rate E acting on a the
resting length, L0; or b the viscosity, μ. Parameters: α = 5,

βhot = 0.01, γ = 0.05, and others found in Table 1. In both
cases, expansin has increased the bond densities and thus
has not weakened the cell wall

stress resultant in the plant cell wall and, subsequently,
increases the cell wall yield threshold. The yield thresh-
old increasing due to cellulose reorientation could pro-
vide a possible mechanism for growth slow-down and
hence the beginning of the cell’s secondary wall struc-
ture. This hypothesis has been previously put forward
[19]. Cellulose reorientation reducing axial growth has
been previously reported in other mathematical models
[53,54].

We now proceed to analyse the implications of the
asymptotic reduction of the stress resultant. There is
substantial agreement between the asymptotic expan-
sions and the numerical results, for all three combina-
tions of βhot and γ (Fig. 8). There is little difference
in accuracy between the full asymptotic Eqs. (53)–(56)
and the simplified expansion (57), demonstrating that
the cell wall yield threshold’s behaviour is dominated
by the terms in the simplified equation. According to
Eqs. (53) and (54), the constants ci and dj,i in the cel-
lulose’s contribution to the cell wall strength depend
on tan θ0 (Table 2), whereby increasing tan θ0 increases
the stress held in the cell wall (Fig. 7). Since a2 < a1

(see Table 1), we conclude that the main control of the
cell wall yield threshold in the axial direction is the cel-
lulose orientation. This result matches past simulation
results [17] and the current consensus that the cellulose
orientation controls the growth direction in most plant
cells [21].

In Eq. (57) that characterises the cell wall stress
behaviour, the hotspots density’s contribution (the χhot

term) is controlled by b3. This coefficient determines the
slope of the extension curve of the cellulose molecules,
LC , as they rapidly extend close to y = 0 where they
are most stressed. Thus, the effect on the yield thresh-
old of breaking the hotspot crosslinks (changing βhot) is
predominantly actioned through loosening the smaller
group of significantly stressed cellulose molecules.

Equation (57) also demonstrates why the stress resul-
tant plateaus (Fig. 3). Rearranging the equation gives

Σ∞ =
∑

i

ci

+ a1α
(
tan θ0 (b1 − 1)

(
1 − (δ + tan θ0)

1
α

)

+b3

((
tan θ0

2

) 1
α

− (χhot)
1
α

))

+ a2ᾰ

(
α

k̆0 + 1

(
1 − χ

k̆0+1
α

)

− 1
1
α

(
k̆0 + ω + 1

)
+ 1

⎞
⎠ . (58)

As α → ∞, the first term on the first line remains
constant. The second term can be recognised and reex-
pressed to be a limit of the form limx→0

(
fx−1

x

)
→ ln f

and therefore is a constant. The last term also converges
to a constant (with ᾰ also converging to a constant)
for the same reason. Collectively this means that as α
increase the stress resultant will level out and become
constant. We also note that for α � 1, the stress resul-
tant is not controlled by χ and χhot at all. This implies
for low levels of turgor pressure, enzyme action on the
cell wall is ineffective at controlling the growth rate and
that it is solely controlled by the orientation and con-
centration of fibres.

4.2 Enzyme action on the cell wall

We first discuss how our simulations can be directly
compared to experimental results relating to enzyme
action. Experiments have shown upon overexpressing
or silencing expansins, the growth (through elonga-
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tion and division) of plant roots and leaves increase
or decrease respectively in a variety of species [55,56],
and root hair and leaf primordia initiation are also
affected [57]. Overexpression and knockout mutations
were also performed on XTH proteins which made lit-
tle difference to growth [58,59]. Moreover, inactivating
and then extending plant tissues while applying Cel12A
or expansins permitted cell wall extension [10,28]. The
effect on growth and hence the strain rate of enzyme
action can be seen in our model through the change
in stress resultant. A decrease in the stress resultant
will lead to an increased growth rate (strain rate) and
vice versa as described in Sect. 4.1. Additionally, from
the extension experiments with multiple deformations
(elastic and plastic) and examining the stress relaxation
response, expansin was shown not to weaken the wall
while Cel12A did. Additionally, XTH was found to have
only minor effects on cell wall mechanics [58]. This
effect can be directly observed in the model by exam-
ining the bond density distributions; if there are fewer
bonds intact, the wall integrity will be weaker.

We now examine different modes of enzyme action
beginning with expansin. As previously mentioned in
Sect. 1, expansin causes wall loosening without reduc-
ing the strength of the cell wall, potentially by allow-
ing the slippage of fibres within the hotspot. We sim-
ulated expansin’s hypothesised action via two meth-
ods: increasing the spring resting length and decreas-
ing the viscosity of the dashpot by equations charac-
terised in Sect. 2.2.3 (Eqs. 35 and 37). Simulations of
expansin’s theorised fibre slippage action on the rest-
ing length (Eq. 35) reveal a decrease in the stress
resultant (Fig. 3a), while ensuring the bond density
does not reach zero (Fig. 4a). Similarly, expansin’s slip-
page action on the viscosity of the dashpot (Eq. 37)
decreases the stress resultant provided hotspots cellu-
lose crosslinking is small (Fig. 3b) and always increases
the bond density (Fig. 4b). This bond density increase
arises due to stress relaxation; both mechanisms reduce
the elastic strain imposed on the fibres which are there-
fore less likely to break. Two opposing effects con-
tribute to the overall stress resultant: stress relax-
ation from the hotspots, combined with the inclusion
of more, increasingly stretched, CMF molecules towards
the outer boundary of the cell wall. When the hotspots-
cellulose crosslinking is sufficiently large to counter-
act the hotspots stress relaxation, the stress resultant
increases with expansin action due to the increased
contribution of the CMF (Fig. 3b). Therefore, both
mechanisms can decrease the axial stress resultant for
all strain rates (Fig. 3) and are consequently effective
at inducing growth. Moreover, the hotspots bond den-
sities nhot increase for both enzyme action pathways
(Fig. 4), increasing cell wall integrity and thus strength-
ening the cell wall. So, allowing the fibres to slide past
one another (the dashpots) or relax (increasing rest-
ing lengths) loosens the fibre network and decreases
the likelihood of the bonds breaking. This explains
the observed experimental behaviour (as described in
Sect. 1) and provides evidence for expansin’s hypothe-
sised slippage action.

In contrast, when the parameter a1 is increased the
hypothesised expansin action causes the yield threshold
to increase (Fig. 3b) despite the loosening of the fibre
network. This observation may be consistent with bio-
logical observations. It has been observed that plants
lacking xyloglucan have only a small amount of growth
reduction and alteration in cell wall structure [14,60].
It has therefore been suggested that any xyloglucan
present is concentrated in these compact biomechan-
ical hotspots. Therefore, as a1 represents the propor-
tion of xyloglucan in the wall, we find that in order to
recreate expansin’s experimental behaviour, there must
be a small amount (comparatively to the cellulose) of
xyloglucan that is concentrated around the hotspots.

Continuing the investigation of hypothesised enzyme
action, we now focus on XTH and Cel12A. As detailed
in Sect. 1, XTH and Cel12A are theorised to hydrol-
yse hemicellulose and the hotspots respectively. Recall
that we recreate this cutting action by increasing the
breakage rate γ of the hemicellulose fibres to model
XTH, and increasing the hotspot breakage rate βhot

to model Cel12A action. By testing a range of values
for both parameters, we discover that βhot significantly
affects the stress resultant compared to γ (Fig. 5a),
(Cel12A’s cellulose digestion effect is investigated in
appendix E where it simply increases its effectiveness
on the stress resultant). These results agree with previ-
ous work, which also finds the yield threshold to be con-
trolled by the rate of dissociation of tethering crosslinks
[61]. The effect of γ on the hotspot bond density, nhot,
is also negligible (Fig. 5b). In contrast, an increased
βhot leads to a considerable decrease in nhot (Fig. 6a).
As the fibres move towards the outer y = 0 boundary,
their lengths increase sharply (L = 1

y ), leading to sig-
nificantly larger stress; the stress resultant is therefore
highly sensitive to small changes in the transition loca-
tion χhot in the region 0 < y < 0.1 where nhot drops
rapidly. Thus, increasing the breakage rate of the hemi-
cellulose fibres (increasing γ) is ineffective when com-
pared to targeting the hotspots themselves (increasing
βhot).

Simulated XTH action generates minimal reductions
in the stress resultant and the hotspots density, imply-
ing that minimal growth is induced due to its limited
wall-loosening ability. This effect occurs despite a nat-
ural assumption that the hydrolysis of bonds by some
members of the XTH family could cause wall loosen-
ing [10,28]. The model outputs offer two interpreta-
tions to explain this phenomenon: either the hotspots
maintain their integrity when hemicellulose fibres are
cut, or hydrolysing hemicellulose could be ineffective at
breaking hotspots down if the hotspots are compact and
inaccessible. Thus, the limited wall loosening is a conse-
quence of the cell wall retaining its integrity, with min-
imal increase in cell wall growth as observed in exper-
iments [10]. In the asymptotic expansions (Eqs. (57)),
it is βhot, not γ (in the form of χhot), that controls
the leading-order terms of cellulose’s contribution. We
therefore explicitly see that if XTH’s ability to break
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Fig. 5 Enzyme cutting action. a The effect on the stress
resultant, Σ∞ of Cel12a and XTH with α = 50. Cel12a’s
action, βhot, on the whole hotspot is much more effective
at decreasing the stress resultant than XTH’s action, γ, on

the hemicelluloses. b XTH’s action on the hotspots density
nhot with β = 0.1 and α = 10 showing its limited impact
on the hotspot density. All other parameters can be found
in Table 1

Fig. 6 The hotspot density, nhot, parameter dependence.
a The effect of varying Cel12a’s action on nhot with α = 10
demonstrating its effectiveness at decreasing the hotspot
density. b The effect of varying α with βhot = 0.01 on

nhot, both with γ = 0.05, showing the transitional behaviour
of increasing α and the eventual plateauing under further
increase. All other parameters can be found in Table 1

down the hotspots is ineffective, the observed experi-
mental behaviour is reproduced.

By recreating Cel12A’s hypothesised hotspot-cleaving
action, we see that it weakens the cell walls by
decreasing the hotspots density, which decreases the
stress resultant and induces growth, matching biolog-
ical experiments [10]. This effect would not occur if a
tethered network was assumed, in which case the model
would only have one bond density that is not depen-
dent on another (in a similar manner to [35]), leaving
us unable to distinguish between Cell12A and XTH’s

action. Through analysis of the breakage rates and the
model’s assumption of the hotspots hypothesis, we have
recreated experimentally observed enzyme behaviour.

4.3 Remarks

The results presented play into the hypothesis [27] first
stated that growing plant cell walls seem to undergo a
glass transition. This theory suggests that hemicellulose
connecting the cellulose molecules is not the primary
stress-bearing component (as a1 is small) and holds the
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Fig. 7 Changes in the stress resultant as we effect the cel-
lulose fibre orientation by changing a the time point and
b the cellulose angle at deposition, θ0 with β = 0.01 and
γ = 0.05. Both graphs demonstrate that as the cellulose

fibres increasingly reorient, they increase the stiffness and
yield threshold in the axial direction. All other parameters
can be found in Table 1

Fig. 8 Comparison between the axial stress resultant’s
numerical solution (solid line) and asymptotic approxima-
tions, Eqs. (53)–(56) (dashed line) and (57) (dotted line),
at various values of βhot and γ, demonstrating the accuracy
of the asymptotic expansions. All other parameters can be
found in Table 1

wall in tension close to the yield threshold, such that
when the stress relaxation imposed on the hotspots, by
digestion or slippage occurring, it could be enough to
cause the redistribution of stress to other cell wall com-
ponents such as pectin (and its linkers with cellulose)
and hence induce growth. Thus, we have a rapid change
in viscosity with the extra load causing the pectin to
‘melt’ and flow. As the cell wall extends, other hotspots
could become strained, hence raising the yield threshold
and requiring further relaxation to continue growth.

The results in this article depend on the inclusion
of the cellulose contributing to the axial stress. Even
though, on average, the cellulose molecules are perpen-
dicularly oriented to the growth axis [22], the findings
show the importance of including cellulose reorientation
or a distribution of angles in mathematical models of
growth.

There is still further modelling work to be done.
We have only examined axial growth, so it remains to
be understood how enzyme action does not necessarily
lead to radial growth and the consequences of cellulose
reorientation, as it has been observed a reduction in
anisotropy can lead to radial swelling [62]. Expansin has
been shown to induce growth as soon as it is applied,
while Cel12A-induced growth is delayed after applica-
tion [12]. Our model cannot explain this time delay
phenomenon, meaning we could benefit from further
work on the crosslinking dynamics to understand this
process. Many experiments are done on a tissue level,
while our model examines only a small cell wall section.
Therefore, there could be advantages to constructing
a tissue-scale model for cells, including their interac-
tions and the different cell layers to match with exper-
iments. Models such as [17] also have great potential
to aid our understanding but currently neglect growth
and enzyme manipulation. The stress–strain relation-
ship from this model could be used to inform consti-
tutive laws and then incorporated into a larger-scale
model with growth and wall modifications.
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Fig. 9 Hypothesised enzyme action. The purple rods rep-
resent cellulose molecules, and the red rods are the hemi-
cellulose fibres in a hotspot. a XTH hydrolysis action only
cutting a select amount of hemicellulose fibres. b) Cel12A
hydrolysis action cutting the whole hotspot. c Expansin
loosening action allowing the hotspot to be intact while
allowing extension

5 Conclusion

By deriving and analysing a mathematical model of
the cell wall incorporating the biomechanical hotspot
dynamics as proposed by [9], we have explained experi-
mentally observed enzyme behaviour and thus provided
insight into the cell wall structure and loosening mech-
anisms. We propose the following enzyme mechanisms
in line with experimental observations (Fig. 9). XTH
only cuts individual hemicellulose fibres and thus does
not provide sufficient wall loosening to induce growth,
possibly due to the hotspots remaining inaccessible or
hemicellulose scissoring being insufficient to fully break
down the hotspot. On the other hand, Cel12A can
cleave the whole hotspot allowing the cell to grow while
also weakening the cell wall. Expansin action causes
fibre slippage, permitting stress relaxation, enabling
cell wall extension without weakening the cell wall. We
have therefore presented a mechanistic understanding
of potential enzyme action. Finally, cellulose reorienta-
tion during cell wall extension leads to a decrease in
the axial growth rate and its range orientation is the
primary control for cell growth and the yield threshold.

Enzyme action on the cell wall is an under-researched
area of plant growth often overlooked by modellers.
The theory presented in this paper generates improved
understanding of the fundamental mechanisms under-

lying plant cell growth. We hope that it provides a key
building block towards a unified framework for plant
development.
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Appendix A: Proving constant density

The density at any point, ρ∗(x∗, y∗, t∗), is described by

∂ρ∗

∂t∗ + u∗ · ∇∗ρ∗ = 0, with ρ∗(x∗, h∗, t∗) = ρ∗
0

(A1)

where ρ∗
0 is the density at which material is deposited. Using

the total derivative, we have dρ∗
dT ∗ = 0 on the characteristics

dx∗
dt∗ = α∗x∗ and dy∗

dt∗ = −α∗y∗ from Eq. (2). With using
the initial conditions (x∗, y∗) = (x∗

0, h
∗) at t∗ = τ∗ for some

height up the cell, x∗
0 and some time τ∗ ≥ 0 we obtain

x∗ = x∗
0e

α∗(t∗−τ∗) and y∗ = h∗e−α∗(t∗−τ∗) for t∗ > τ∗.
Therefore along the streamline x∗y∗ = x∗

0h
∗, we have ρ∗ =

ρ∗
0. Consequently if ρ∗(x∗, y∗, 0) = ρ0 for 0 < y∗ < h∗, the

density remains uniform for t∗ > 0 meaning we can assume
the density of the cell wall components remains uniform for
all time as well.
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Appendix B: Solving stress terms

We first solve Eq. (25) to find the axial hemicellulose stress
when not acted upon by any expansin action (L0 and μ are
constant). By using Eq. (24), we have ∂s

∂t
= dL

dt
= αL, and

as a result, we can rewrite Eq. (25) as,

∂σH

∂t
+ ωσH = αL(t). (B2)

If we shift the time parameter so that t̄ = t − τ where the
fibre is deposited at time t = τ , we have that σH(1, 0) = 0.
The above then becomes,

∂σH

∂t̄
+ ωσH = αL(t̄). (B3)

Using an integrating factor and integrating both sides, we
derive,

σH = e−ωt̄

∫ t̄

0

αL(t̂)eωt̂ dt̂, (B4)

where on substituting L = eαt̄ (using boundary conditions
L(0) = 1) we then have,

σH =
α

α + ω
e−ωt̄

(
e(α+ω)t̄ − 1

)
. (B5)

The fibres follow the trajectories y = e−αt̄ (from Sect. 2
using boundary condition y(0) = 1) and with y =(
eωt̄

)− α
ω

= 1
L

, we calculate the final form as

σH =
α

α + ω

(
L − L− ω

α

)
. (B6)

For the expansin action on the spring resting length (Eq.
(32)), we were unable to find an analytic expression, as a
result we use forward finite differences to solve the equation.
We need this expression in terms of y so we first divide it
by dy

dt̄
= −αy to get

dL0

dy
=

E

−αy

(
1

yL0
− 1

)
. (B7)

We partition the domain such that y = {y1, y2, . . . ym}
where y1 = 0 and ym = 1 and L0(yi) = L0,i for i = 1 . . . m
to get the recursive relation

L0,i = L0,i+1 +
E

αyi+1
(yi+1 − yi)

(
1

yi+1L0,i+1
− 1

)

where L0,m = 1. (B8)

We can then use the calculated values of L0 in Eq. (32)
to find the derivative of L0. We now rederive the hotspot
stress, σH with non-constant resting length using the initial
equation (Eq. 25), shifting time again and the fact that ds

dt̄
=

1
L0

dL
dt̄

− L
L2

0

dL0
dt̄

, to get,

∂σH

∂t̄
+ ωσH =

αL

L0
− L

L2
0

∂L0

∂t̄
, (B9)

and using the same method as above and Eq. B8 we calcu-
late,

σH = L− ω
α

∫ t̄

0

L
ω
α

(
αL

L0(L)
− L

L2
0(L)

dL0(L)

dt̂

)
dt̂.

(B10)

which is the hemicellulose stress term for enzyme action on
the resting length, L0.

We repeat the same procedure for expansin action on the
impedance, μ. By solving Eq. (31), we can obtain,

μ =
1

M + (1 − M)e−Et
. (B11)

This means that ω =
ν∗

H
μ∗
0μk∗

0,hot
= ω0

(M + (1 − M)e−Et
)

where ω0 =
ν∗

H
μ∗
0k∗

0,hot
. Substituting this into the non-

dimensional stress term (Eq. (25)) and shifting time we
have,

∂σH

∂t̄
+ ω0

(
M + (1 − M)e−Et̄

)
σH = αL, (B12)

where we again use an integrating factor and L = eαt̄ to
find

exp

(
ω0

(
Mt̄ − 1

E
(1 − M)e−Et̄

))
∂σ

∂t̄

+
(
ω0

(
M + (1 − M)e−Et̄

))

× exp

(
ω0

(
Mt̄ − 1

E
(1 − M)e−Et̄

))
σ

= αeαt̄ exp

(
ω0

(
Mt̄ − 1

E
(1 − M)e−Et̄

))
.

(B13)

Upon integrating we then get

σH =exp

(
−ω0

(
Mt̄ − 1

E
(1 − M)e−Et

))

×
∫ t̄

0

α exp
(
αt̂

)
exp

(
ω0

(
Mt̂ − 1

E
(1 − M)e−Et̂

))

× dt̂, (B14)

where we then make the substitution ŷ = e−αt̂ in the inte-

gral. This implies that e−Et = y
E
α and dt = − 1

αy
dy meaning

σH = y
ω0M

α exp
(ω0

E
(1 − M)y

E
α

) ∫ 1

y

αŷ−2− ω0M
α

× exp
(
−ω0

E
(1 − M)ŷ

E
α

)
dŷ, (B15)

Appendix C: Solving the evolving bond den-
sities

To determine the evolving bond number and densities we
solve (30) for n, using the method of characteristics with
dy
dt

= −αy, dx
dt

= αx, and ∂n
∂x

= 0 meaning the left-hand
side of Eq. (30) can be rewritten as,

∂n

∂t
− αy

∂n

∂y
+ αx

∂n

∂x
= (C16)

∂n

∂t
+

∂y

∂t

∂n

∂y
+

∂x

∂t

∂n

∂x
=

dn

dt
, (C17)

the total derivative. As a result, Eq. (30) becomes

dn

dt
= −k̆0n exp(γ2ςs2H,e). (C18)
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Combining Eqs. (24) and (C18), we derive

dn

dL
= −k̆0

n

αL
exp(γ2ςs2H,e), (C19)

and integrating we obtain

n = exp

(
− k̆0

α

∫ L

1

exp(γ2ςs2H,e)

L̂
dL̂

)
, (C20)

which we can write as

n = exp

(
− k̆0

α
G

(
1

L

))
with

G(y) =

∫ 1

y

exp(γ2ςs2H,e)

ŷ
dŷ. (C21)

To find the hotspot bond density, nhot (Eq. (29)), we repeat
the same procedure using the total derivative and again
using Eq. (24) we derive

dnhot

dL
= −nhot

αL
exp

(
β2
hotςhot

(
1 − exp

(
− k̆0

α
G

×
(

1

L

)))
s2H,e

)
. (C22)

Continuing in the same manner, by once again integrating
we calculate,

nhot = exp

(
− 1

α
Ghot

(
1

L

))
with (C23)

Ghot(y) =

∫ 1

y

exp
(
β2
hotςhot

(
1 − exp

(
− k̆0

α
G(ŷ)

))
s2H,e

)

ŷ
dŷ.

(C24)

Appendix D: Solving the cellulose angle
equation

To find the angle cellulose makes to the horizontal, θ, we
solve Eq. (28), by first re-expressing left-hand side as the
total derivative to get

dθ

dt
= α sin θ cos θ on

dy

dt
= −αy. (D25)

Beginning with the second group of fibres deposited at y = 1
for t = τ > 0 with angle θ(τ, 1) = θ0, we consider t̄ = t − τ .
Consequently on integrating dθ

dt̄
= α sin(θ) cos(θ), we get

∫ θ

θ0

1

sin θ′ cos θ′ dθ′ =

∫ t̄

0

α dτ ′. (D26)

Making the substitution v = tan(θ) we calculate,

∫ v

v0

1

v′ dv′ = αt̄, (D27)

which we integrate to find,

tan θ(t̄, y) = tan θ0 exp (αt̄) . (D28)

Knowing y = exp (−αt̄) using y = 1 at t̄ = 0 we get

θ(t, y) = arctan

(
tan θ0

y

)
for e−αt < y ≤ 1.

(D29)

Following the same procedure for the first group of crosslinks
present at t = 0 positioned at y = yi with angle θ(t, yi) = θ0
we derive,

θ(t, y) = arctan
(
tan θ0e

αt) for 0 ≤ y ≤ e−αt.

(D30)

For the cellulose length we once again use the transformed
co-ordinate t̄ to get,

1

LC

dLC

dt̄
= α sin2(θ(t̄, y)), (D31)

using the separation of variables we get

ln(LC) =

∫ t̄

0

α sin(θ(t̂, y))dt̂. (D32)

For our different domains we then get,

LC(t) = exp

(
α

∫ t̄

0

sin2 θ(t̂) dt̂

)
for 0 ≤ y ≤ e−αt,

(D33)

and

LC(y) = exp

(∫ 1

y

sin2 θ(ŷ)

ŷ
dŷ

)
for e−αt < y ≤ 1.

(D34)

Appendix E: Cel12A cellulose action

To model Cel12A’s digestion action on cellulose, we assume
it reduces the cellulose density ρ. For simplicity, this will
take the form.

∂ρ∗

∂t∗ = C∗ρ∗
(

1 − ρ∗

ρ∗
1

)
(E35)

with ρ∗(h∗, τ∗) = ρ∗(y∗, 0) = ρ∗
0 where C∗ is Cel12A’s

action rate and is proportional to βhot, meaning C∗ =
C̃∗βhot. We take this form to ensure that ρ∗ �= 0 and to
limit digestion. In the non-dimensional system, the above
becomes

∂ρ

∂t
= Cρ (1 − Nρ) (E36)

with ρ(1, τ) = ρ(y, 0) = 1 and N =
ρ∗
0

ρ∗
1
. The non-

dimensionalisation now changes to ρ∗ = ρ∗
0ρ, C∗ = k∗

0,hotC,

C̃∗ = k∗
0,hotC̃, E∗ = ν∗

Ch∗ρ∗
0 and a2 =

n∗
0n∗

0,hotν∗
H

ρ∗
0ν∗

C
which will

have the same value as a2 shown in Table 1. Equation E36
can be solved to get

ρ =
1

N + (1 − N e−Ct)
=

1

N +
(
1 − Ny

C
α

) . (E37)
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Fig. 10 Enzyme cutting action. The effect on the stress
resultant of Cel12a with its additional cellulose digestion
effect and XTH with α = 50, C̃ = 100 and N = 10. Cel12a’s
action, βhot and its degradation, on the whole hotspot is
much more effective at decreasing the stress resultant than
XTH’s action, γ, on the hemicelluloses. All other parameters
can be found in Table 1

The steady-state stress result then becomes

Σ∞ =

∫ 1

ε

ρ

(
1 + a1 exp

(
− 1

α
Ghot (y)

))

(
exp

(∫ 1

y

sin2 θ(ŷ)

y
dŷ

)
− 1

)

× sin

(
arctan

(
tan(θ0)

y

))

+ a2 exp

(
− k0

k0,hot

1

α
G (y)

)
exp

(
− 1

α
Ghot (y)

)

σH(y) dy + Γα. (E38)

Figure 10 shows the effect of Cel12A additional cellulose
digestion where it simply decreases the stress resultant (sig-
nificantly) more when compared to Fig. 5 where it just
affects the hotspots.

Appendix F: Asymptotic expansion

Beginning with the asymptotic expansion of G, we consider
the two regions, γ � y ≤ 1 and ε ≤ y � γ. In considering

the first case, we know that
(

1
z

− z
ω
α

)
= 1

z

(
1 − z

ω
α
+1

)
and

as 0 < z ≤ 1, and ω
α

> 0 we have 0 < z
ω
α
+1 ≤ 1 which

implies the following bound, 0 <
(
1 − z

ω
α
+1

)
≤ 1. Using

this we find,

G(y) =

∫ 1

y

exp

(
γ2ᾰ2

(
1
z

− z
ω
α

)2
)

z
dz

≤
∫ 1

y

exp
(
ᾰ2

(
γ
z

)2)

z
dz, (F39)

and as γ
y

� 1, we then have

G(y) ≈
∫ 1

y

1

z
dz = ln

(
1

y

)
. (F40)

Alternatively, for the second case, ε ≤ y � γ we have
y
γ

� 1 where we can once again use the upper bound of,(
1 − z

ω
α
+1

)
≤ 1 to get,

G(y) ≤
∫ 1

y

exp
(
ᾰ2 γ2

z2

)

z
dz. (F41)

Using integration by parts and knowing that
d
dz

(
exp

(
ᾰ2 γ2

z2

))
= − 2γ2ᾰ2

z3 exp
(
ᾰ2 γ

z2

)
, we calculate,

G(y) ≤
∫ 1

y

− z2

2ᾰ2γ2

d

dz

(
exp

(
ᾰ2 γ2

z2

))
dz

=

[
− z2

2ᾰ2γ2
exp

(
ᾰ2 γ2

z2

)]1

y

+

∫ 1

y

z

ᾰ2γ2
exp

(
ᾰ2 γ2

z2

)
dz

= − 1

2ᾰ2γ2
exp(γ2ᾰ2) +

y2

2ᾰ2γ2
exp

(
ᾰ2 γ2

y2

)

−
∫ 1

y

z4

2ᾰ4γ4

d

dz

(
exp

(
ᾰ2 γ2

z2

))
dz. (F42)

Using the fact that γ is small, we can ignore the first term,
and if we then repeatedly integrate by parts, we can get the
sequence

G(y) =
y2

2ᾰ2γ2
exp

(
ᾰ2 γ2

y2

)
+

y4

2ᾰ2γ4
exp

(
ᾰ2 γ2

y2

)
+ . . . .

(F43)

As y
γ

� 1 meaning y2

γ2 > yk

γk where k = 4, 6, 8, . . . we then

have,

G(y) ≈ y2

2ᾰ2γ2
exp

(
ᾰ2 γ2

y2

)
+ o

(
y2

2ᾰ2γ2
exp

(
ᾰ2 γ2

y2

))
.

(F44)

From Eq. (38), the asymptotic approximation of n is then,

n =

⎧⎪⎨
⎪⎩

exp

(
− k̆0

α
y2

2ᾰ2γ2 e
ᾰ2 γ2

y2

)
, ε ≤ y � γ

y
k̆0
α , γ � y ≤ 1.

(F45)

Writing k̆0 = k0
k0,hot

, we now calculate the asymptotic expan-

sion of Ghot. To find the approximation, we begin in the
region γ � y ≤ 1 and βhot � y ≤ 1, where upon using the
expansion of n in this same region (Eq. (47)) and the upper

bound of the extension (
(
1 − z

ω
α
+1

)
< 1) we get

Ghot(y) =

∫ 1

y

exp

(
β2
hotᾰ

2

(
1 − z

k̆0
α

) (
1
z

− z
ω
α

)2
)

z
dy

(F46)

≤
∫ 1

y

exp

(
β2
hotᾰ

2 1
z2

(
1 − z

k̆0
α

))

z
dy. (F47)
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To find the leading-order terms, we Taylor expand the expo-
nential around βhot = 0 to find,

=

∫ 1

y

1

z

(
1 +

β2
hotᾰ

2

z2

(
1 − z

k̆0
α

)

+
β4
hotᾰ

4

2z4

(
1 − z

k̆0
α

)2

+ . . .

)
dy. (F48)

Lets consider any term in the series,

(
1 − z

k̆0
α

)i

, with i ∈
N/{0}. We want to find the biggest term in this bracket. We
begin by assuming that 1 is the biggest term and using the

fact that k̆0
α

> 0 and 0 < z ≤ 1 we have,

‖1‖ ≥ ‖z
k̆0
α ‖ ⇒ 1 ≥ z

k̆0
α ⇒ 1 ≥ z. (F49)

So 1 is indeed the bigger term meaning 1−z
k̆0
α ≤ 1. Now we

need to show that the 1st term in the integral (Eq. (F48)) is

greater than
β2i
hotᾰ2i

i!z2i

(
1 − z

k̆0
α

)i

for each i ∈ N/{0}. From

the workings above, we know the ith term is less than,
β2i
hotᾰ2i

i!z2i so on assuming the first term, 1 is bigger than the

other terms for any i, we have
β2i
hotᾰ2i

i!z2i < 1 ⇒
(

β2
hotᾰ2

i!z2

)i

<

1 ⇒ β2
hot
z2 < i!

ᾰ2 and since βhot
z

� 1, we now know 1 is indeed
the biggest term in the sequence. Therefore, we can ignore
the higher-order terms in Eq. (F48) to get

Ghot(y) ≈
∫ 1

y

1

z
dz = ln

(
1

y

)
. (F50)

Deriving the expansion for ε < y � βhot and ε < y � γ we
have that,

Ghot(y)

=

∫ 1

y

exp

(

β2
hotᾰ

2

(

1 − exp

(

− k̆0
α

y2

2ᾰ2β2
hot

e
β2
hot
y2

))
(

1
z

− z
ω
α

)2
)

z
dy

≤
∫ 1

y

exp
(
β2
hotᾰ

2 1
z2

)

z
dy, (F51)

by using the upper bound of the extension again and the

fact that if y
βhot

� 1 then e
β2
hot
y2 � 1 and consequently

exp

(
− k̆0

α
y2

2ᾰ2β2
hot

e
β2
hot
y2

)
� 1. We can repeat the procedure

of solving Eq. (F41) to derive

Ghot(y) =
y2

2ᾰ2β2
hot

exp

(
ᾰ2 β2

hot

y2

)
+ o

(
y4

γ4

)
.

(F52)

The case βhot < y < γ is a hybrid of the two methods. You
can ignore the exponential term in a similar way to (F51)
and follow the same derivation for G in Eq. (F40) to derive

Ghot = ln
(

1
y

)
. Collecting the results together we get,

nhot =

⎧⎪⎨
⎪⎩

exp

(
− 1

α
y2

2ᾰ2β2
hot

e
ᾰ

β2
hot
y2

)
, ε ≤ y � βhot

y
1
α , βhot � y ≤ 1.

(F53)

Notice that the simplification of nhot is not dependant on
n.

We need to know exactly where the different asymptotic
expansions in the different regions can be applied. Starting
with n, the first boundary region, ε < y � βhot, applies
when n has rapidly decreased. So if we find the value for y for
when this happens, we can get out a critical value for when
the different expansions can be used. To find this value, we
use the derivative of the dominate term of the exponent of

n which is k̆0
α

exp
(

γ2ᾰ
y2

)
and find the value when it exceeds

a certain number, as when this rapidly increases, n rapidly
decreases. This value is then,

χ =

√√√√ γ2ᾰ2

ln
(

α

k̆0
Q

) , (F54)

where Q is a threshold value of our choice. The threshold
value for nhot, similarly is,

χhot =

√
β2
hotᾰ

2

ln (αQ)
. (F55)

To be able to solve the limit stress resultant, we need
to also approximate the trigonometric term present, sin(
arctan

(
tan(θ0)

1
y

))
. Note for tan θ0 < y ≤ 1 we have

tan θ0
y

< 1. Using the Taylor expansions on both arctan and
sin and ignoring higher-order terms, we can derive

sin

(

arctan

(

tan(θ0)
1

y

))

(F56)

= sin

(
tan θ0

y
− tan3 θ0

3y3
+

tan5 θ0

5y5
− tan7 θ0

7y7
+ . . .

)

(F57)

=

(
tan θ0

y
− tan3 θ0

3y3
+

tan5 θ0

5y5
− tan7 θ0

7y7
+ . . .

)

(F58)

− 1

3!

(
tan θ0

y
− tan3 θ0

3y3
+

tan5 θ0

5y5
− tan7 θ0

7y7
+ . . .

)3

(F59)

+
1

5!

(
tan θ0

y
− tan3 θ0

3y3
+

tan5 θ0

5y5
− tan7 θ0

7y7
+ . . .

)5

(F60)

− 1

7!

(
tan θ0

y
− tan3 θ0

3y3
+

tan5 θ0

5y5
− tan7 θ0

7y7
+ . . .

)7

+ . . .

(F61)

=
tan θ0

y
− 1

2

tan3 θ0

y3
+

3

8

tan5 θ0

y5
− 5

16

tan7 θ0

y7
(F62)

+ o

(
tan9 θ0

y9

)

. (F63)

For the case γ < y < tan θ0 we use the relation,

sin
(
arctan

(
tan θ0

1
y

))
= tan θ0√

tan2 θ0+y2
. Noting that y

tan θ0
<

1 and using the Taylor expansion around y = 0 we find,

tan θ0√
tan2 θ0 + y2

= 1 − y2

2 tan2 θ0
+

3y4

8 tan4 θ0
− 5y6

16 tan6 θ0

(F64)

+ o

(
y8

tan8 θ0

)
. (F65)

Both of these approximations lose accuracy around y =
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tan0, we therefore repeat the procedure above but now Tay-
lor expand around y = tan0 to get,

tan θ0√
tan2 θ0 + y2

=
1√
2

− y − tan θ0

2
√

2 tan θ0
+

(y − tan θ)2

8
√

2 tan2 θ0

+
(y − tan θ)3

16
√

2 tan3 θ0

− 13(y − tan θ0)
4

128
√

2 tan θ4
0

+ o

(
y5

tan5 θ0

)
.

(F66)

The approximation of the trigonometric term is then defined
by three different expansions in three different regions, such
that,

sin

(
arctan

(
tan(θ0)

1

y

))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tan θ0
y

− 1

2

tan3 θ0
y3

+
3

8

tan5 θ0
y5

− 5
16

tan7 θ0
y7 , tan θ0 + δ < y ≤ 1,

1√
2

− y−tan θ0
2
√
2 tan θ0

+ (y−tan θ)2

8
√
2 tan2 θ0

+ (y−tan θ)3

16
√
2 tan3 θ0

− 13(y−tan θ0)
4

128
√
2 tan θ4

0
, tan θ0

2
< y ≤ tan θ0 + δ

1 − y2

2 tan2 θ0
+ 3y4

8 tan4 θ0
− 5y6

16 tan6 θ0
, ε < y ≤ tan θ0

2
.

(F67)

Where tan θ0
2

and tan θ0 + δ are interval values of our choos-
ing to ensure accuracy. We can use this expression for the
cellulose angle to find the leading terms that dominate the
celluloses length’s, LC behaviour. Substituting in (51), we
get

LC(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

⎛
⎝∫ 1

y

(
tan θ0

y
− 1

2
tan3 θ0

y3 + 3
8

tan5 θ0
y5 − 5

16
tan7 θ0

y7

)2

y
dŷ

⎞
⎠, tan θ0 + δ < y ≤ 1,

exp

⎛
⎝∫ 1

tan θ0+δ
∼ dŷ +

∫ tan θ0+δ

y

(
1√
2

− y−tan θ0
2

√
2 tan θ0

+
(y−tan θ)2

8
√

2 tan2 θ0
+

(y−tan θ)3

16
√

2 tan3 θ0
− 13(y−tan θ0)4

128
√

2 tan θ4
0

)2

y
dŷ

⎞
⎠, tan θ0 + δ < y ≤ tan θ0

2

exp

⎛
⎝∫ 1

tan θ0+δ
∼ dŷ +

∫ tan θ0+δ
tan θ0

2
∼ dŷ +

∫ tan θ0
2

y

(

1− y2

2 tan2 θ0
+ 3y4

8 tan4 θ0
− 5y6

16 tan6 θ0

)2

y
dŷ

⎞
⎠, ε ≤ y ≤ tan θ0

2
.

(F68)

where ∼ is used for simplicity to represent the integrand
that appears in the previous line for the same integral
region. Upon evaluating our integral, we find,

LC(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

([
− tan2 θ0

2ŷ2 + tan4 θ0
4ŷ4 − 7 tan6 θ0

54ŷ6 + 19 tan8 θ0
576ŷ8 − 361 tan10 θ0

51840ŷ10

]1
y

)
, tan θ0 + δ < y ≤ 1,

eB1(1)e−B1((tan θ0+δ)) exp
([

34969
32768

log(y) − 935y
4096 tan θ0

− 7941y2

16384 tan2 θ0
+ 3235y3

12288 tan3 θ0

+ 67y4

65536 tan4 θ0
− 245y5

4096 tan5 θ0
+ 1459y6

49152 tan6 θ0
− 195y7

28672 tan7 θ0
+ 169y8

262144 tan8 θ0

]tan θ0+δ

y

)
,

tan θ0
2

< y ≤ tan θ0 + δ,

eB1(1)e−B1((tan θ0+δ))eB2(tan θ0+δ)e−B2(
tan θ0

2 ) exp
([

log(y) − y2

2 tan2 θ0
+ y4

4 tan4 θ0

− y6

6 tan6 θ0
+ 29y8

512 tan8 θ0
− 3y10

128 tan10 θ0
+ 25y12

3072 tan12 θ0

] tan θ0
2

y

)
, ε ≤ y ≤ tan θ0

2
.

(F69)

where

B1(y) = − tan2 θ0
2ŷ2

+
tan4 θ0

4ŷ4

− 7 tan6 θ0
54ŷ6

+
19 tan8 θ0

576ŷ8
− 361 tan10 θ0

51840ŷ10
, (F70)

B2(y) =
34969

32768
log(y) − 935y

4096 tan θ0
− 7941y2

16384 tan2 θ0

+
3235y3

12288 tan3 θ0

+
67y4

65536 tan4 θ0
− 245y5

4096 tan5 θ0
+

1459y6

49152 tan6 θ0

− 195y7

28672 tan7 θ0
+

169y8

262144 tan8 θ0
, (F71)

B3(y) = log(y) − y2

2 tan2 θ0
+

y4

4 tan4 θ0

− y6

6 tan6 θ0
+

29y8

512 tan8 θ0
− 3y10

128 tan10 θ0

+
25y12

3072 tan12 θ0
. (F72)
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When we ignore the higher-order terms and expanding
Taylor expanding the exponential we get the final form as,

LC(y)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b1
(
1 + tan2 θ0

2ŷ2

)
, tan θ0 + δ < y ≤ 1,

b2

y
34969
32768

(1 − H(y) + H(y)2

2
), tan θ0

2
< y ≤ tan θ0 + δ,

b3
y

(
1 + y2

2 tan2 θ0

)
, ε ≤ y ≤ tan θ0

2
,

(F73)

where

b1 = eB1(1), (F74)

b2 = eB1(1)e−B1((tan θ0+δ))eB2(tan θ0+δ), (F75)

b3 = eB1(1)e−B1((tan θ0+δ))eB2(tan θ0+δ)e−B2(
tan θ0

2 )eB3(
tan θ0

2 ),

and (F76)

H(y) = B2(2) − 34969

32768
log(y) (F77)

We have all the needed approximations to calculate the
stress resultant analytically. We start of with the cellu-
lose contribution independent of the biomechanical hotspots
such that,

Σ∞
1 =

∫ 1

ε

(Lc − 1) sin θ dy

=

∫ 1

tan θ0+δ

(
b1

(
1 +

tan2 θ0
2ŷ2

)
− 1

)

×
(

tan θ0
y

− 1

2

tan3 θ0
y3

+
3

8

tan5 θ0
y5

− 5

16

tan7 θ0
y7

)
dy

+

∫ tan θ0+δ

tan θ0
2

(
b2

y
34969
32768

(
1 − H(y) +

H(y)2

2

)
− 1

)

×
(

1√
2

− y − tan θ0

2
√

2 tan θ0
+

(y − tan θ)2

8
√

2 tan2 θ0

+
(y − tan θ)3

16
√

2 tan3 θ0
− 13(y − tan θ0)

4

128
√

2 tan θ40

)
dy

+

∫ tan θ0
2

ε

(
b3
y

(
1 +

y2

2 tan2 θ0

)
− 1

)

×
(

1 − y2

2 tan2 θ0
+

3y4

8 tan4 θ0
− 5y6

16 tan6 θ0

)
dy.

(F78)

which we find to be

Σ∞
1 =

∑
i

ci, (F79)

where all the ci values can be found in Table 2.
The second term is the contribution from the cellulose

fibres when crosslinked by the biomechanical hotspots which
we calculate to be,

Σ∞
2 =

∫ 1

ε
a1nhot(Lc − 1) sin θ dy

=

∫ 1

tan θ0+δ
a1y

1
α

(

b1

(

1 +
tan2 θ0

2ŷ2

)

− 1

)

×
(

tan θ0

y
− 1

2

tan3 θ0

y3
+

3

8

tan5 θ0

y5
− 5

16

tan7 θ0

y7

)

dy

+

∫ tan θ0+δ

tan θ0
2

a1y
1
α

(
b2

y
34969
32768

(1 − H(y) +
H(y)2

2
) − 1

)

×
(

1√
2

− y − tan θ0

2
√

2 tan θ0
+

(y − tan θ)2

8
√

2 tan2 θ0

+
(y − tan θ)3

16
√

2 tan3 θ0
− 13(y − tan θ0)4

128
√

2 tan θ4
0

)

dy

+

∫ tan θ0
2

χhot

a1y
1
α

(
b3

y

(

1 +
y2

2 tan2 θ0

)

− 1

)

×
(

1 − y2

2 tan2 θ0
+

3y4

8 tan4 θ0
− 5y6

16 tan6 θ0

)

dy

+

∫ χhot

ε
a1 exp

(

− 1

α

y2

2β2
hot

e
β2
hot
y2

)

×
(

b3

y

(

1 +
y2

2 tan2 θ0

)

− 1

)

×
(

1 − y2

2 tan2 θ0
+

3y4

8 tan4 θ0
− 5y6

16 tan6 θ0

)

dy

(F80)

which becomes

Σ∞
2 =a1

((∑
i

d1,i(α)

)
+ tan0 (b1 − 1) α

+

(∑
i

d2,i(α)

)
(δ + tan θ0)

1
α

+ tan θ0 (1 − b1) α(δ + tan θ0)
1
α

+

(∑
i

d3,i(α)

) (
tan θ0

2

) 1
α

+b3α

(
tan θ0

2

) 1
α

+

(∑
i

d4,i(α)

)

(χhot)
1
α − b3α(χhot)

1
α

)
(F81)

where the values of the coefficients d1,i, . . . ,,d2,i, . . . ,, d3,i,
. . . ,, and d4,i, . . . , can be found in Table 3.

The third term is the hemicellulose contribution and is
found to be,

Σ∞
3 =

∫ 1

ε
a2nnhotσH dy =

∫ 1

χ
a2ᾰy

1
α y

k̆0
α

(
1

y
− y

ω
α

)

dy

+

∫ χ

χhot

+a2ᾰy
1
α exp

(

− k̆0

α

y2

2ᾰ2γ2
e
ᾰ2 γ2

y2

) (
1

y
− y

ω
α

)

dy

+

∫ χhot

ε
a2ᾰ exp

(

− 1

α

y2

2β2
hot

e
β2
hot
y2

)

× exp

(

− k̆0

α

y2

2ᾰ2γ2
e

ᾰ2γ2

y2

) (
1

y
− y

ω
α

)

dy (F82)

where upon integration

Σ∞
3 = a2ᾰ

(
α

k̆0 + 1

(
1−χ

k̆0+1
α

)

− 1

1
α

(
k̆0+ω+1

)
+1

(
1 − χ

k̆0+ω+1
α

+1

)⎞
⎠

(F83)
Note that for all three contributions to the stress resul-

tant, Σ∞
1 , Σ∞

2 , and Σ∞
3 for some critical values of α some

of their terms are logarithmic upon integration which we
choose to ignore.
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Table 2 Asymptotic expansion constants for Σ∞
1

Constant Value Constant Value

c1
305 b3
196608

c2 ε

c3
766290879471899 tan θ0
118219490218475520

c4 b3 ln
(
tan θ0

2

)
c5 tan θ0 ln (δ + tan θ0) c5 −b1 tan θ0 ln (δ + tan θ0)

c6 − 150077200448881 b2
9758165696512 (δ+tan θ0)

2201/32768 c7 −b3 ln (ε)

c7 − b1 tan θ0
5

32
c8

b1 tan θ0
7

48

c9
5 b1 tan θ0

9

256
c10 − tan θ0

3

4

c11
3 tan θ0

5

32
c12 − 5 tan θ0

7

96

c13
−3 tan θ0

5

32 (δ+tan θ0)
4 c14

b1 tan θ0
5

32 (δ+tan θ0)
4

c15
−2 b1 tan θ0

7

96 (δ+tan θ0)
6 c16

5 tan θ0
7

96 (δ+tan θ0)
6

c17
− 5 b1 tan θ0

9

8
32 (δ+tan θ0)

8 c18
8 tan θ0

3 (δ+tan θ0)
6

32 (δ+tan θ0)
8

c19
150077200448881 b2

9758165696512
(

tan θ0
2

)2201/32768 c20 − 187
√
2 (δ+tan θ0)
256

c21 − ε3

6 tan θ02 c22
3 ε5

40 tan θ04

c23 − 5 ε7

112 tan θ06 c24
5

√
2 (δ+tan θ0)

2

128 tan θ0

c25
43

√
2 (δ+tan θ0)

3

384 tan θ02 c26 − 15
√
2 (δ+tan θ0)

4

256 tan θ03

c27
13

√
2 (δ+tan θ0)

5

1280 tan θ04 c28
6020549791152521 b2 (δ+tan θ0)

30567/32768

44811695901638656 tan θ0

c29
7868723041398407 b2 (δ+tan θ0)

63335/32768

557100551561543680 tan θ02 c30
4402425010544735 b2 (δ+tan θ0)

96103/32768

1449138733222723584 tan θ03

c31 − 81932115935621 b2 (δ+tan θ0)
128871/32768

1967988374765568 tan θ04 c32
2682583518496071 b2 (δ+tan θ0)

161639/32768

88861980001042432 tan θ05

c33 − 7116713214246575 b2 (δ+tan θ0)
194407/32768

480943703297359872 tan θ06 c34
89993661700897 b2 (δ+tan θ0)

227175/32768

6917027650338816 tan θ07

c35 − 1390888037066579 b2 (δ+tan θ0)
259943/32768

160768322470674432 tan θ08 c36
813773447008073 b2 (δ+tan θ0)

292711/32768

633620822778445824 tan θ09

c37
280915086652931 b2 (δ+tan θ0)

325479/32768

134200479411339264 tan θ010 c38 − 5278606494654121 b2 (δ+tan θ0)
358247/32768

3101936844162465792 tan θ011

c39
3916342628302019 b2 (δ+tan θ0)

391015/32768

6771327241373614080 tan θ012 c40 − 4112068129940143 b2 (δ+tan θ0)
423783/32768

117420492710756745216 tan θ013

c41 − 1121251467598159 b2 (δ+tan θ0)
456551/32768

18447880144098951168 tan θ014 c42
1772224420073771 b2 (δ+tan θ0)

489319/32768

52725169158789005312 tan θ015

c43 − 1694538362442335 b2 (δ+tan θ0)
522087/32768

168767973799942422528 tan θ016 c44
94162698713311 b2 (δ+tan θ0)

554855/32768

47829450699604754432 tan θ017

c45 − 388717606998977 b2 (δ+tan θ0)
587623/32768

1519623251576745885696 tan θ018 c46
1057140962472757 b2 (δ+tan θ0)

620391/32768

52154529959914841833472 tan θ019

c47 − 2775672680954111 b2 (δ+tan θ0)
653159/32768

3707279049981556007370752 tan θ020 c48 − b3 ε4

32 tan θ04

c49
b3 ε6

48 tan θ06 c50
5 b3 ε8

256 tan θ08
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Table 2 continued

Constant Value Constant Value

c51 − 6020549791152521 b2

(
tan θ0

2

)30567/32768

44811695901638656 tan θ0
c52 − 7868723041398407 b2

(
tan θ0

2

)63335/32768

557100551561543680 tan θ02

c53 − 4402425010544735 b2

(
tan θ0

2

)96103/32768

1449138733222723584 tan θ03 c54
81932115935621 b2

(
tan θ0

2

)128871/32768

1967988374765568 tan θ04

c55 − 2682583518496071 b2

(
tan θ0

2

)161639/32768

88861980001042432 tan θ05 c56
7116713214246575 b2

(
tan θ0

2

)194407/32768

480943703297359872 tan θ06

c57 − 89993661700897 b2

(
tan θ0

2

)227175/32768

6917027650338816 tan θ07 c58
1390888037066579 b2

(
tan θ0

2

)259943/32768

160768322470674432 tan θ08

c59 − 813773447008073 b2

(
tan θ0

2

)292711/32768

633620822778445824 tan θ09 c60 − 280915086652931 b2

(
tan θ0

2

)325479/32768

134200479411339264 tan θ010

c61
5278606494654121 b2

(
tan θ0

2

)358247/32768

3101936844162465792 tan θ011 c62 − 3916342628302019 b2

(
tan θ0

2

)391015/32768

6771327241373614080 tan θ012

c63
4112068129940143 b2

(
tan θ0

2

)423783/32768

117420492710756745216 tan θ013 c64
1121251467598159 b2

(
tan θ0

2

)456551/32768

18447880144098951168 tan θ014

c65 − 1772224420073771 b2

(
tan θ0

2

)489319/32768

52725169158789005312 tan θ015 c66
1694538362442335 b2

(
tan θ0

2

)522087/32768

168767973799942422528 tan θ016

c67 − 94162698713311 b2

(
tan θ0

2

)554855/32768

47829450699604754432 tan θ017 c68
388717606998977 b2

(
tan θ0

2

)587623/32768

1519623251576745885696 tan θ018

c69 − 1057140962472757 b2

(
tan θ0

2

)620391/32768

52154529959914841833472 tan θ019 c70
2775672680954111 b2

(
tan θ0

2

)653159/32768

3707279049981556007370752 tan θ020
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