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Abstract Plant cell growth is regulated through manipulation of the cell wall network, which consists of
oriented cellulose microfibrils embedded within a ground matrix incorporating pectin and hemicellulose
components. There remain many unknowns as to how this manipulation occurs. Experiments have shown
that cellulose reorients in cell walls as the cell expands, while recent data suggest that growth is controlled
by distinct collections of hemicellulose called biomechanical hotspots, which join the cellulose molecule
together. The enzymes expansin and Cell2A have both been shown to induce growth of the cell wall;
however, while Cell2A’s wall-loosening action leads to a reduction in the cell wall strength, expansin’s
has been shown to increase the strength of the cell wall. In contrast, members of the XTH enzyme family
hydrolyse hemicellulose but do not appear to cause wall creep. This experimentally observed behaviour
still awaits a full explanation. We derive and analyse a mathematical model for the effective mechanical
properties of the evolving cell wall network, incorporating cellulose microfibrils, which reorient with cell
growth and are linked via biomechanical hotspots made up of regions of crosslinking hemicellulose. Assum-
ing a visco-elastic response for the cell wall and using a continuum approach, we calculate the total stress
resultant of the cell wall for a given overall growth rate. By changing appropriate parameters affecting
breakage rate and viscous properties, we provide evidence for the biomechanical hotspot hypothesis and

develop mechanistic understanding of the growth-inducing enzymes.

1 Introduction

Faced with climate change and population growth,
humanity needs plants that can cope with extreme
weather events, diseases and rising demands on yield.
As a result, understanding plant growth is essential
to secure a sustainable future [1,2]. Modification and
adaptations to the plant genomes can provide a solu-
tion to optimising plant development. However, there
remain many intriguing mysteries behind the mecha-
nisms underlying plant growth.

As plants grow, their cell walls need to be strong
enough to resist bursting but weak enough to allow
permanent expansion. Controlled cell wall growth is
an amazing feat, where some cells can increase in vol-
ume by over 30,000 times as they move from the meris-
tem into maturation [3]. The driving force behind cell
growth is the isotropic turgor pressure maintained by
the uptake of water into the vacuole accompanied by an
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increase in cytoplasmic volume. This pressure inflates
the cell membrane whose expansion is then restricted by
the cell wall (a balloon in a box) creating a great tension
in the cell wall, equivalent to 100-1000 atmospheres of
tensile stress [3]. A stressed cell wall will deform elasti-
cally or plastically depending on the cell wall mechan-
ical properties. Plastic deformation or growth begins
when the mechanical load (turgor pressure) exceeds
some critical value (yield threshold). This extension
leads to thinning of the cell which can be balanced by
the deposition of new wall material to maintain cell wall
integrity. Since turgor acts in all directions, cell walls
must be highly anisotropic to allow directional growth.

One of the earliest models of plant cell growth in one
direction was the Lockhart equation, which states that
the relative elongation rate, a*, is proportional to the
turgor pressure, P*| if it is above a yield threshold, Y*
[4]. This idea is expressed in the form:

. ldrr  fo, Pr <Y,
T Lrdtr \¢f(Pr-YY), P*>Y7,

(1)

where L* is the length of the cell and ¢* is the extensi-
bility. If the pressure does not exceed the yield thresh-
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old, the cell does not grow as the turgor cannot over-
come the strength of the wall. In this article, we use
the word “strength” to imply the cell wall’s ability to
resist deformation. This formulation was a useful ini-
tial model, but our understanding of plant growth has
now improved. Rather than changes in turgor pres-
sure, growth is often controlled via careful manipulation
of the cell wall, which results in changes to the yield
threshold or the extensibility [5]. General reviews on
mechanical modelling of plant growth can be found in
[6-8], while further information on the biological details
can be found in [5,9-11].

In this paper, we create a mathematical model to
investigate the interplay between cell wall structure and
enzyme action in order to understand experimentally
observed behaviour. Enzyme action is a crucial pro-
cess in cell wall growth; however, it is generally under-
researched in the biological context with even less mod-
elling undertaken [6,12].

The cell wall consists of three main components,
cellulose (CMF), hemicellulose (e.g arabinoxylan or
xyloglucan) and pectin [5,9,13-15]. The cell wall prop-
erties are carefully mediated via active control of the
wall’s mechanical structure (e.g. by enzymatic action
or new material deposition), altering either the yield or
the post-yield behaviour and ultimately affecting the
direction and rate of growth.

On the microscale, bond breakage and polymer net-
work rearrangement (wall loosening) result in the relax-
ation of wall stress, allowing for the viscous flow
of the cell wall. Cell wall loosening can be medi-
ated by the action of proteins or enzymes, such as
expansins, xyloglucan endotransglucosylase/hydrolase
(XTH), and pectin-modifying enzymes, and are regu-
lated by the action of hormones (morphogens), such as
auxin, gibberellins, and abscisic acid [3,10].

Cellulose are long and stiff molecules embedded in
a matrix of hemicellulose and pectin. Cellulose are
deposited in the cell wall in lamella layers at a vari-
ety of angles [16], typically perpendicular to the growth
direction, circling the cell, where they reinforce the
cell against radial expansion [9]. Cellulose molecules
are also responsible for resisting the majority of the
cell wall tension [17]. Experimental observations of the
cell wall have found that cellulose molecules are trans-
versely directed after deposition in the inner cell wall
and reorient to a longitudinal direction as they move
to the outside of the cell wall during growth [18-22],
however this might not always occur [23].

How the rings of cellulose are connected is not pre-
cisely known [12]. It was previously thought that cellu-
lose molecules are joined together via a tethered net-
work where the cellulose fibres run parallel to each
other and are continuously joined together by hemicel-
lulose, which form hydrogen bonds with the cellulose
and peel off when the network is deformed [10]. There
are several problems with this theory. Simulations have
revealed that assuming a tethered network structure
results in a much weaker cell wall than experimentally
observed [24]. Tt was also found that some plants that
lack xyloglucan (mutant forms of Arabidopsis and cel-
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ery) displayed only a small amount of growth reduction
[14] implying the role of xyloglucan in cell wall strength
could have been exaggerated. According to a finite ele-
ment model featuring a network of cellulose molecules
tethered together by hemicellulose via hydrogen bonds,
a deformed network is not strong enough to withstand
the strain caused by turgor [25]. These studies present
evidence that the tethered network model is not a feasi-
ble explanation as to how the cell wall retains integrity.
These results emphasise the mechanical role of other
molecules like pectin and suggest that when xyloglucan
is present, it could be concentrated around a limited
number of distinct biomechanical hotspots (hotspots)
where cellulose molecules come into close proximity
with one another [14].

These concentrated hotspots could allow for con-
trolled extension of the cell wall where these distinct
spots are selected to allow slippage [9,10,14,26]. Pectin
is also theorised to have a role to play in these hotspots
[16]. A model testing this theory considered a network
of cellulose connected by hotspots represented as lin-
ear springs [27]. The model hypothesises that a group
of short xyloglucan strands is stiffer than a single long
strand, and when combined with pectin, the cell wall
can produce the requisite wall stiffness to oppose tur-
gor. The hotspot hypothesis claims that a small amount
of degradation of the hotspots could lead to the load
being carried by pectin, which then enables the viscous
flow of the cell wall, providing a possible mechanism for
growth.

Some enzymes affect the cell walls and possibly inter-
act with the hotspots. Note that in this article, we
refer to “wall loosening” as the action that directly
causes stress relaxation, creep and hence growth, and
“wall softening” as a decrease in the Young’s modu-
lus [10]. XTH has been shown to have a hydrolysing
action on the cell wall where it can cut and rejoin
xyloglucans; despite this observed effect, it strangely
does not induce significant cell wall extension [3,10].
Cell2A, an enzyme present in fungi, has been shown to
cause wall loosening. It has been suggested that Cell2A
targets the hotspots by performing hydrolysis at these
sites and leads to a reduction in wall strength [10,28]
and thus causes both wall loosening and wall softening
[12]. Modelling efforts have offered an explanation of
why these two enzymes hydrolysis action’s have differ-
ent effects; using coarse-grained molecular dynamics it
was found that cellulose is the main load-bearing com-
ponent, which could be the reason why enzymes purely
targeting xyloglucan are ineffective [17]. Expansin is a
pH-controlled wall-loosening protein [3]. Some exper-
iments have shown expansin action to induce growth
[12,29], while in contrast, other tests have observed the
cell walls withstand more force without bursting [10].
Unlike Cell2A, Expansin action seems to loosen but
not soften the wall [12], but the mechanism remains
unknown. There has been no observed enzymatic action
by expansin [30], so this effect could be due to force dis-
sipation by a-expansin. It is hypothesised that expansin
targets the hotspots as there is evidence that they
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act on cellulose—cellulose sites [12,26] where they may
induce slippage of the fibres [30,31].

This paper aims to produce a proof-of-concept model
to test the plausibility of the hotspots hypothesis as an
explanation for observed enzyme behaviour. We focus
on inner tissues cells with predominately transversely
orientated CMF with negligible cell division, for exam-
ple cells within the root elongation zone [32-34]. We
model the primary cell wall as a continuum incorporat-
ing crosslink dynamics (between cellulose and hemicel-
lulose) and calculate the stress resultant when acted on
by a prescribed growth rate. Using the model, we exam-
ine hypothesised expansin, Cell2A and XTH enzyme
action, and investigate the consequences of cellulose
reorientation. This model is designed to be a simplifica-
tion of the system in order to test the feasibility behind
proposed wall structure and protein mechanisms. The
focus is therefore on the cellulose crosslinks and not
on the pectin ground matrix, whose direct contribu-
tion (which was discussed in [35]) shall be neglected
in the model, while its possible cellulose crosslinking
will be incorporated. We begin with an explanation
of the mathematical model of the cell wall in Sect. 2.
This is followed by an analysis of the model outputs
and a discussion of the implications of these findings in
Sect. 4. We summarise the results and draw conclusions
in Sect. 5.

2 Model formulation

The model comprises three distinct aspects of cell
wall dynamics: the emergent macroscopic stress and
CMF orientation evolution from the microscopic cell
wall network (Sect. 2.2.1), hotspot bond density evo-
lution (Sect. 2.2.2) and enzyme action (Sect. 2.2.3).
We will first detail the assumptions behind each aspect
(Sect. 2.1), before deriving the relevant governing equa-
tions (Sect. 2.2). This model is based on the framework
originally developed in [35], with significant differences
in the treatment of material properties, network compo-
sition and fibre orientation evolution. We will simplify
the governing equations through nondimensionalisation
(Sect. 2.3) and solve the resulting system (Sect. 3). The
solutions are further simplified via asymptotic reduc-
tion (Sect. 3.2) providing insights into the principal
components controlling cell wall behaviour.

2.1 Model assumptions and set-up

The crucial output of the model is an expression for the
axial stress resultant X* of the cell wall (see Fig. 1).
This stress resultant captures the strength of the cell
wall generated by the underlying polymer network, as
well as the relationship between turgor pressure and
the growth rate; higher values of turgor increase the
load on the cell wall, resulting in raised stress levels
and possible further extension of the wall. The stress
resultant is calculated by summing up the stress held
by each component of the cell wall polymer network
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Fig. 1 An idealised segment of the cell wall. The two
curved (light blue) surfaces are the two boundaries of the
cell wall. The thick (purple) rods represent the cellulose
molecules reorienting as they approach the outside of the
cell wall. The groups of thin (orange) fibres represent the
hotspots which become increasingly stretched as they tra-
verse to the outside of the cell. Equation (2) imposes this
movement and deformation in the xz-y plane. Note that the
figure represents a simplification of biological reality as per
the model, where biomechanical hotspots are distributed
throughout the domain according to some dynamical den-
sity

at all points in the cell wall. We assume that the cell
wall is an evolving continuum with embedded cellulose
molecules that are initially orientated perpendicularly
to the axial direction. As the cell wall elongates, with
growth rate a*, all molecules are stretched, and the cel-
lulose molecules are additionally reoriented. These cel-
lulose molecules are connected by a mix of cell wall com-
ponents including hotspots crosslinks as described in
Sect. 1 where the hotspot bond density and the hemicel-
lulose number functions are nj, , and n*, respectively. (*
denotes dimensional quantities throughout.) All func-
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tions that represent the whole hotspot are denoted with
a subscript hot ( ot ) where functions that represent
a single fibre are without. This bond density is depen-
dent on the energy held in the fibres, meaning that as
they get increasingly stretched via cell wall extension,
they become more likely to break. As we are examin-
ing the principal growth direction, forces are resolved
in this direction. Therefore, only azial hemicellulose
are included since mechanically they matter the most.
Enzyme action will be modelled by changes in the bond
density evolution parameters. The wall segment is ini-
tially unstressed at time t* = 0 and undergoes uniform
stretching in such a way that the cell wall grows with a
fixed growth rate a*. We now explain how this growth
rate is imposed.

We introduce the coordinate system (z*,y*, z*) with
the origin positioned on the edge of the outer wall
(Fig. 1). The cell wall is stretched in the axial z*
direction with the y*, z* directions being perpendicu-
lar to the growth direction, such that y* points radially
inwards, and z* tangential to the cell wall. We define 6
to be the angle between the cellulose fibres and the z*
axis. New wall material is deposited on the inner sur-
face of the wall at y* = h*, moves through the wall at
rate o™ until it reaches the outer wall surface at y* = 0.
We therefore model the growth via the incompressible
flow field,

u’ =a’(z",—y",0) for 0 < y* < h™, (2)

meaning that da*/dt* = o*2z* and dy*/dt* = —a*y*.
This flow describes the material moving through the flat
x-y plane in a thin segment of the cell wall (Fig. 1 and
see figure 2 and 3 in [35] for further details). Due to the
modelling domain being thin, we assume the cellulose
molecules do not bend radially, and since there is no
stretching in the z* direction, the model simplifies to a
2D system.

We now consider how a generic element of cell wall
material changes in length as the cell wall stretches. Let
L*(y*,t*) be the length of such a segment lying in the
x* direction. The material extends with rate

*

1 oL*
o —

“or ®)

and so segment is therefore under an axial strain of

*

s* = f—; — 1 where L§ is the natural length of the
material segment. If the initial length of a segment
positioned at y* = y; at the non-constant deposi-
tion time ¢* = 7" is L}, the segment length evolves
according to L* = Lfe® "=7") on the characteristic
y* =yrfe =) (from Eq. 3). The evolving segment
length 15 then related to its position in the cell wall by
L = L—f, encoding both its extension and trajectory.
As a result of this formulation, the system of equations
described in Sect. 2.2 will all be partial differential equa-
tions dependent on both time and space.

To consider the amount of wall material contained in
the wall segment and its deposition, we assume that at
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the inner surface of the cell wall, material is deposited
such that constant cell wall thickness is maintained.
This new wall material then gets pushed through the
wall towards the outer surface via the flow (2). We
find that wall density remains uniform for all time,
assuming appropriate initial conditions (see appendix
A for details). When new fibres are deposited, they are
assumed to have zero stress and oriented in the z direc-
tion as they are yet to be subjected to tension or the
material flow. This assumption will be reflected in the
boundary conditions in Sect. 2.2.

2.2 Principal equations
2.2.1 Stress resultant from the composite cell wall

The total stress resultant from the composite cell wall in
the axial direction when growing in the axial direction
depends on the mechanical properties of each consti-
tutive (and evolving) part: the CMF which are bound
together by both the hotspots and other cell wall com-
ponents, the hemicellulose within the hotspots and the
surrounding pectin ground matrix. We assume a stan-
dard linear solid-like system, so the total stress o*
(taken from the stress components in the axial direc-
tion) is the sum of the stresses arising from the biome-
chanical hotspots o}, and the cellulose molecules o¢;
(Fig. 2).

We let o; be the stress held in a hemicellulose fibre
which we assume to be characterised by a Maxwell ele-
ment where the hemicellulose strain, sg, is equal to the
wall strain, s = sy. The Maxwell assumption means
that the hemicellulose strain is the sum of the elastic
and viscous contributions (stretching a spring and vis-
cous damper /dashpot in series), Sy = SH.e + SH v, With
the hemicellulose stress being equal to its elastic and
viscous stress, oy = oy, = oy ,,- This implies that

1 Ooyy 1 0s
g Yo 4
vy ot p* TH = Hpe (4)

with the boundary and initial conditions of o3 (h*, 7)
= o5(y*,0) = 0 where 7% is the time the fibre is
deposited, h* the wall thickness, vj; the hemicellulose
Young’s modulus and p* the material constant of vis-
cosity. As each hotspot is a compact collection of hemi-
cellulose fibres, we assume that the stress arising from
the hotspots, oy, is then the sum of the hemicellu-
lose stresses contained within it, meaning oy, = n*oj;.
Here it is assumed that the wall strain is uniformly dis-
tributed across all the fibres and that the deformation
is smooth, i.e. the strain in the fibres is the same as the
wall strain. It has been proposed that the strain dis-
tribution through the wall may be discontinuous, being
smaller at the hotspots [11]. This effect could be incor-
porated through extension of the fibres, for example
sg = 0sor sg = s—0sc where s¢ is the cellulose strain
and § < 1 and is some parameter to scale the amount
of strain imposed onto the hotspots. This would, how-
ever, incorporate yet another unknown parameter while
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Fig. 2 On the left a depiction of a single unit of the contin-
uum model with the cellulose (box A) and hotspot (box B)
contributions to the stress joined in parallel. The hotspot
stress o, arises from a collection of hemicelluloses rep-
resented as Maxwell elements, consisting of a spring and
viscous damper/dashpot, crosslinked with bond number n*
(where the red cross represents a bond breakage). The cel-
lulose stress of is represented by a box that resists the
strain elastically proportionally to the cellulose’s angle 6.

introducing little impact on the results. (It would scale
the breakage rate down and the stress resultant up
due to cellulose’s contribution.) Thus, discontinuity of
the strain is not considered. Importantly, even though
these hotspots are being strained the same amount, this
strain is being released by the viscous slippage of the
dashpots; so these fibres are under less elastic strain
than the wall. And as the fibre breakage rate is solely
dependent on this elastic strain (see Sect. 2.2.2), some
aspects of the discontinuity are already included in the
model.

Assuming the cellulose molecules are elastic, the
stress term for the CMF in the axial direction is then,

o6 = viscsind, (5)

where v, is the Young’s modulus, ¢ the fibre angle,
sin # a modifier that changes the cellulose stress as they
become increasingly reoriented to the axial direction,
and sc the strain of cellulose fibre, such that

Lt

"
C,0

S¢ = -1 (6)

where L¢,  is the cellulose resting length.
The cellulose fibre angle 6 and length L7 are ori-
entated and deformed by the flow u*. Letting a be

A
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The whole unit’s stress is then dependant on the biome-
chanical hotspot density ny,., such that when it is zero, the
only contribution is coming from cellulose crosslinked by
other molecules. On the right a representation of the cell
wall continuum consisting of the single units being progres-
sively stretched as they move through the cell wall causing
the individual hemicelluloses bonds and hotspots to break
(red crosses)

the cellulose direction vector, we shall assume the cel-
lulose network is uniform in the z* and z*-direction
as they are in the plane of the wall, and thus, a =
(sin 6,0, cosf). Assuming the cell wall is a composite
material with a preferred direction under an incom-
pressible, transversely isotropic viscous flow, the evo-
lution of the fibre director field, a, can be described by
[36],

Oa
ot*

+(u*-Va+fa=(a-V")u", (7)

where (* = a - e* - a represents the strain rate in the
direction of the matrix, with e* = (V*u* + V*u*?) /2.
We now have an expression that describes how cellu-
lose fibres convect, stretch and reorient as they move
through the cell wall via the flow, u*. Equation (7)
can be re-expressed in terms of € using the definition
of a meaning ¢(* = o sin®#, and upon substituting in
Eq. (7) we obtain

0 00
cos ) — — a*y* cos=—— + o sin® 0 =a* sin 0,

ot* oy*
(8)

0 0
—sin 9% —a’y*sin 0(%* +a*sin?fcosf =0.  (9)
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Computing sinf x (8) 4+ cosfx (9) and dividing the
result by sin 6 cos 6 yield

00 _ . .00
ot Y by

—a*sinfcosf =0, (10)

with boundary and initial conditions, respectively,
being §(h*,7*) = 0(y*,0) = 0y (note Oy # 0, else the
solution is simply # = 0 for all t* > 0).

From the derivation of Eq. (7), we also have an
expression that describes the evolution of the cellulose
length L{, when stretched via the flow as

1 dL,

Ly, dtr V') u') = a’sin® 0,

—a-((a (1)

with boundary and initial conditions being L, (h*, 7%) =
Le(y™,0) = L o-

Finally, the total stress resultant in the cell wall is
then the sum of the stress of all components when
crosslinked in each “layer” of the cell wall, i.e. inte-
grating over the thickness of the wall, which gives

N
5 = / (L4 A™nfo))ot + nfosotes dy* + ",
0
(12)

where p* is the density of cellulose and (1 + A*nj,) is
the modification of the cellulose stress due to crosslink-
ing, noting that cellulose can only contribute to the
wall stress if they are connected to one another, other-
wise they are just pulled apart.. The cellulose modifi-
cation term in (12) has two contributions: the first rep-
resents non-hotspot crosslinks and the second hotspots
crosslinks, with A* controlling the magnitude of the
contribution. The integral is the contribution from the
CMF (first term with o) and the xyloglucan hotspots
(second term with of ), with the xyloglucan term
dependent on the hotspot density for the same reasons
as cellulose; the final term is the pectin matrix con-
tribution which is assumed to provide an extensional
viscosity due to its properties [37,38], with T'* being
the stiffness density of the matrix. This concludes the
description of the stress resultant, so we proceed to
characterise the crosslinking dynamics.

2.2.2 Bond density evolution equation

We now introduce equations that describe the hotspots
density and hemicellulose number, n; . and n* respec-
tively. Assuming that the CMF do not break before
the hotspots, it is then the hotspots connections that
rupture to allow slippage of the cell wall components.
We assume that no new bonds are formed inside the
cell wall. To address this potential limitation, we could
have included a stochastic bond reformation term. How-
ever, this would be equivalent to uniformly decreasing
all bond breakage rates, so it would introduce more
unknown parameters without producing new effects on
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the results in Sect. 4. The hotspots and the hemicel-
lulose fibres within them are advected through the cell
wall according to a Smoluchowski equation [39], with
both ny . and n* undergoing energy-dependant break-
age:

* *
anhot a*u* 877‘hot

Ot - Y ay* = ;kff,hotniklom (13)
on* on*

where nj . (h*, 7%) = g (¥*, 0) = ng j,0p, and n*(h*, 77)
= n*(y*,0) = nf, with the breakage rates defined as

* * 62 *
koff,hot = kO,hot €Xp (ki*T* Uhot (yv t) ) (15)
b

(16)

In Egs. (15) and (16), kfT* is the thermal energy (kj
being the Boltzmann’s constant and 7™ the absolute
temperature), kg ., and kg are the breakage rates when
the fibres are unstressed, U}, and U* the deformation

free energies and B and ~ are parameters controlling
how strongly the energies affect the breakage rates. This
formulation entails a direct relationship between the
stress held in the fibres and the breakage rates and
has been used successfully in other models of adhe-
sion dynamics [40-43]. To ensure that the crosslinks
stretch a significant length before breaking [35], we take
B,v < 1; alternatively, taking larger values of these
parameters allows us to model increased breakage rates
caused by, for example, heightened hydrolysis action.
As hemicellulose bonds break, the hotspots become eas-
ier to rupture, and as a result, we take 4% = (22 —1)3%.
We also assume that the hotspots are stronger than the
hemicellulose crosslinks, so 3 < +.

To calculate the free energy potential in a single fibre,
we consider the force F* on a fibre as it moves along
the trajectory x*(t*) = (™ (t*),y*(t*), z*(t*)). We set
y*(t) = 2*(t) = 0 as the molecules are only being
extended in the axial direction, so

2" (") = $p e (17)
with s%; . being the elastic extension. The work done
by F* is then

s;l,e
W :/ F* da”. (18)
0

Since the bond breakage is dependent on elastic strain,
the force is also elastic, meaning F; = —x*2* where x*
is the stiffness of the springs and is equal to the area
multiplied by v, divided by the length of the cellu-
lose molecules. Since temperature is constant, the free
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energy equals the potential/work done and so U* =
%* (52{,@)2' For the hotspot density potential, the force
applied is F; = —kj 2™ for some stiffness & ,, which
should be affected by the number of intact fibres in
the hotspot, n*; we therefore take xf , = n*sx*, as the
springs are in parallel so stiffness is additive and hence

Ef = —x*n*(y*,t*)z*. Then it follows that

*

* S};’e * * K k[ ok g% * 2
W= [ e = ) )
0

(19)
and Uy, = “—;n*(y*,t*)(s}{’e)% therefore,
* 0 *
kof‘f,hot = kO,hot €xXp Qk;T* (SH,e)
(20)

This completes the description of crosslinking, and we
proceed to detail the implementation of enzyme action.

2.2.3 Enzyme action

We consider a simple model of enzyme action. Recall
that the enzymes Cell2A and XTH perform hydroly-
sis/cutting action, where Cell2A targets the hotspots
junctions (cutting both cellulose and hemicellulose) and
XTH targets the hemicellulose fibres. We simulate the
Cel12A and XTH actions by increasing (3 and ~, respec-
tively, in Egs. (15) and (16). As Cell12A also digests the
cellulose molecules, it might also decrease the cellulose
density p. As the focus is on the hotspots, the modelling
of this effect will be left to the appendix E.

Due to the lack of consensus on how expansin works,
we try two different simple methods of enzyme action.
As mentioned in Sect. 1, expansin may work by allow-
ing slippage in the fibres [31]. The first method entails
decreasing the viscosity of the dashpots, i.e. decreasing
their resistance to the flow. This effect is modelled by
the equation

B g (1 21
ot : < u’f)’ 1)

with the conditions p*(h*,7*) = p*(y*,0) = uf, where
E™ is the expansin action rate, p( the initial viscosity
and p] the target viscosity with pf < pg. We choose
this form to keep the model as simple as possible while
ensuring that p* decreases and that u* # 0.

The second method imposes expansin action by
increasing the resting length of the springs in the sys-
tem allowing for stress relaxation. We assume that the
resting length growth rate depends on the strain of
the spring, rather than the extension; this assumption
avoids the resting length exceeding the actual length.
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Thus,

oLy . (L
o = ( I 1>7 (22)

with the boundary and initial conditions, Lo(h*, 7*) =
Li(y*,0) = I§. With the system of equations fully
described, we now proceed to simplify them through
nondimensionalisation.

2.3 Nondimensionalisation

We nondimensionlise the system according to

t t

* * __ * %

U= L* y T = L* y Mhot = n07h0tnhot7
0,hot 0,hot

n* = ’I’LS’I’L, y* = h*y7 y; = h*yza
L*=LjL, Lf, = LE,oLa Y= &£y,
ot = k;,hotav k;ff,hot = kahotkoﬁ,hot;
sz = ké,hotkoﬂy 0;1 = VEUH7
o6& =v&oe, Ly =15Lo,
ET
= —
kO,hot
and E* = kg 1, &/ (when using the mechanism
described in Eq.(21))
or E* =kjpoloE (for the description in Eq.(22)),
(23)

*

1= pop,

where we define £* = vih*p*. Equations (3)—(22) are
simplified as follows and are later solved in Sect. 3. The
wall length Eq. (3) becomes,

oL
5 = oL, (24)

with L(1,7) = L(y,0) = 1. For the hemicellulose stress
Eq. (4), after nondimensionalisation we have,

Jog 0Os
Z7H = - 25
En +wog o’ ( )
with o (1,7) = o (y,0) = 0, where w = ﬁ and
0 Jhot

s = LLO — 1 (where Ly = 1 when expansin is not acting

upon it). The cellulose stress Eq. (5) is then simply
oc = scsinb, (26)

where s¢ = Lc — 1. The length of the cellulose fibres
Eq. (11) is then

1 OLe¢ . 4
Ew—asm 0 (27)
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where Lo (1,7) = Le(y,0) = 1. Equation (10) describ-
ing the cellulose angle becomes:

00 00
Z _au— — asi — 9
vl ” asinfcosd =0, (28)

with 0(1,7) = 0(y,0) = 6. The evolving hotspots bond
density and hemicellulose bond number Egs. (13) and
(14) are now

ONhot ONhot

ot —ay ay = _koff,hotnhot
where koft hot = €xp (ﬁﬁotghot(l — n)sfqe) , (29)
on on 9
% aya—y = —kogn where kog = ko exp (’yzcs%’e) ,

(30)

with 7het (1, 7) = Nhet(y,0) = 1, n(1,7) = n(y,0) = 1,
Bhot = AV naﬁa OH = SH,e, ko = k*ko =

0,hot

and Gpot = § =

* %2

;qu‘l . Enzyme action on the viscosity on the dashpot
(21) is now

op

2= B (1 - Mp) (31)

with pu(1,7) = p(y,0) = 1 where M = £2. The enzyme
action on the resting length (22) becomes:

Lo (L
- =E <L0 - 1) (32)

with Lo(l,T) = Lo(O,y) =1.
Finally, the stress resultant Eq. (12) is now

1
Y= / (1 + a1nnot)oc + aennpeton dy + ey,
0
(33)

where a1 = A*ng ;,, is the modification of the cellulose
prrE

is the ratio of the cellulose and hemicellulose stiffness

densities. We therefore have a closed system of 10 Egs.

(24)—(33) with a total of 10 unknowns, X, nhet, 1, o¢,

Ohots Lo, i, S, sc and 6. In the next section, we will

solve the system of equations.

stress due to hotspot crosslinking, and ay =

3 Model analysis

To evaluate the effect of the hotspots and enzyme action
on the stress resultant and hence the overall mechan-
ical behaviour, we proceed to analyse the model as
described in Sect. 2.2. The equations may be solved via
a (lengthy) semi-analytic method; we merely state the
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solutions in Sect. 3.1 and leave full details to the Appen-
dices B, C and D. Since breakage rates are assumed
to be small, we also employ asymptotic expansions to
determine the leading-order behaviour of the cell wall,
as shown in Sect. 3.2; as before full details are consigned
to F for brevity.

3.1 Semi-analytical solutions

Throughout the analysis, we recognise two contrast-
ing regions of cell wall material: the thinning region
0 < y < e ° contains material already present at
t = 0, while the expanding e~** < y < 1 region contains
newly-deposited material which has been added to the
y = 1 surface at some ¢ > 0. Recall from Sect. 2.1
that due to the fluid flow, fibres deposited at time

t = 7 (which is non-constant) lie on a characteristic

y = y;e”*, where ¢ = t — 7. For the initially present
material, the deposition time is 7 = 0 and initial posi-
tion is 0 < y; < 1 meaning the extension is described
by L = y;e*. For the later-deposited material, we have
7> 0 and y; = 1, and thus, the extension can be given

in terms of its position in the wall as L = %

Beginning with the fibre stress terms, in the absence
of enzymatic action, Ly and p are constant, and hence,
Eq. (25) may be solved using an integrating factor to
find the axial hemicellulose stress,

«

oy = (L—-L%). (34)

o+ w

In contrast, when enzyme action is incorporated, Ly
and p are no longer constant, and hence, the solution
(34) is invalid. To solve for variable spring rest length,
we first divide Eq. (32) by % = —ay to reformulate the
differential equation for Ly in terms of y. This equation
does not have an analytical solution, and hence, we pro-
ceed to derive a (forward) finite difference expression
for Lo, which can be used for solving Eq. (25) with an
integrating factor, yielding

. [P ./ aL L dLo(L)\ ..
op=L"% [ L% - ) di,
" / <LO<L> L3(L) di )

where L is treated as a function of L.
For expansin action on the viscosity, u, we begin by
solving Eq. (31) using separation of variables to get

1
T M+ (1- M)e Bt

I (36)

which means that w = wy (M + (1 — M)e™F*) where

¥
VH

Wy = 3% —

0 ﬂsko,hot

. Equation (25) is then solved to give
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w, w E
o=y & exp (Eo(l — M)yE)
1
x/ ay 2 o exp (——0(1 —M)y§> dt,
Y
(37)

To determine the evolving bond densities and num-
ber, we solve (30) for n using the method of character-
istics and combining Eqs. (24) and (C18) yields

n = exp (-’EEG (i)) (38)

with G(y)

/1 exp(v2sst )
i _

- - dg. (39)

Similarly from Eq. (29),

Mot = €XP <_;Ghot (i)) (40)

with Ghot(y)
/1 exp (ﬁﬁot%ot (1 — €xXp (_%G@))) 5%{@) di
= y.
y

]
(41)

Solving Eq. (28) gives the cellulose angle from the
horizontal,

0 = arctan (tan L), (42)

and thus, the cellulose extension length is,

Lo =exp (a /Ot sin? 0(f) df) . (43)

The stress resultant is hence constructed by separat-
ing the domain into two regions ¢ < y < e~ and
e~ <y <1, to give

D= (e —¢) ((1 + a1 exp <_;Ghot (6‘“)))
X <exp (a /0 t sin29(£)d£) - 1)

sin (arctan (tan(fy)e®"))

ko 1
+ as exp (— kos t EG (e—at))

exp (=2 Gher () ) o0
n /;t (1 + a1 exp (—;Ghot (y)>>
(] 2200
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X sin (arctan <tang§00)>>
1

k
+ as exp (_koz t O[G(y)>

exp (—;Ghot (y)) o (y) dy + Lo (44)

where oy is given by Eqgs. (34), (35) or (37) for the
different expansin mechanisms. The small parameter €
denotes a cut-off for the outer region of the cell wall;
this ensures that the cellulose stress does not go to infin-
ity and that the molecules will eventually break rather
than becoming infinitely long. The steady-state stress
resultant as ¢t — oo is

o = /61 <1 + ay exp <;Ghot (y)>>
(o =204)
X sin (arctan (tangi@@))
+ az exp (— k(fzm ég (y)>

exp (—;Ghot (y)) ou(y) dy+Ta.  (45)

where the contributions from the fibres present at t = 0
have now disappeared.

3.2 Leading-order cell wall behaviour

An asymptotic expansion simplifies the model and
extracts the leading-order component of the stress
resultant integral when expansin is neglected (i.e. tak-
ing oy from Eq. 34). The reader can skip this section
or directly go to Eq. (57) for the final form. Since both
v, 8 < 1 by definition, we can expand the steady-state
solution (45).

We first expand the integral G (Eq. 38) considering
the respective regions v < y <1 and e < y < v. By
bounding the integral for GG, integrating by parts and
neglecting higher-order terms, we find

2 2
a7 CXP (dZZ*z), c<y<y

2&
Gly) =~ ™/ (46)
ln (5 s Yy < y S 17
where & = ;% for notational simplicity. From Eq. (38),
the asymptotic approximation of n is then,
i y2 &Qﬁ
exp —E‘)me v, e<y<kKy
n - %
k.
ya, Ny <1
(47)

The expansion of Gt proceeds similarly to give
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2
Q&gﬁﬁm €xXp (()42%) , €< Yy < ﬁhot

(1),

Ghot(y) ~
ﬂhot < Y S 1.

(48)

Combining, we find

exp

< By
L2 ) <y < Buon
Nhot = & 282 [ ¢

ﬂhot <<y§ 1.

Q=

Y=,
(49)

Notice that the simplification of ny¢ is not dependant
on n. To complete the approximations for all ¢, we find
switch-over values where the asymptotic behaviour of n
and npe changes from one regime to another (denoted
x and xpot for the hemicellulose and hotspots bond den-
sities respectively). These are the y-values close to 7y or
Ohot such that the derivatives of the dominant expo-
nents in n and npey exceed some threshold @), causing
n and nyet to rapidly decrease. Thus,

Approximations of the trigonometric term describ-
ing how much cellulose contribute to the axial stress
and the cellulose extension are also required. To bal-
ance simplicity and accuracy, the following expansions
are taken to such an order that they achieve a mean-
squared error of ~ 1073 with respect to the numeri-
cal solution, and the domain is split into three regions
corresponding to % Z.~,< 1. In the first region,
tanfy + 0 < y < 1, where J is a small number of our
choosing to optimise the expansion’s overall accuracy,
we Taylor expand sin and arctan in Eq. (45), where 6 is
described by Eq. (42). In the second and third regions,
where % <y<tanfy+dande <y < %, we use
tan 6o

\/tan? 0p+y?

and Taylor expand around y = tan y and y = 0, respec-

tively. Hence,
. 1
sin (arctan (tan(@@y))

the expression sin (arctan (tan 90%))

Eur. Phys. J. E (2024) 47:1

By substituting Eq. (51) into Eq. (43), integrating
and Taylor expanding the exponential, we find the
leading-order terms of Lo to be,

by (14 t2f ), tanfo + 0 <y < 1,

2
Lo(y) = (1 — H(y) + 240, tanbe <y < tandy + 6,

S

tan 69
2

b3 (1 + y72> e <y<
y 2tan20, )’ —=J =
(52)

where by, b1, be and b3 are constants and H(y) is a

integers; all b;, p;, ¢; and H are defined in appendix F.
The stress resultant consists of three terms each rep-

resenting a physical effect. Firstly, the cellulose contri-

bution independent of the hotspots connections is:

ai
function of the form ), p; ( ) , with the ¢;s being

1
$® / (Lo —D)sinfdy => ¢, (53)

where ¢; are constants dependent on tan 6y or e (defined
in Table 2). Secondly, the cellulose contribution when
crosslinked by the hotspots is:

1
3P = / a1Mpot(Le — 1) sinf dy
= ai <<Z dl,i(a)> =+ atano (bl - 1)
i
+ <Z dg,i(a)> (6 +tanfp)«

+ atanfy (1 —b1) (5+tan90)é

+ (Z d3,z‘(a)> (tar;@o) ° + bsa (tar;Go) “

+ (Z d4,i(a>> (Xnot) & — abs(th)é> :

(54)

The generic form of the constants dj; is ——~—,

’ w2(g+w3)
where wy, we and w3 are known constants often depen-
dant on tanfp, 6 and xnot (see Table 3). Lastly, the

contribution from the hotspots is then

tan 6 1 tan® 6 3 tan® @ 5 tan” 6

v T s 1y o tanfo o<y <l,
1 y—tanéfg (y—tan 0)?
V2 2v2tanf, = 8v2tan2 6, (51)

B (y—tan)®  13(y—tanfo)* tan fg <
T l6vatans 0y 1283 tan 03 20 <y <tanby +9,
2 4 6

_ Yy 3y _ 5y tan 0o

1 2 tan? 0, + 8 tan? Oy 16 tanS 0y’ e<y< 5 -
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Table 1 Model parameter values

Page 11 of 30 1

Parameter Value Description References
vE 140Gpa Young’s modulus of cellulose [45-48]
Vi 7Gpa Young’s modulus of hemicellulose [45-48]
o 0.1 Cellulose’s initial angle at deposition [49]
ko 1 ko = k*ko , hotspots & hemicellulose breakage
0,hot
rates ratio when unstressed
® k2
Shot & ¢ 1 Shot =G = %, a breakage rate constant [35]
* * b

“hot070 0.5 Ratio of fibre densities in as [50,51]
o 0.15 The initial viscosity [52]
ui 0.05 The target viscosity [52]
€ 0.0001 Cut-off value for the outer region of

the cell wall
ai 0.1 —0.6 a1 = A™njo o, cellulose stress modification

from hotspot crosslinking
as 0.025 ag%zo*‘%%, cellulose and hemicellulose stiffness

c

densities ratio

In the model, we will be using the relevant parameters for the roots of Arabidopsis thaliana. We assume ko = k*kg ~ 1 so

0,hot

that the breakage rates of the hotspots and the hemicellulose fibres at rest are approximately the same. We set a; = 0.1
in most simulations as this number does not affect the results apart from the expansin action simulations where we shall
comment on the affect of this parameter and its implications in Sect. 4

1
¥3° :/ asnnnotog dy
€
3 ( «
= a2 | <
ko+1

_ 1 (1 - X%Z““H)
L(ko+w+1)+1

(55)

(56)

Further simplifications to the stress resultant can be
made by examining the cases for small and large strain
rate, @ < 1 and a > 1, respectively. When a < 1,
all terms of the form Z= that appear in the expan-
sions are negligible, since Z is less than one for all such
expressions. When « > 1, all the terms of the form
mz & are negligible compared to terms of the
form aZa. As a result,

>2;¢i +aratanbo (b — 1)
o - —1
+azd <E0+1 §<Eo+w+1>+1> ’ e
> citaia(tanbo (b — 1)
- +tan 0o (1 — by) (8 + tan Go)é (57)
N .
+bs (g ) — b3("h°t)a>
o (o (1o, R :
Foed (i (17X ") T Twea )
a> 1.

Equation (57) gives the leading-order terms that control
the dominant cell wall behaviour for small and large

strain rates, neglecting the effect of expansin action.
This expression is used to validate the numerical scheme
presented in Sect. 4, where we also discuss the biological
implications.

4 Results and discussion

The complexity of the plant cell wall and its growth
process present many modelling challenges. We have
therefore created a simple model to focus our atten-
tion on the cell wall structure and its implications on
possible enzyme action.

The system of Eqs. (38)—(44) is solved for the bond
number and densities n and ny.t, the CMF angle 6, and
the stress resultant X, subject to a choice of expansin
action where oy is determined by one of the Egs.
(34)—(37). Where the steady-state stress resultant is
required, we use (45) instead of (44). The asymptot-
ically simplified expressions (53)—(57) for the steady-
state stress resultant are used where applicable. This
study focusses on the cellulose crosslinking dynamics;
hence, we neglect the effect of pectin on the cell wall
dynamics by setting I' = 0 throughout. All other fixed
parameter values are listed in Table 1. All solutions are
obtained using MATLAB; in particular, the integrals
are computed numerically using the Legendre-Gauss
Quadrature code by Greg von Winckel [44].

We begin the discussion of the results by first
analysing the model’s implications on the cell wall
structure and yield threshold in Sect. 4.1. Secondly, we
explore possible enzyme mechanisms and the likelihood
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(a)
Fig. 3 The effect on the stress resultant X°° plotted
against the strain rate o of expansin acting with rate £ on a
the resting length, Lo, which decreases the stress resultant
and thus the yield threshold; or b the viscosity, u, where
the small (large) a1 value represents reduced (enhanced)

of hotspots structures in the cell wall in Sect. 4.2. We
finish with some final remarks in Sect. 4.3.

4.1 Implications for cell wall structure

Before delving into the results, we outline the logic as
to how the stress resultant links to the cell wall yield
threshold and growth rate using expansin’s effect as
an example. A fixed turgor pressure in a growing cell
wall (constant strain rate ) will result in a specific cell
wall tension and therefore a set stress resultant. When
expansin acts on the hotspots resting length, Lg, the
same cell wall stress/turgor pressure produces differ-
ent strain rates (growth rate) (Fig. 3a, solid line ver-
sus dashed line); Eq. (1) then implies that the yield
threshold has changed. We know this from the plateau-
ing effect; the extensibility determines the gradient, but
it is the yield threshold that scales the plateau up and
down as a > 1. Further analysis of the stress—strain-
rate relationship and the crosslinks influence on the cell-
wall yield threshold can be found in [35]. For the pur-
pose of this article, it suffices to know that a decrease in
stress resultant implies a decrease in the yield thresh-
old.

From the collective results presented here, we observe
some general trends. As the strain rate increases, the
stress resultant plateaus (e.g. Fig. 3). This relation-
ship arises due to the bond number and densities (n,
Nhot) behaviour when « is changed, despite the inclu-
sion of linear elasticity. Specifically, for low values of
a, the bond density nyot remains low for much of the
domain (see Fig. 6b). However, as « is increased, the
bonds become increasingly loaded and remain intact for
longer (increasing the overall stress held in the cell wall)
before finally breaking. Eventually the hotspots reach
a limit as to how much stress they can withstand with-
out breaking, and the bond density drops to 0 when
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cellulose crosslinking by the hotspots and hence decreased
(increased) the stress resultant and yield threshold. Other

parameters: Onot = 0.01, v = 0.05, and others found in Table
1

y ~ 0; the amount of stress held across the cell wall
has reached capacity (Fig. 6b). Reaching this capacity
consequently limits further increases to the stress resul-
tant, implying that the cell wall’s yield threshold has
a maximum, where further increasing the growth rate
has limited effect. This result demonstrates that cell
wall strength is capped by the mechanism of cellulose
crosslinkage, despite the cellulose fibres being the major
load-bearing component in the cell wall.

We now examine the effect on the stress resultant of
cellulose reorientation during growth. For lower strain
rates, we find that the stress resultant increases as time
progresses (Fig. 7a) due to a combination of all the
fibres being increasingly strained and the cellulose reori-
entating. For larger strain rates, «, the stress has very
little variation over time because the large reorienta-
tion rate allows fibres to converge to the same distri-
bution. For smaller times, the stress has a sharp maxi-
mum (Fig. 7a). This peak occurs because increasing the
strain rate stretches and reorients the fibres uniformly,
due to the equivalent effect of o and ¢ on the fibres
from the term e®’. On the other hand, fibres deposited
at ¢ > 0 are progressively stretched and rearranged as
they move to the outside of the wall. Thus, for cer-
tain times/strain rates (between o = 10 — 30), the
sum of the stress arising in this family of fibres is less
than those present at ¢ = 0. This raised stress resul-
tant does not last as the crosslinks present at t = 0
eventually break, causing a rapid decrease in the cell
wall strength and producing a sharp peak in the stress
(Fig. 7a). The effect of cellulose reorientation can also
be seen when the initial fibre angle, 6y, is increased
(Fig. 7b). According to Eq. (42), for any fixed fibre posi-
tion y, the CMF increasingly reorient as 6y increases.
Consequently, increasing 6 also significantly increases
the stress resultant (Fig. 7b). From these results, we
conclude that cellulose reorientation leads to a higher
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Fig. 4 The effect on the hotspots density, nnot through the

cell wall thickness y of expansin with rate F acting on a the
resting length, Lo; or b the viscosity, u. Parameters: a = 5,

stress resultant in the plant cell wall and, subsequently,
increases the cell wall yield threshold. The yield thresh-
old increasing due to cellulose reorientation could pro-
vide a possible mechanism for growth slow-down and
hence the beginning of the cell’s secondary wall struc-
ture. This hypothesis has been previously put forward
[19]. Cellulose reorientation reducing axial growth has
been previously reported in other mathematical models
[53,54].

We now proceed to analyse the implications of the
asymptotic reduction of the stress resultant. There is
substantial agreement between the asymptotic expan-
sions and the numerical results, for all three combina-
tions of fpot and 7y (Fig. 8). There is little difference
in accuracy between the full asymptotic Eqgs. (53)—(56)
and the simplified expansion (57), demonstrating that
the cell wall yield threshold’s behaviour is dominated
by the terms in the simplified equation. According to
Egs. (53) and (54), the constants ¢; and d;; in the cel-
lulose’s contribution to the cell wall strength depend
on tan 6y (Table 2), whereby increasing tan 6y increases
the stress held in the cell wall (Fig. 7). Since ay < aq
(see Table 1), we conclude that the main control of the
cell wall yield threshold in the axial direction is the cel-
lulose orientation. This result matches past simulation
results [17] and the current consensus that the cellulose
orientation controls the growth direction in most plant
cells [21].

In Eq. (57) that characterises the cell wall stress
behaviour, the hotspots density’s contribution (the ynot
term) is controlled by bs. This coefficient determines the
slope of the extension curve of the cellulose molecules,
L¢, as they rapidly extend close to y = 0 where they
are most stressed. Thus, the effect on the yield thresh-
old of breaking the hotspot crosslinks (changing fhot ) is
predominantly actioned through loosening the smaller
group of significantly stressed cellulose molecules.
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OBhot = 0.01, v = 0.05, and others found in Table 1. In both

cases, expansin has increased the bond densities and thus
has not weakened the cell wall

Equation (57) also demonstrates why the stress resul-
tant plateaus (Fig. 3). Rearranging the equation gives

P :Zci
i

+ a1« (tan 0o (b — 1) (1 — (6 + tan go)é)

1
tanfg \ ©
() )
+ v( ; (1 E0+1)
astv | < )
ko +1

- 1
é(léo+w+1)+1

Q=

(58)

As o — oo, the first term on the first line remains
constant. The second term can be recognised and reex-

! w_1> —1Inf

xr
and therefore is a constant. The last term also converges
to a constant (with & also converging to a constant)
for the same reason. Collectively this means that as «
increase the stress resultant will level out and become
constant. We also note that for o < 1, the stress resul-
tant is not controlled by x and xnot at all. This implies
for low levels of turgor pressure, enzyme action on the
cell wall is ineffective at controlling the growth rate and
that it is solely controlled by the orientation and con-
centration of fibres.

pressed to be a limit of the form lim, ¢ (

4.2 Enzyme action on the cell wall

We first discuss how our simulations can be directly
compared to experimental results relating to enzyme
action. Experiments have shown upon overexpressing
or silencing expansins, the growth (through elonga-
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tion and division) of plant roots and leaves increase
or decrease respectively in a variety of species [55,56],
and root hair and leaf primordia initiation are also
affected [57]. Overexpression and knockout mutations
were also performed on XTH proteins which made lit-
tle difference to growth [58,59]. Moreover, inactivating
and then extending plant tissues while applying Cel12A
or expansins permitted cell wall extension [10,28]. The
effect on growth and hence the strain rate of enzyme
action can be seen in our model through the change
in stress resultant. A decrease in the stress resultant
will lead to an increased growth rate (strain rate) and
vice versa as described in Sect. 4.1. Additionally, from
the extension experiments with multiple deformations
(elastic and plastic) and examining the stress relaxation
response, expansin was shown not to weaken the wall
while Cel12A did. Additionally, XTH was found to have
only minor effects on cell wall mechanics [58]. This
effect can be directly observed in the model by exam-
ining the bond density distributions; if there are fewer
bonds intact, the wall integrity will be weaker.

We now examine different modes of enzyme action
beginning with expansin. As previously mentioned in
Sect. 1, expansin causes wall loosening without reduc-
ing the strength of the cell wall, potentially by allow-
ing the slippage of fibres within the hotspot. We sim-
ulated expansin’s hypothesised action via two meth-
ods: increasing the spring resting length and decreas-
ing the viscosity of the dashpot by equations charac-
terised in Sect. 2.2.3 (Egs. 35 and 37). Simulations of
expansin’s theorised fibre slippage action on the rest-
ing length (Eq. 35) reveal a decrease in the stress
resultant (Fig. 3a), while ensuring the bond density
does not reach zero (Fig. 4a). Similarly, expansin’s slip-
page action on the viscosity of the dashpot (Eq. 37)
decreases the stress resultant provided hotspots cellu-
lose crosslinking is small (Fig. 3b) and always increases
the bond density (Fig. 4b). This bond density increase
arises due to stress relaxation; both mechanisms reduce
the elastic strain imposed on the fibres which are there-
fore less likely to break. Two opposing effects con-
tribute to the overall stress resultant: stress relax-
ation from the hotspots, combined with the inclusion
of more, increasingly stretched, CMF molecules towards
the outer boundary of the cell wall. When the hotspots-
cellulose crosslinking is sufficiently large to counter-
act the hotspots stress relaxation, the stress resultant
increases with expansin action due to the increased
contribution of the CMF (Fig. 3b). Therefore, both
mechanisms can decrease the axial stress resultant for
all strain rates (Fig. 3) and are consequently effective
at inducing growth. Moreover, the hotspots bond den-
sities npoy increase for both enzyme action pathways
(Fig. 4), increasing cell wall integrity and thus strength-
ening the cell wall. So, allowing the fibres to slide past
one another (the dashpots) or relax (increasing rest-
ing lengths) loosens the fibre network and decreases
the likelihood of the bonds breaking. This explains
the observed experimental behaviour (as described in
Sect. 1) and provides evidence for expansin’s hypothe-
sised slippage action.
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In contrast, when the parameter a; is increased the
hypothesised expansin action causes the yield threshold
to increase (Fig. 3b) despite the loosening of the fibre
network. This observation may be consistent with bio-
logical observations. It has been observed that plants
lacking xyloglucan have only a small amount of growth
reduction and alteration in cell wall structure [14,60].
It has therefore been suggested that any xyloglucan
present is concentrated in these compact biomechan-
ical hotspots. Therefore, as a; represents the propor-
tion of xyloglucan in the wall, we find that in order to
recreate expansin’s experimental behaviour, there must
be a small amount (comparatively to the cellulose) of
xyloglucan that is concentrated around the hotspots.

Continuing the investigation of hypothesised enzyme
action, we now focus on XTH and Cell2A. As detailed
in Sect. 1, XTH and Cell2A are theorised to hydrol-
yse hemicellulose and the hotspots respectively. Recall
that we recreate this cutting action by increasing the
breakage rate v of the hemicellulose fibres to model
XTH, and increasing the hotspot breakage rate Opot
to model Cell2A action. By testing a range of values
for both parameters, we discover that (¢ significantly
affects the stress resultant compared to 7 (Fig. 5a),
(Cel12A’s cellulose digestion effect is investigated in
appendix E where it simply increases its effectiveness
on the stress resultant). These results agree with previ-
ous work, which also finds the yield threshold to be con-
trolled by the rate of dissociation of tethering crosslinks
[61]. The effect of v on the hotspot bond density, npot,
is also negligible (Fig. 5b). In contrast, an increased
Bhot leads to a considerable decrease in nyo (Fig. 6a).
As the fibres move towards the outeli y = 0 boundary,

their lengths increase sharply (L = 5), leading to sig-

nificantly larger stress; the stress resultant is therefore
highly sensitive to small changes in the transition loca-
tion Xpot in the region 0 < y < 0.1 where nyoy drops
rapidly. Thus, increasing the breakage rate of the hemi-
cellulose fibres (increasing ) is ineffective when com-
pared to targeting the hotspots themselves (increasing
ﬁhot)-

Simulated XTH action generates minimal reductions
in the stress resultant and the hotspots density, imply-
ing that minimal growth is induced due to its limited
wall-loosening ability. This effect occurs despite a nat-
ural assumption that the hydrolysis of bonds by some
members of the XTH family could cause wall loosen-
ing [10,28]. The model outputs offer two interpreta-
tions to explain this phenomenon: either the hotspots
maintain their integrity when hemicellulose fibres are
cut, or hydrolysing hemicellulose could be ineffective at
breaking hotspots down if the hotspots are compact and
inaccessible. Thus, the limited wall loosening is a conse-
quence of the cell wall retaining its integrity, with min-
imal increase in cell wall growth as observed in exper-
iments [10]. In the asymptotic expansions (Eqs. (57)),
it is Bhot, not 7y (in the form of ypet), that controls
the leading-order terms of cellulose’s contribution. We
therefore explicitly see that if XTH’s ability to break
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Fig. 5 Enzyme cutting action. a The effect on the stress
resultant, X°° of Cell2a and XTH with o = 50. Cell2a’s
action, (not, on the whole hotspot is much more effective
at decreasing the stress resultant than XTH’s action, 7, on
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Fig. 6 The hotspot density, nnot, parameter dependence.
a The effect of varying Cell2a’s action on nnet with a = 10
demonstrating its effectiveness at decreasing the hotspot
density. b The effect of varying a with Bnoe = 0.01 on

down the hotspots is ineffective, the observed experi-
mental behaviour is reproduced.

By recreating Cel12A’s hypothesised hotspot-cleaving
action, we see that it weakens the cell walls by
decreasing the hotspots density, which decreases the
stress resultant and induces growth, matching biolog-
ical experiments [10]. This effect would not occur if a
tethered network was assumed, in which case the model
would only have one bond density that is not depen-
dent on another (in a similar manner to [35]), leaving
us unable to distinguish between Celll2A and XTH’s
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the hemicelluloses. b XTH’s action on the hotspots density
nhot With 8 = 0.1 and o = 10 showing its limited impact
on the hotspot density. All other parameters can be found

in Table 1

XXX XXX XX XX XX XX XXXX XXX 6%@@%
o <><><><><><>o<><><><><><><§<§<§<§<§ #

0.9% 5000 *** +
% * N
0.8 o0 ¥ +
¥ ** +
0.7 <§> 5* +
*% +
0.6% * F a=01] T
8 ~t' ** * a=1 +
= 0.5% * O a=10 +
I ** X a=100| +
& +
0.4
) *** +
£ +
0.3% ** +
{ *
0.2 ** ++
& *
01 * + *
*
* +++
[ e : !
0 0.2 0.4 0.6 0.8 1

(b)

Nhot, both with v = 0.05, showing the transitional behaviour
of increasing « and the eventual plateauing under further
increase. All other parameters can be found in Table 1

action. Through analysis of the breakage rates and the
model’s assumption of the hotspots hypothesis, we have
recreated experimentally observed enzyme behaviour.

4.3 Remarks

The results presented play into the hypothesis [27] first
stated that growing plant cell walls seem to undergo a
glass transition. This theory suggests that hemicellulose
connecting the cellulose molecules is not the primary
stress-bearing component (as a; is small) and holds the
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Fig. 7 Changes in the stress resultant as we effect the cel-
lulose fibre orientation by changing a the time point and
b the cellulose angle at deposition, 6y with 8 = 0.01 and
v = 0.05. Both graphs demonstrate that as the cellulose
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Fig. 8 Comparison between the axial stress resultant’s
numerical solution (solid line) and asymptotic approxima-
tions, Eqs. (53)—(56) (dashed line) and (57) (dotted line),
at various values of fhot and v, demonstrating the accuracy
of the asymptotic expansions. All other parameters can be
found in Table 1

wall in tension close to the yield threshold, such that
when the stress relaxation imposed on the hotspots, by
digestion or slippage occurring, it could be enough to
cause the redistribution of stress to other cell wall com-
ponents such as pectin (and its linkers with cellulose)
and hence induce growth. Thus, we have a rapid change
in viscosity with the extra load causing the pectin to
‘melt’ and flow. As the cell wall extends, other hotspots
could become strained, hence raising the yield threshold
and requiring further relaxation to continue growth.

@ Springer

Eur. Phys. J. E (2024) 47:1

0.9 T T T T T T T T T
- = =0, =01
08 - @ =0, =0.01 4
————— 6, =0.001
.......... 8, =0.0001
07F e e e e ===
06 1
8 05 1
N 04 1
03 i
02 4
01 0@ 0-0 0-0 -0 ©-0® 0-9 0-0 0-0 6-0¢
00 60 909 0~ 0-0 0-0 00 6080
‘M’”“ N
S Ceaiadir il L L L L 1 1 1
0 10 20 30 40 50 60 70 80 90 100
o

(b)
fibres increasingly reorient, they increase the stiffness and

yield threshold in the axial direction. All other parameters
can be found in Table 1

The results in this article depend on the inclusion
of the cellulose contributing to the axial stress. Even
though, on average, the cellulose molecules are perpen-
dicularly oriented to the growth axis [22], the findings
show the importance of including cellulose reorientation
or a distribution of angles in mathematical models of
growth.

There is still further modelling work to be done.
We have only examined axial growth, so it remains to
be understood how enzyme action does not necessarily
lead to radial growth and the consequences of cellulose
reorientation, as it has been observed a reduction in
anisotropy can lead to radial swelling [62]. Expansin has
been shown to induce growth as soon as it is applied,
while Cell12A-induced growth is delayed after applica-
tion [12]. Our model cannot explain this time delay
phenomenon, meaning we could benefit from further
work on the crosslinking dynamics to understand this
process. Many experiments are done on a tissue level,
while our model examines only a small cell wall section.
Therefore, there could be advantages to constructing
a tissue-scale model for cells, including their interac-
tions and the different cell layers to match with exper-
iments. Models such as [17] also have great potential
to aid our understanding but currently neglect growth

and enzyme manipulation. The stress—strain relation-
ship from this model could be used to inform consti-
tutive laws and then incorporated into a larger-scale
model with growth and wall modifications.
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(a) XTH action (b) Cell2A action

(c) Expansin action

Fig. 9 Hypothesised enzyme action. The purple rods rep-
resent, cellulose molecules, and the red rods are the hemi-
cellulose fibres in a hotspot. a XTH hydrolysis action only
cutting a select amount of hemicellulose fibres. b) Cell2A
hydrolysis action cutting the whole hotspot. ¢ Expansin
loosening action allowing the hotspot to be intact while
allowing extension

5 Conclusion

By deriving and analysing a mathematical model of
the cell wall incorporating the biomechanical hotspot
dynamics as proposed by [9], we have explained experi-
mentally observed enzyme behaviour and thus provided
insight into the cell wall structure and loosening mech-
anisms. We propose the following enzyme mechanisms
in line with experimental observations (Fig. 9). XTH
only cuts individual hemicellulose fibres and thus does
not provide sufficient wall loosening to induce growth,
possibly due to the hotspots remaining inaccessible or
hemicellulose scissoring being insufficient to fully break
down the hotspot. On the other hand, Cell2A can
cleave the whole hotspot allowing the cell to grow while
also weakening the cell wall. Expansin action causes
fibre slippage, permitting stress relaxation, enabling
cell wall extension without weakening the cell wall. We
have therefore presented a mechanistic understanding
of potential enzyme action. Finally, cellulose reorienta-
tion during cell wall extension leads to a decrease in
the axial growth rate and its range orientation is the
primary control for cell growth and the yield threshold.

Enzyme action on the cell wall is an under-researched
area of plant growth often overlooked by modellers.
The theory presented in this paper generates improved
understanding of the fundamental mechanisms under-
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lying plant cell growth. We hope that it provides a key
building block towards a unified framework for plant
development.
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Appendix A: Proving constant density

The density at any point, p*(z*,y",t"), is described by

*

dp
ot

(A1)

where pg is the density at which material is deposited. Using

the total derivative, we have % = 0 on the characteristics
‘fg: = a*z* and % = —a”y* from Eq. (2). With using
the initial conditions (z*,y*) = (x5, h*) at t* = 7* for some
height up the cell, x5 and some time 7 > 0 we obtain
T = xée“*(t*fﬁ) and y* = Rre= =) for ¢* > .
Therefore along the streamline z*y* = xgh™, we have p* =
po- Consequently if p*(z*,y*,0) = po for 0 < y* < h*, the
density remains uniform for t* > 0 meaning we can assume
the density of the cell wall components remains uniform for
all time as well.
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Appendix B: Solving stress terms

We first solve Eq. (25) to find the axial hemicellulose stress
when not acted upon by any expansin action (Lo and p are

constant). By using Eq. (24), we have 2 = 9L = oL, and
as a result, we can rewrite Eq. (25) as,
Oon

If we shift the time parameter so that £ = ¢ — 7 where the
fibre is deposited at time ¢ = 7, we have that oz (1,0) = 0.
The above then becomes,

OonH

—— +wong = aL(t).

57 Twon (t)

Using an integrating factor and integrating both sides, we
derive,

(B3)

_ ot .

oH = e_wt/ aL(t)e" dt, (B4)
0

where on substituting L = et (using boundary conditions

L(0) = 1) we then have,

_ &2 —wt ( (atw)t 1)
OH 70( T we e .

(B5)

The fibres follow the trajectories y = e ot (from Sect. 2
using boundary condition y(0) = 1) and with y =

e

(e“f) Y= L we calculate the final form as

L
UH:aiw (Lfoﬁ).

(B6)

For the expansin action on the spring resting length (Eq.
(32)), we were unable to find an analytic expression, as a
result we use forward finite differences to solve the equation.
We need this expression in terms of y so we first divide it
by 9% = —ay to get

=
dL, E ( 1 1>
dy — —ay \yLo '
We partition the domain such that y = {y1,y2,...Ym}
where y1 =0 and y,m = 1 and Lo(y;) = Lo fori=1...m

to get the recursive relation
1
vi) (yi+1L0,i+1 >

(B8)

(B7)

FE
Lo = Lojiv1 + —— (Yit+1
QYi+1

where Lo,m = 1.

We can then use the calculated values of Lo in Eq. (32)
to find the derivative of Lo. We now rederive the hotspot
stress, cg with non-constant resting length using the initial

equation (Eq. 25), shifting time again and the fact that % =
1 dL _ L dLg

Todr —1g at o toget,
Ooy al L 0Lg
— = — — —5 — B9
R T (B9)

and using the same method as above and Eq. B8 we calcu-
late,

_e [P w ( aL L dLo(L)) .
=L « L« — N dt.
o A (mm L3(L) di

(B10)
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which is the hemicellulose stress term for enzyme action on
the resting length, Lo.

We repeat the same procedure for expansin action on the
impedance, u. By solving Eq. (31), we can obtain,

1

= . B11

HZ M+ (1= Mye B (B11)

i v _ —Et

This means that w = PRk = WO (M+(1—=M)e ")

where wo = *k# Substituting this into the non-
H0 "0, hot

dimensional stress term (Eq. (25)) and shifting time we
have,

8 _ .
% +wo (M +(1-Me Et) o =aL, (B12)

where we again use an integrating factor and L = e to
find
— 1 —ET Jdo
exp (wo <Mt E(l Me )) 5
+ (wo (/\/l +(1- M)eiE{))
X exp (wo (./\/lf— %(1 - ./\/l)eﬂ%)) o

= ae exp (wo (Mf— %(1 - M)e*Ef)) .
(B13)

Upon integrating we then get

OH =exp <7w0 (./\/lff %(1 - M)efEt)

t
X / aexp (af) exp (wo <./\/lf —
0

&= ~—

(1 fM)e*Et"))

x df, (B14)
where we then make the substitution § = e " in the inte-
gral. This implies that e "¢ = y% and dt = fo%ydy meaning

woM 1 wogM
I e
E y
X exp (—%(1 - M)g%) a4, (B15)

Appendix C: Solving the evolving bond den-
sities

To determine the evolving bond number and densities we
solve (30) for m, using the method of characteristics with
% = —ay, % = ax, and % = 0 meaning the left-hand
side of Eq. (30) can be rewritten as,

on on on

Oon Oyodn  Oxdn _dn
o ooy Paar  a (c17)
the total derivative. As a result, Eq. (30) becomes
% = —konexp(v’ssH.e)- (C18)
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Combining Egs. (24) and (C18), we derive

dn gy n 2 2
dL - k() ol eXP(’Y gSH,e)? (019)
and integrating we obtain
7 L 22
n = exp 7@/ w dL |, (C20)
a Jy L
which we can write as
n = exp <—k0G <1)> with
a L
1 2 .2
G(y) — / exp(ryggsH,e) dg (021)
y

To find the hotspot bond density, nnot (Eq. (29)), we repeat
the same procedure using the total derivative and again
using Eq. (24) we derive

dnhot Mot 2 ko
dL - aL €xXp <ﬂhot Shot 1 exp EG

()e)

Continuing in the same manner, by once again integrating
we calculate,

1 1
NMhot = €XP (—EGhot (E)) with

ot () = /1 €xp (ﬁ}%oc§hot (1 — exp (*%G(Q))) 51211,6»> W
Y

(C22)

(C23)

Yy
(C24)

Appendix D: Solving the cellulose angle
equation

To find the angle cellulose makes to the horizontal, 8, we
solve Eq. (28), by first re-expressing left-hand side as the
total derivative to get

o dy
T = asinf cos 6§ on q = o (D25)

Beginning with the second group of fibres deposited at y = 1
for t = 7 > 0 with angle 6(7,1) = 6o, we consider t =¢ — 7.
Consequently on integrating % = asin(0) cos(0), we get

0 t
1 / !
— df’ = dr'. D2
/90 sin 6’ cos ¢’ /0 adr (D26)
Making the substitution v = tan(f) we calculate,
v 1 , B
/ — dv' = ot, (D27)
v
vo
which we integrate to find,
tan 6(%,y) = tan 0p exp (af) . (D28)
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Knowing y = exp (—at) using y = 1 at £ = 0 we get

6(t,y) = arctan (tar;@o) for e " <y < 1.
(D29)
Following the same procedure for the first group of crosslinks

present at ¢t = 0 positioned at y = y; with angle 0(¢, y;) = 6o
we derive,
0(t,y) = arctan (tanpe™’) for 0 <y < e "
(D30)

For the cellulose length we once again use the transformed
co-ordinate t to get,

1 dLc .

To i — asin’(0(t,y)), (D31)
using the separation of variables we get
{ ~ ~
In(L¢) :/ asin(0(t, y))dt. (D32)
0

For our different domains we then get,

t
Le(t) = exp (a/ sin” 0(f) df) for 0 <y <e ™,
0
(D33)
and

1 .2 ~
Lo(y) = exp </ w dg)) for e ™ <y <1.
Y

(D34)

Appendix E: Cell2A cellulose action

To model Cell2A’s digestion action on cellulose, we assume
it reduces the cellulose density p. For simplicity, this will
take the form.

8/)* p*
=C"p"(1-% E35
ot g ( pI) (135)
with p*(h*,7") = p"(y*,0) = po where C* is Cell2A’s
action rate and is proportional to fhot, meaning C* =
C* Brot- We take this form to ensure that p* # 0 and to
limit digestion. In the non-dimensional system, the above
becomes

dp

= =Cp(1=Np)

> = (E36)

with p(1,7) = p(y,0) = 1 and N = %. The non-
dimensionalisation now changes to p* = pip, C* = kg 101 C,
O = ki O €5 = vah*py and as = %CH which will
have the same value as a2 shown in Table 1. Equation E36
can be solved to get

1 1

- = . (E37
PENT(A-Ne 0 N+(1_Ny%)( )
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Fig. 10 Enzyme cutting action. The effect on the stress
resultant of Cell2a with its additional cellulose digestion
effect and XTH with a = 50, C' = 100 and N = 10. Cel12a’s
action, [not and its degradation, on the whole hotspot is
much more effective at decreasing the stress resultant than
XTH’s action, 7, on the hemicelluloses. All other parameters
can be found in Table 1

The steady-state stress result then becomes

% = /51 p (1 + a1 exp (—éGhot (y)))
([ 2250)
X sin (arctan (%))

+azexp (— o lG(y)) exp (—éGhot (y))

k'(),hot &%
ou(y) dy + Ta. (E38)

Figure 10 shows the effect of Cell2A additional cellulose
digestion where it simply decreases the stress resultant (sig-
nificantly) more when compared to Fig. 5 where it just
affects the hotspots.

Appendix F: Asymptotic expansion

Beginning with the asymptotic expansion of G, we consider
the two regions, v < y < 1 and € < y < 7. In considering

the first case, we know that (% - zﬁ) = % (1 - z§+1) and
as 0 < z <1, and 2 > 0 we have 0 < zat! < 1 which
implies the following bound, 0 < (1 - z§+1> < 1. Using
this we find,

(F39)
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and as 7 <1, we then have

G(y)leidz:1n<;).

Alternatively, for the second case, ¢ < y < v we have
% < 1 where we can once again use the upper bound of,

(1 — ziﬂ) <1 to get,

(F40)

)

exp (&" 15

G(y)g/ — = dz. (F41)
v z

Using integration by parts and knowing that

& (o (873)) = -2

1 2 2

z d c27
Gly) f/y T2 (e"p (0‘ *)) dz

2 2 1

_ z w27

[ (7)) -
1

2422
14 2
e (o0 (%))
- —— |exp | a"— dz.
/y 2a4v4% dz 22
Using the fact that ~ is small, we can ignore the first term,

and if we then repeatedly integrate by parts, we can get the
sequence

2 2 4 2
Y 2 Y c27
Gly) = 26247 exp (QQE) + 7 €xXp (ony—Q> + ...

exp (@° %), we calculate,

(F42)

202
(F43)
As % < 1 meaning g—z > z—: where k£ = 4,6,8,... we then
have,
2 2 2 2
Y w27 Y w27
G(y) ~ — — .
(y) 5522 exp <a y2) +o0 (25[272 exp <o¢ y2>>
(F44)

From Eq. (38), the asymptotic approximation of n is then,

<Ly <1
(F45)

Writing ko = kokﬁ -, We now calculate the asymptotic expan-

sion of Ghet. To find the approximation, we begin in the
region 7 < y < 1 and Phot < y < 1, where upon using the
expansion of n in this same region (Eq. (47)) and the upper

bound of the extension ((1 — zfﬂ) < 1) we get

Ghot(y) = /1 xp <ﬁ1210t542 (1 — Z%) (% —25)2) d

y z Y
(F46)
1 €Xp (ﬂﬁotéﬁz% (1 - ZVTO))
< / dy. (F47)
v z
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To find the leading-order terms, we Taylor expand the expo-
nential around Bhot = 0 to find,

1 2 ~2 i
1 hot & ko
:/y Z(1+22(1za>

o i

k
Lets consider any term in the series, | 1 — o , with ¢ €

N/{0}. We want to find the biggest term in this bracket. We
begin by assuming that 1 is the biggest term and using the
fact that %0 >0 and 0 < z <1 we have,

ko

k
>zl =1>z0 1>z (F49)

k
So 1 is indeed the bigger term meaning 1 — za < 1. Now we
need to show that the 1st term in the integral (Eq. (F48)) is

21 524
Bhota
1221

greater than

<1 - z%0> for each ¢ € N/{0}. From

the workings above, we know the ith term is less than,
24 <21
B‘;?z”; so on assuming the first term, 1 is bigger than the

das 1o (fas?) <

1227 ilz2

other terms for any i, we have

2 .
1= % < ;'2 and since % < 1, we now know 1 is indeed
the biggest term in the sequence. Therefore, we can ignore

the higher-order terms in Eq. (F48) to get

"1 1
Ghot(y) ~ / ; dz =1In (7) .
Yy Yy

Deriving the expansion for € < y < fhot and € < y < v we
have that,

(F50)

C:hot (y)

2 <2 ko o° Cigs
| eXP Biiotd” | 1 —exp | =2 sa2g7. ¢ Y <

zg)2>
dy
z

1exp (B3 cé‘Q%)
T \thot T 2f/ g F51
</ - , (F51)

by using the upper bound of the extension again and the

=

Yy

Bhot
Y

fact that if ﬁt < 1 then e v* > 1 and consequently

v Bhot
_ ko ? 2
exp o 3T e v < 1. We can repeat the procedure

of solving Eq. (F41) to derive
2 2 4
_ Y 2 Bhot Y
GrorlV) = pagg,, P <a v > I (?) '

(F52)

The case fBnot < y < 7 is a hybrid of the two methods. You
can ignore the exponential term in a similar way to (F51)
and follow the same derivation for G in Eq. (F40) to derive

Ghot = In (i) Collecting the results together we get,

1 2 & ﬁagt
i v 2
Nhot = xp o 2d2ﬁﬁot € » esy< ﬁhm
1
ya, Bhot <y < 1.
(F53)
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Notice that the simplification of nnot is not dependant on
n.

We need to know exactly where the different asymptotic
expansions in the different regions can be applied. Starting
with n, the first boundary region, ¢ < y < [not, applies
when n has rapidly decreased. So if we find the value for y for
when this happens, we can get out a critical value for when
the different expansions can be used. To find this value, we
use the derivative of the dominate term of the exponent of

n which is %" exp (W:—f) and find the value when it exceeds

a certain number, as when this rapidly increases, n rapidly
decreases. This value is then,

)
where @) is a threshold value of our choice. The threshold
value for npot, similarly is,

— B}%otd2
Vi (0@)”

To be able to solve the limit stress resultant, we need
to also approximate the trigonometric term present, sin

(arctan (tan(&o)%)). Note for tanfy < y < 1 we have

(F54)

(F55)

% < 1. Using the Taylor expansions on both arctan and
sin and ignoring higher-order terms, we can derive

sin (arctan (tan) 1))

(F56)

tan 0 tan® 0 tan® @ tan” @
:sin(ano— an3 g an®fp  tan 0+”> (F57)
Yy 3y3 5y5 Ty?
tan @ tan3 0 tan® 0 tan7 0
:<an07an30+anroian7o+”.) (F58)
Yy 3y 5y° Ty
1 (tan 0o tan®0y tan®6y tan? Oy 3
3! y 3y3 5y° Ty7
(F59)
1 (tan 0o tan® 60y  tan® 6y B tan” 0g 5
5! y 3y3 5y5 Ty”
(FGO)
_l tan90_tan36‘o+tan500_tan790+”' 7+.”
T\ 3y3 5y° Ty
(Fﬁl)
_ tan 0o ltan3 0o n §tan5 0o itan7 0o (F62)
y 2 3 8 b 16 y7
tan® 6,
o( an 0). (F63)
)

For the case v < y < tanfy we use the relation,
sin (arctan (tan 90%)) = tanfo Noting that ﬁ <

\/tan2 g+y2
1 and using the Taylor expansion around y = 0 we find,
2

4 6

tan 0y _q__ ¥ n 3y by
Vtan? 6 + 2 2tan®fy = 8tan?fy  16tan® 0y
(F64)
8
)
- . F
¢ (tan8 00> (F65)

Both of these approximations lose accuracy around y =

@ Springer



1 Page 22 of 30

Eur. Phys. J. E (2024) 47:1

tang, we therefore repeat the procedure above but now Tay- where
lor expand around y = tang to get, tan? 0 tand 0
an- to an- top
B =—
1(y) 242 49"
tan 0o _ L _ y—tan 6o (y — tan (9)2 _ 7tan®0y  19tan® 6, _ 361 tan'® 6y (F70)
Vian26y +y2 V2 2v/2tanf,  8v2tan? 6, 5446 57698 51840¢10
—tanf)? 34969 935y 794132
da o 3) B2) = 55768 °5W) ~ 1006 tan 6y~ 16384 tan? 0
16+/2 tan® 6o ) 0 0
- 13(y — tanfo)* 0( y® ) 3235y3
128v/2 tan 0% tan® @y ) - 1228;3;3:1 0o . L4508
(F66) Yy _ Yy Yy
+ 65536 tan* 0y 4096 tan® 6y = 49152 tan® Oy
19547 169y® P71
The approximation of the trigonometric term is then defined T 28672tan” By | 262144 tand 6y’ ( )
by three different expansions in three different regions, such
that,
. 1
sin ( arctan | tan(fp)—
Y
tan 00 . 1 tan3 00 § tan5 90
y 2y 8y
—1—56“”;#, tanfy + 0 <y < 1,
= 1 y—tanfgy (y—tan6)? + (y—tan )3 (F67)
V2 2v/2 tan g 8v/2tan2 6y 16+/2 tan3 6o
_ 13(y—tan 00)* tan 6
128v/2 tan 63 5 <y<tanbo +9
2 3y 546 tan 0,
1_2tan290+8tag400_16tayr)6907 e<y< 5"
2 4
Where 2% and tan , + 6 are interval values of our choos- Baly) = 1 __Y y
> 3(y) = log(y) 500 T Ttand
ing to ensure accuracy. We can use this expression for the 2tan® 6o  4tan’ 0o
cellulose angle to find the leading terms that dominate the y° 29y® 3y10
celluloses length’s, Lo behaviour. Substituting in (51), we "~ 6tan® 6, + 512tan® 6, 128tan!0 g,
get
<tan [0} 1 tans 60 , 3 tan® 0o 5 tan? 0 > 2
1 v 2 .3 8 .5 16 .7 .
exp fy Y m Y Y dy |, tanfo+d<y<1,
LC — (L wtenen (yf'.:g,n;’)z | (yf'.;g,n(‘)j)x 713(1/7'.“@02: 2 t 9 F68
(y) o (ftlanH(H»JN d@+fycanaﬂ+o (ﬁ 22 tan 0g T 5vZtan? 65 yleﬁmn‘ G0 12573 tan 0 ) 4, tanfo+d<y< ar; 0 ( )
wanog (1-525 LS VLA b tan 6
exp (.f;ngu+sN dg+f‘c:i;9£+6~ d?)+fu 3 (1 2 tan Sn+ﬁta;. 6, 16 tan 90) ag |, € S Yy S %
12
where ~ is used for simplicity to represent the integrand + Lﬂ (F72)
that appears in the previous line for the same integral 3072 tan'® fo
region. Upon evaluating our integral, we find,
[12 Il4 n6 Ils Ulo 1
exp ([7‘5&2?/290 + ta4g490 o ”;4@600 + 19;;6@890 . 3211;0@1000]37 tanfo +6 <y < 1,
1= Br(tanoto)) oxp ([33322 log(y) — 409%33{190 - 1637834;;122 W T 122‘;;3{:{133 0o
"t 5 .6 o7 .8 tan 6+4 tan 90
Lc(y) = +655367r,yan4 0 409264{15.5 % T 49115‘35&16 0, 28571;)?:;;7 % T 26211439&;,8 eo]y )’ T <y < tan bo + 5’ (F69)

¢B1(1) ,~ B1((tan 60-+8)) Bz (tan 09+5) ,— Bz (570

3y10 25y12

2 4
)exp ([103(?!) - QL::,Z 60 + 4;:;4 60

Sy 20y
6 tanS 0g 512 tan8 g

_|_

128 tanl0 9,

3072 tanl? 6

tan 0y
<
="

tan 6g
2
} , €<
Yy
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When we ignore the higher-order terms and expanding
Taylor expanding the exponential we get the final form as,

Le(y)
by 1+tan?290)7 tanfo+0 <y <1,
2
= ¢ e (1= H(y) + 245), 255 <y <tanbo +9,

e <y < g,

(F73)
where
by =P, (F74)
by = eBl (1)6*31 ((tan 90+5))eBg (tan 0p+6) 7 (F75)

an 6, tan 6,
_Bi(1) _—B;((tan0p+6)) Bo(tan6p+68) —By (2% ) py(tanfo)
b3 =e e e e 2 e 2/

(F76)
(F77)

and

34969
H(y)=B2(2) — —— 1

() = Ba(2) = 550 1o (y)

We have all the needed approximations to calculate the
stress resultant analytically. We start of with the cellu-
lose contribution independent of the biomechanical hotspots

such that,

1
> :/ (Le — 1)sinf dy

1 tan? 6
- b (1 4 ton ) - 1)
/can 6p+0 ( ! 2y2

y tan 6y _ 1 tan® 6o § tan® 0o
Y 2 3 8 b 16y’

tan 0g+4 b H 2
+/ ﬁ(l—H(y)Jr(iy))—l
tan 6o 1) 32768 2

(i _ y—tanb (y — tan6)?
V2  2v/2tanfy,  8v2tan2 8y
(y —tanh)? ~ 13(y — tan 00)4>

16v2tan®60p  128v/2tan 0}
tan 6 2
2 b3 Y
Bl —L —)-1
(5 (4 ) 1)
2 4 6
y 3y 5y
1-— - dy.
x ( 2 tan? 6y + 8tantfy  16tan® 00) Y
(F78)
which we find to be
ETO = Z Ci, (F79)

where all the ¢; values can be found in Table 2.

The second term is the contribution from the cellulose
fibres when crosslinked by the biomechanical hotspots which
we calculate to be,

1
»ge :/ a1npot(Le — 1) sin 6 dy
€

1 1 tan? 0o
= arya (b1 [ 1+ — -1
tan 0p+9 2'!/

y (tan 6o 1 tan3 6o 3 tan® 6o 5 tan? 90) d

Y 2yl 8 yb 16 y7
tan 0p+98 1 bo H(y)2
+/ o ary« 34969 (l_H(y)+ )_1
m"z 0 Y 32768 2

5 tan” 90) dy
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(L _ y—tanfo (y — tan 6)2
\/5 2\/51}&1’1 6o 8\/§tan2 6o
(y — tan 6)3 13y - tan90)4>

16+/2 tan3 6 128v/2tan 63

tan O b y2
2 1 3
+ aye | —(1+ ———+—] -1
/Xhm v ( Y ( 2tan? 00 ) )

2 3 4 5 6
x(1-—2% 4 ¥ Y dy
2tan26y 8tan*fy 16tanSfy

Xhot 1 2 @
+/ ayexp | —— yQ e v?
€ a 2/Bhot
b 2
x (21— )1
y 2tan2 6y

2 34 6
X (1 — Y + Y — 5y ) dy
2tan?26y S8tan*fy 16tan® 0y
(F80)

which becomes

ESO =a1 <<Z dl,i(a)> + tang (b1 — 1) @
+ (Z d%(a)) (5 + tan o) =

+tanfo (1 — bl)cu(éthamt‘)o)é

N <Z dg,,i(a)> (tar;%) o
Fhsa (“’“;90) i (Z d4,i(a)>
) (F81)

where the values of the coefficients d s, ..

..y, and d4, ..., can be found in Table 3.

The third term is the hemicellulose contribution and is
found to be,

Rl .

1
(Xnot) @ — b3ax(Xhot)

. 77d27i7 MR d37i7

1 1 .
a1
3 :/ A2MNhot O H dy:/ azx&yoy
e X

X k 2 & 1 w
+ +azéy= exp <— 0_Y ¢ 17) (7—y3) dy

o
VRS

| =

|

<

Rle
N——
Q.

<

— e
52~2
Xhot a 2a%y

Xhot 1 y2 Bios
+/ azdexp | ———5—e v’
€ @ 2ﬁhot

Fo v 22\ (1 .
X exp (a S22 e v ; —yeo | dy (FSQ)
where upon integration
ko+1
5P = ( o (1_X : )
ko +1
-1 (1 — XWJ&)
L (hotw+1) +1
(F83)

Note that for all three contributions to the stress resul-
tant, 37°, X5°, and X5° for some critical values of o some
of their terms are logarithmic upon integration which we
choose to ignore.
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Table 2 Asymptotic expansion constants for »¢°

Eur. Phys. J. E (2024) 47:1

Constant Value Constant Value
305 bg
€1 196608 2 €
766290879471899 tan 6 ) tan 6
€3 118219490218475520 Ca bs In ( 2 )
cs tan 6 In (0 4 tan o) cs —b1 tan g In (6 4 tan Op)
150077200448881 by
& — c —bs In (e
6 9758165696512 (5+tan 6 )2201/32768 7 3 I (e)
__bjtan 905 by tan 907
cr 32 cs 18
5b1 tanegg _tan903
Co 256 €10 1
3tan905 _5tan907
c11 35 C12 96
—3tan 905 by tan 905
€13 32 (6+tan 6g)% C14 32 (6+tan 6g)?t
—2by tan807 5tan607
C15 96 (6+tan 60)% C16 96 (6+tan 0()%
5bq tan 09
c _$ c 8tan 0> (6+tan 90)6
17 32 (6+tan 00)° 18 32 (6+tan 09)S
10 150077200448881 by 20 187 /2 (5+tan 6y)
2201/32768
9758165696512 (%) / 256
3 5
€ 3e
€21 6tan 02 €22 40 tan 694
5e7 51/2 (§+tan 6g)?
€23 112 tan 600 C24 128 tan 0o
c 43 /2 (6+tan 6p)°> c 152 (5+tan gg)?
25 384 tan 002 26 256 tan 003
c 13 /2 (6+tan 6)° c 6020549791152521 by (5-+tan 6)30567/32768
27 1280 tan 603 28 14811695901638656 tan g
c 7868723041398407 by (5+tan )03335/32768 e 4402425010544735 by (5-+tan 6)26103/32768
29 557100551561543680 tan 62 30 1449138733222723584 tan 63
c _ 81932115935621 by (§-tan g)128871/32768 c 2682583518496071 by (6+tan ) 61639/32768
31 1067988374765568 tan 04 32 88861980001042432 tan 0>
c _ 7116713214246575 by (§+tan 6p)194407/32768 c 89993661700897 by (6-+tan 6y)227175/32768
33 480943703297359872 tan 000 34 6917027650338816 tan 67
c _ 1390888037066579 ba (§+tan 0g)259943/32768 c 813773447008073 by (5+tan 0)292711/32768
35 160768322470674432 tan 05 36 633620822778445824 tan 69
c 280915086652931 by (§-+tan 0)325479/32768 c _ 5278606494654121 by (6-+tan §g)358247/32768
37 134200479411339264 tan 0o 10 38 3101936844162465792 tan O 11
c 3916342628302019 by (5+tan 0y)391015/32768 c  4112068129940143 by (6+tan §)423783/32768
39 6771327241373614080 tan 012 40 117420492710756745216 tan 013
c  1121251467598159 by (§+tan gp)456551/32768 c 1772224420073771 by (5+tan 0)*89319/32768
41 18447880144098951168 tan 6o 14 42 52725169158789005312 tan 6 15
c _ 1694538362442335 by (§+tan §)522087/32768 c 04162698713311 by (6-tan §)534855/32768
43 168767973799942422528 tan 6 10 44 47829450699604754432 tan 6017
c _ 388717606998977 by (5+tan 0)587623/32768 c 1057140962472757 by (5+tan 0p)020391/32768
45 1519623251576745885696 tan 0 15 46 52154529959914841833472 tan 0 19
c _ 2775672680954111 by (5+tan 6)053159/32768 c  bget
47 3707279049981556007370752 tan 0 20 48 32tan 0%
Ca9 18 tan 00 €50 256 tan 08
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Table 2 continued

Page 25 of 30 1

Constant Value Constant Value
5 30567/32768 8 63335/32768
6020549791152521 by (12390) / 7868723041398407 by (12390 /
€51 - 44811695901638656 tan Og C52 - 557100551561543680 tan 02
P 96103/32768 P 128871/32768
4402425010544735 by ((125%0) / §1932115935621 by ((12570) /
€53 - 1449138733222723584 tan 03 C54 1967988374765568 tan 63
161639/32768 194407 /32768
2682583518496071 by (%) / 7116713214246575 by (%) /
€55 - 88861980001042432 tan 05 €56 480943703297359872 tan 00
227175/32768 259943 /32768
89993661700897 by (%) 8/ 1390888037066579 b (%) 590943/
Cs7 - 6917027650338816 tan 67 €58 160768322470674432 tan 08
292711/32768 325479/32768
813773447008073 b (2570 / 280915086652931 b (2570 /
€59 - 633620822778445824 tan 009 €60 134200479411339264 tan 6y 10
a 358247/32768 a 391015/32768
5278606494654121 b, (*25%0 ) / 3916342628302019 b (12590 /
C61 3101936844162465792 tan 011 C62 - 6771327241373614080 tan O 12
- 423783/32768 456551 /32768
4112068129940143 b (% / 1121251467598159 bo (%) /
C63 117420492710756745216 tan 0o 13 C64 18447880144098951168 tan 6y 1%
P 489319/32768 P 522087/32768
1772224420073771 b (25%0) / 1694538362442335 b, (2570 /
€65 - 52725169158789005312 tan 0 15 C66 168767973799942422528 tan 0 10
554855/32768 587623/32768
9416269871331 by (12370 / 388717606998977 by (*25%0) /
C67 - 17829450699604754432 tan g 17 Ces 1519623251576745885696 tan 0p 18
620391/32768 653159/32768
1057140962472757 ba (%) / 2775672680954111 by (%) 53159/
€69 _ 52154529959914841833472 tan 019 €70 3707279049981556007370752 tan 20
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