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Abstract Convection-driven porous media flows are common in industrial processes and in nature. The
multiscale and multiphase character of these systems and the inherent nonlinear flow dynamics make
convection in porous media a complex phenomenon. As a result, a combination of different complementary
approaches, namely theory, simulations and experiments, have been deployed to elucidate the intricate
physics of convection in porous media. In this work, we review recent findings on mixing in fluid-saturated
porous media convection. We focus on the dissolution of a heavy fluid layer into a lighter one, and we
consider different flow configurations. We present Darcy, pore-scale and Hele-Shaw investigations inspired
by geophysical processes. While the results obtained for Darcy flows match the dissolution behaviour
predicted theoretically, Hele-Shaw and pore-scale investigations reveal a different and tangled scenario in
which finite-size effects play a key role. Finally, we present recent numerical and experimental developments
and we highlight possible future research directions. The findings reviewed in this work will be crucial to
make reliable predictions about the long-term behaviour of dissolution and mixing in engineering and
natural processes, which are required to tackle societal challenges such as climate change mitigation and
energy transition.

1 Introduction

A porous medium is a material consisting of a solid
matrix with an interconnected void, which allows flu-
ids to flow through it. When a fluid-saturated medium
subject to the action of gravity experiences an unsta-
ble density profile, i.e. a heavy fluid parcel sitting
above a less dense one, the denser fluid will even-
tually move and replace the lighter fluid, and vice
versa. The density-driven physical mechanism inducing
this motion is defined as convection, and it represents
the driving force of many problems of practical inter-
est, particularly in geophysical processes. The regular
polygonally patterned crusts of salt shown in Fig. 1a,
approximately a metre in diameter, are the surface sig-
nature of the vertical transport of salt, a fundamental
process in arid regions. These ridges form as a result of
solutal convection in the porous soil beneath the sur-
face [1,2]. Similarly, in supercritical geothermal systems
heat supplied by a magmatic heat source produces a
buoyancy-induced flow circulation due to convection [3].
Formation of sea ice (Fig. 1b) or solidification of mul-
ticomponent alloys may originate mushy layers, which
consist of a porous medium filled with interstitial fluid
[4]. This fluid (brine, a mixture of water and sea salt)
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experiences density gradients produced by differences
of temperature and solute concentration, which induce
convective motions within the porous layer and con-
trol the subsequent solidification dynamics [5,6]. The
above convective processes in porous media are asso-
ciated with grand societal challenges, including energy
transition and climate change mitigation. Understand-
ing the underlying fluid mechanics is crucial for mak-
ing reliable predictions on the evolution of the natu-
ral environment [7]. Within the many applications of
importance in this context, convection in porous media
has received renovated attention due to the implications
it bears for geological sequestration of carbon dioxide
(CO2) [8].

Geological CO2 storage consists of injecting large
volumes of carbon dioxide in underground geologi-
cal formations with the aim of permanent (or long-
term) storage (Fig. 1c). These formations are typically
saline aquifers and consist of a porous material confined
by horizontal low-permeability layers (grey regions in
Fig. 1c). The aquifers are located 1–3km beneath the
Earth surface, where the pressure is sufficient to keep
the CO2 supercritical [12,13]. Here, a rich flow dynam-
ics emerges. Injected CO2 (black) is initially lighter
than the fluid (brine, yellow) naturally filling the sub-
surface aquifer, and therefore, carbon dioxide migrates
towards the upper region of the formation, driven by
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Fig. 1 Examples of convection in porous media in geo-
physical applications. a Salt polygons at the Hoz-e Soltan
(Iran) (image courtesy of [9]). These superficial formations
are the result of salt-induced convective subsurface flows. b

Formation of sea ice (adapted with permission from [10]).
When sea ice grows, the intermediate layer between the ice
exposed to the atmosphere and the ocean forms a porous
solid matrix (ice) filled in the interstitial space by brine
(water and salt). Salt-rich (yellow) plumes of brine drain

from this mushy layer into the underlying ocean (blue). c

Migration of carbon dioxide (CO2) in a post-injection sce-
nario (adapted with permission from [11]). Brine and CO2

saturate the porous medium and are vertically confined by
two low-permeability layers. Due to symmetry, only the
right half of the reservoir is shown. (square) Dissolution of
CO2 in brine occurs at the interface between the currents
of these fluids. (circle) Liquid phase filling the interstitial
space within the pores of the rocks

convection, to form a CO2 layer that spreads horizon-
tally. The low-permeability layer prevents CO2 from
escaping and migrating to the uppermost parts of the
aquifer, from where it could eventually return to the
atmosphere. At the interface between the currents of
carbon dioxide and brine, the dissolution of CO2 into
the underlying brine layer takes place, originating a
new mixture heavier than both starting fluids (red-to-
green fluid in Fig. 1c). The dissolution process, illus-
trated in the squared inset of Fig. 1c, makes the interfa-
cial layer heavier and thicker, and eventually finger-like
instabilities form. The CO2-rich solution will sink down
being permanently stored in the formation. The pres-
ence of these finger-like structures makes the convective
dissolution process more efficient compared to a diffu-
sive dissolution. Such a behaviour is highly desired for
CO2 storage because injected carbon dioxide will dis-
solve faster preventing leakages in case of faults at the
top low-permeability confining layer. In turn, the pres-
ence of nonlinear structures makes the system complex
to study, and long-term predictions of the dynamics
of injected carbon dioxide require huge computational
efforts. An element further increasing the complexity
of this scenario is represented by the finite-size pore-
scale effects. At the level of the rock grains, schemat-
ically reported in the circle of Fig. 1c, the fluid moves
in the interstitial space following sinuous paths, further
spreading the solute transported and making predic-
tions on the long-term behaviour even more challeng-
ing. Motivated by the CO2 storage process, convection
in porous media has been recently investigated in great
detail [14]. In this work, we will review the current mod-
elling approaches, numerical and laboratory measure-
ments, and in particular, we will focus on the role of
finite-size effects such as confinements and pore-scale
dispersion.

In a convective porous medium flow, the dynam-
ics is controlled by the relative importance of driving
and dissipative mechanisms, which is quantified by the
Rayleigh–Darcy number Ra. Convection is the driving
process, and it is determined by the combination of fluid
properties (density contrast), medium properties (per-
meability and porosity) and domain properties (gravity
and domain size). Dissipative forces act against con-
vection either as a drag force between the fluid and
the solid (due to viscosity) or reducing local gradients
of density (due to molecular diffusion). As a result of
solute redistribution due to the tortuous fluid path in
the interstitial matrix, the solute concentration field is
made more uniform. This effect, labelled as dispersion,
contributes as well to dissipate the potential mixing
energy of the system, since the concentration gradients
within the domain reduce. A key challenge in studying
convective geophysical flows consists of making reliable
predictions of their evolution by determining how global
transport quantities, e.g. the solute flux or the mix-
ing rate, vary as a function of Ra and time. Simplified
mathematical models solved numerically and theoreti-
cally have provided a clear picture of the flow behaviour
at the Darcy scale [15–17], i.e. when a sufficiently large
representative elementary volume including many pores
is considered [18]. In contrast, these results disagree
with the experimental measurements [19,20], possibly
suggesting that physical effects present in laboratory
set-ups are not captured by the classical Darcy formu-
lation [21].

An intuitive way to experimentally mimic a porous
medium consists of filling a confined volume with solid
materials, and when spherical objects are used, the
medium is defined as a bead pack [22]. These exper-
iments may be challenging, since the medium is typi-
cally hardly accessible due to its opacity, and only in
recent years, non-invasive and non-intrusive measure-
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ments such as X-ray tomography and magnetic res-
onance imaging have become accessible [23,24]. As a
result, most of the experiments on convective flows in
porous media have been performed in Hele-Shaw cells,
which consist of two transparent plates separated by a
narrow gap where the fluid flows [25]. The Hele-Shaw
apparatus is particularly relevant because it provides
optical access, and in some conditions, the flow follows
a Darcy-like behaviour. In general, neither bead packs
nor Hele-Shaw cells faithfully reproduce the dynamics
of a Darcy flow, in which the flow structures within
a porous medium are much larger than the average
pore size. A difference emerged in the transport proper-
ties of bead packs experiments, Hele-Shaw experiments
and numerical simulations [21]. The solute redistribu-
tion effects (dispersion) produced either by the presence
of the solid obstacles in the porous matrix or by the
walls in a Hele-Shaw flow have been identified as the
main responsible for these discrepancies [26], and are
labelled here as finite-size effects. In recent years, the
advancement of theoretical, experimental and numeri-
cal techniques allowed a more precise characterisation
of the flow, with accurate measurements of pore-scale
dissolution rates, and a clearer picture of the influence
of finite-size effects on dissolution and mixing is now
available.

In this work, we review recent theoretical, numerical
and experimental findings in the field of convection in
porous media. This review is meant to be complemen-
tary with respect to other works [12–14], since we focus
on dissolution and mixing with emphasis on finite-size
effects. The paper is organised as follows. In Sect. 2,
we describe the mathematical models and the idealised
configurations used to investigate convection in porous
media, and we derive a unified formulation to evalu-
ate and relate mixing in different flow configurations.
In Sects. 3 and 4, we review the results obtained in
Rayleigh–Bénard and one-sided configurations, respec-
tively. Finite-size effects possibly leading to the discrep-
ancy observed between experiments and simulations are
discussed in Sect. 5. Finally, in Sect. 6 we summarise
the results discussed and present recent experimental
developments, together with an overview of additional
effects not present in the configurations discussed in
Sects. 3 and 4.

2 Modelling of convection

2.1 Pore-scale modelling

Convective flows are produced by the presence of
unstable density gradients within an accelerated fluid
domain. These density differences drive the flow towards
a more stable configuration, decreasing the gravita-
tional potential energy within the system [27]. We con-
sider problems in which convection is induced by the
presence of a scalar quantity (e.g. solute concentration
or temperature) that modifies the density field of the
flow. For simplicity, in this review we will define the

parameters in case of solute convection, but the find-
ings extend to the case of thermally driven convection
unless explicitly mentioned.

The maximum density difference within the domain,
∆ρ, determines the strength of the convective flow. On
the other hand, (molecular or thermal) diffusion reduces
the local scalar gradients diminishing the driving force
of the flow, and viscosity is responsible for energy dissi-
pation due to friction. In a free fluid (i.e. in the absence
of a porous medium), the relative importance of these
two contributions is quantified by the Rayleigh number
RaT defined on the characteristic length scale of the
flow H

RaT =
g∆ρH3

µD
, (1)

where g is the acceleration due to gravity, D is the
molecular diffusivity and µ is the fluid dynamic viscos-
ity. The ratio of kinematic viscosity to solute diffusiv-
ity D (or molecular diffusivity) determines the Schmidt
number

Sc =
µ

ρrD
, (2)

with ρr the average (or reference) fluid density within
the domain. Similarly, for thermally driven flows one
can define the Prandtl number (Pr), in which the molec-
ular diffusion is replaced by its thermal counterpart.

Modelling heat or mass transport at the pore scale
requires to resolve the flow within the interstitial space.
Momentum transport is controlled by continuity and
Navier–Stokes equations, respectively:

∇ · ũ = 0, (3)

ρ̃

[
∂ũ

∂t
+ (ũ · ∇) ũ

]
= −∇p̃ + µ∇2ũ + ρ̃g, (4)

where ũ, ρ̃ and p̃ are the velocity, density and pressure
fields, respectively, and g indicates acceleration due to
gravity. We assumed that the Boussinesq approxima-
tion applies, which is reasonable for geophysical pro-
cesses such as carbon sequestration [28]. (Additional
details on this assumption are provided in Sect. 6.2.)
The fluid density ρ̃ is typically defined by an equation
of state (EOS) that depends on both solute concentra-
tion and fluid temperature. (Other scalars present in
the system may be similarly treated.) When linearised,
the EOS may be rewritten to obtain the density ρ̃ as
a function of temperature (T̃ ) and concentration (C̃)
(possible limitations of this approach are discussed in
Sect. 6.2). With respect to the value ρ̃r defined at the

reference state (C̃r , T̃r), it reads

ρ̃ = ρ̃r + αc(C̃ − C̃r) + αt(T̃ − T̃r), (5)

where αc, αt are the expansion coefficients relating the
density to the variations of concentration and tempera-
ture, respectively, being typically αc > 0 and αt < 0. In
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this case, assuming the presence of solute scalars only,
Eq. (5) reduces to the form ρ̃ = ρ̃(C̃) = ρ̃r +αc(C̃−C̃r).

Solute conservation is accounted by the advection–
diffusion equation:

∂C̃

∂t
+ ũ · ∇C̃ = D∇2C̃. (6)

Equations (3)–(6) are solved for the fluid domain to
determine the evolution of the flow at the pore scale
[29]. When heat transport is considered, a diffusive heat
flux in the solid matrix may be also accounted [30,31]
(additional details will be provided in Sect. 3.2). The
presence of additional phases is not discussed in this
review, and we refer to [32] for pore-scale modelling
approaches of multiphase flows.

Notwithstanding recent significant improvements of
numerical schemes and computational infrastructures,
resolving real-scale convective flows from the pore level
to the reservoir scale requires a computational effort
that is beyond the present capabilities. To overcome
this issue, a possible approach consists of modelling the
flow at an intermediate scale between pores length scale
and domain height, i.e. the Darcy scale. Despite miss-
ing a precise description of the flow dynamics at the
pore level, Darcy models have proved to be a reliable
framework to determine the overall long-time behaviour
for the transport of species in convective porous media
flows [2,10,12,33]. In the following, we will describe
under which assumptions a convective flow in porous
media can be modelled as a continuum via the Darcy
flow approximation.

2.2 Darcy model and dispersion

A possible strategy to model flows in porous media con-
sists of taking the average of relevant quantities (veloc-
ity, concentration and pressure fields) over a representa-
tive volume that contains several pores [18]. An illustra-
tive example is sketched in Fig. 2. The size of the volume
(indicated as representative elementary volume, REV)
over which the average is computed is larger compared
to the pores length scale d, but still smaller than the
domain reference length H . The Darcy model is based
on empirical observations initially proposed more than
150 years ago [34], and the later derived analytically
by Whitaker [35]. We refer to [18,36] and references
therein for additional details. The key assumption of
the Darcy equation is that the average flow velocity
over the representative volume is proportional to the
pressure gradient applied to the volume via the fluid
viscosity and a property of the medium defined as per-
meability. These conditions are achieved when the flow
inertia is negligible compared to viscous forces [18]. In
the following, we will characterise the medium proper-
ties and the governing flow parameters, and finally, we
will discuss a model for the Darcy flow.

The characteristic geometrical properties of the solid
matrix and its intimate interaction with the inter-
stitial fluid determine the flow behaviour. The main

Fig. 2 Model of the flow at different scales. a At the Darcy
level, all flow quantities are obtained as averaged over the
REV. Solid boundaries (in this example at the bottom of the
domain) are impermeable to fluid, i.e. the velocity compo-
nent perpendicular to the wall is zero (n is the unit vector
normal to the wall). However, slip along this boundary is
possible. b At the pore level, the fluid phase flows within
the interstitial space of the solid matrix, which is made of
impermeable solid objects. Over the surface of each of these
objects, no-slip boundary condition applies

macroscopic parameters used to characterise a porous
medium are: (i) porosity φ, defined as the ratio of vol-
ume of fluid to the total volume (fluid and solid), and
(ii) permeability k, a measure of the resistance opposed
by the medium to the flow. For a given porous medium,
the Darcy number represents the relative importance
of permeability and its cross-sectional reference area.
With respect to the domain reference length scale H ,
the Darcy number reads:

Da =
k

H2
. (7)

A convective flow is driven by density differences, and
therefore a possible velocity scale is the buoyancy veloc-
ity U , i.e. the free fall velocity of a parcel of immiscible
fluid surrounded by fluid having a density contrast ∆ρ,
which is defined as

U =
g∆ρk

µ
. (8)

We observe that U is independent of the any length
scale, and it relates to the fluid (∆ρ, µ), medium (k)
and domain (g) properties. In addition to the domain
length scale (H), one can consider as a reference length
scale the distance ℓ over which advection and diffusion
balance [17]

ℓ =
φD

U
(9)

(in thermal convection, ℓ = D/U with D representing
the thermal diffusivity). The evolution of the fluid layer
is controlled by buoyancy, which tends to drive the flow
towards a stable configuration, and diffusion, acting to
reduce local concentration gradients and increasing the
mixing of solute in the domain. The relative importance
of the strength of these contributions is evaluated by the
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Rayleigh–Darcy number Ra

Ra =
H

ℓ
, (10)

obtained combining the Rayleigh number RaT (1) and
the Darcy number Da (7). In particular,Ra =RaT Da/φ
in the instance of solutal convection, with the solid
being impermeable to the solute fluxes, and Ra =
RaT Da for thermally driven cases in conductive media.
While in the thermal case an equilibrium between the
solid and the fluid phases may be achieved, in solu-
tal convection the solid phase is always solute-free.
Notwithstanding this difference, when thermal equi-
librium locally occurs between the solid and the fluid
phases, results for thermal convection can be equally
interpreted as results for solutal convection, and vice
versa, provided that the Rayleigh–Darcy number is
matched [14]. The Rayleigh–Darcy number includes
all the macroscopic properties of the system: domain
(g, H), medium (k, φ) and fluid (D, µ, ∆ρ) properties.
In addition, when the spatial coordinates are made
dimensionless with respect to ℓ (9), Ra can be inter-
preted as the dimensionless domain height [17].

A Darcy-type flow occurs when the size of the flow
structures is much greater than the reference length of
the REV [14]. The reference length scale is in this case

the pore scale, which is proportional to
√

k. In quantita-
tive terms, the criterion above is fulfilled when: (i) the
pore-scale Reynolds number is small, i.e. viscous dis-
sipation (µU) dominates over inertia (ρrU

2
√

k), and
(ii) the smallest length scale of the flow (ℓ) is large

compared to the pore size (
√

k). These conditions are
matched if:

ρrU
2
√

k

µU
≪ 1 ⇒ Re =

ρrU
√

k

µ
=

RaDa1/2

Sc
≪ 1

(11)

ℓ√
k

≫ 1 ⇒ Pe =

√
k

ℓ
=RaDa1/2 ≪ 1, (12)

i.e. when Reynolds (Re) and Péclet (Pe) numbers are
much less than unity. Note that in these definitions the
pore length scale (

√
k) and the buoyancy velocity (U)

are used as length and velocity scales, respectively.
We consider a fluid-saturated homogeneous and

isotropic porous medium with porosity φ and perme-
ability k (Fig. 2a) fulfilling the conditions (11)–(12).
The flow field is fully described by the continuity and
Darcy equations, respectively:

∇ · u = 0 (13)

u = −k

µ
(∇p + ρg) . (14)

Note that in this case u is the seepage or Darcy velocity,
and it represents the value of fluid velocity averaged
over the REV (Fig. 2b). It is related to the fluid velocity
averaged over the fluid phase of the REV (ũ) via the

Dupuit–Forchheimer relationship u = φũ [18]. Same
applies to pressure p and density ρ.

The evolution of the concentration field is controlled
by the advection–diffusion equation

φ
∂C

∂t
+ ∇ · (uC − φD∇C) = 0, (15)

where t is time, C is the concentration averaged over the
REV and D is the solute diffusivity, which is assumed
constant and independent from the flow. In a more
general formulation discussed in Sect. 2.2.1, this coef-
ficient may be replaced by a dispersion tensor D that
depends on the local flow conditions (u) or the fluid
properties (Sc). While the solid is commonly imperme-
able to solute, in the thermal case a diffusive heat flux
may occur within the solid matrix. In case of thermal
equilibrium between the solid and the liquid phases,
Eqs. (13)–(15) keep being valid.

2.2.1 Dispersion

Solute redistribution induced by the fluid carrying
the solute and flowing through the porous medium
is defined as dispersion [22]. This mechanism, which
has the effect of homogenising the solute concentration
field, adds to the contribution of molecular diffusion.
For this reason, these two contributions that are orig-
inated by very different physical mechanisms are often
grouped within a unique formulation. In porous media,
dispersion may arise due to several reasons: pore-scale
change of flow direction (mechanical dispersion), het-
erogeneous permeability fields (large-scale dispersion)
or other mechanisms, such as no-slip at the boundary
of the pores or dead-end pores (anomalous dispersion).
These effects are the result of the pore-scale dynamics
and can be considerably more effective (up to few orders
of magnitude) than the solute spreading due to molecu-
lar diffusion. Therefore, it may be necessary to account
for the presence of dispersion when modelling the flow
at the Darcy scale. Here we consider the contribution of
mechanical dispersion and molecular diffusion, usually
grouped in a term defined as hydrodynamics disper-
sion. For simplicity, in the following we will indicate
this mechanism as dispersion, ad we refer to [37] for
a general theoretical discussion on dispersion-induced
mixing.

A classical approach to account for the effects of
dispersion consists of replacing the molecular diffusion
coefficient, D in Eq. (15), with a dispersion tensor D
which depends on the local flow conditions. Typically,
the dispersion tensor is anisotropic and aligned with
the flow, meaning that it can be decomposed into two
components in the directions parallel (DL, longitudinal
dispersion) and perpendicular (DT, transverse disper-
sion) to the local flow velocity u. This model is labelled
as Fickian dispersion [38]. With these assumptions, the
dispersion tensor takes the form:

D = DI + (αL − αT)
uu

|u| + αTuI, (16)
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where I is the identity tensor, and the coefficients
αL = DL/U and αT = DT/U correspond to the dis-
persivities of the medium in longitudinal and trans-
verse directions, respectively. For solute transport and
Pe ≫ 1, dispersion in the cross-flow direction is typi-
cally 1 order of magnitude smaller than in the stream
flow direction (possible limitations of this assumption
are discussed in [39]). The ratio of these two contribu-
tions is quantified by the dispersivity ratio

r =
DL

DT

. (17)

The magnitude of DL and DT is estimated with the
aid of correlations based on experiments and simula-
tions (see [22], and references therein). Longitudinal
and transverse dispersion coefficients depend on many
parameters, namely Schmidt number [40], Reynolds
number [41], tortuosity of the medium [42], Péclet num-
ber [43] and fluid phases [42]. We refer to [44] for a
review of numerical, experimental and theoretical works
in this field.

We consider here an example of a medium com-
posed of monodispersed beads, typical of numerical and
experimental set-ups commonly employed in pore-scale
investigations, and we show that the dispersivity ratio
r may considerably vary as a function of the Péclet
number of the flow (a similar procedure applies for dif-
ferent media—porosity, tortuosity—and flow—Péclet
number—properties). We consider the case of solutal
convection in a monodispersed bead pack at Sc ≤ 550.
For a monodispersed close random packing, the poros-
ity is φ = 0.37 [45,46] and the tortuosity (the ratio of
actual flow path length to the straight distance between
the ends of the flow path [36]) is τ = 0.68 (see [47],
and references therein). We use the empirical correla-
tions proposed by Delgado [42], obtained for labora-
tory experiments, i.e. in architecture-controlled media,
whereas we refer to [48] for a review of dispersion rela-
tions in field-scale data. The results proposed by Del-
gado [42] are valid for liquids and at Sc ≤ 550, and we
report the dispersivity ratio in Fig. 3 (for Sc > 550, sim-
ilar correlations are provided). Four main flow regimes
have been identified, for increasing Pe: (i) diffusion
regime, with molecular diffusion being the dominant
mechanism; (ii) diffusion and mechanical dispersion,
when the two contributions are comparable; (iii) pure
mechanical dispersion, when the influence of molecu-
lar diffusion is negligible; and (iv) non-Darcy, when the
effects of inertia and turbulence cannot be neglected.
Note that these correlations are obtained from experi-
mental measurements performed for a wide parameters
space, and a sharp separation between these regimes is
hard to identify. A theoretical prediction is available for
low (r = 1, [49]) and high (r = 6, [42] and references
therein) Péclet numbers. A similar regime classification
has been also proposed by Perkins and Johnston [50].

With this example, we have shown that in general
r varies with Pe and Sc among the other parameters,
and also across the scales [51]. To simplify the picture,
a possible approach used in numerical simulations con-

Fig. 3 Dispersivity ratio r = DL/DT shown for porosity
φ = 0.37, tortuosity τ = 0.68 and different Schmidt num-
bers, namely Sc = 50, 150, 250, 350, 450 and 550. The
correlations proposed by Delgado [42] have been employed.
The advective flow is divided in several regimes, discussed
in the text

sists of fixing the values of DL and DT or r [26], which
is a reasonable approximation if a narrow range of Pe is
considered. Results on the effect of dispersion on con-
vective flow are presented in Sect. 5.3.

2.3 Flow configurations and quantification of mixing

Convective processes of practical interest are charac-
terised by the mixing of one or more scalar quantities
(e.g. the concentration of a dispersed solute phase) in
the ambient fluid and predicting the time required to
achieve a certain degree of mixing may be necessary.
In the instance of geological carbon sequestration, for
example, it is desired to find the time required to dis-
solve a considerable fraction of the CO2 injected, to
assess the reliability of a given sequestration site. These
estimates can be obtained via experiments and simu-
lations in representative flow configurations, which are
well controlled and designed to reproduce the main fea-
tures observed in environmental and industrial cases. In
this section, we will first introduce the main flow con-
figurations investigated in literature, with clear indica-
tion of the initial and boundary conditions. Then we
will define a general framework and identify relevant
observables required to quantify the mixing and anal-
yse the evolution of the system.

Three archetypal flow configurations are generally
employed to investigate the dynamics of convection in
porous media. They consist of analogue systems that
help us to have a comprehension of specific scenar-
ios occurring in nature. A sketch to illustrate possi-
ble boundary conditions applied is shown in Fig. 4a.
At the top (label 1) and bottom (label 0) boundaries,
both flux F and concentration C may be prescribed.
(The flux will be defined more precisely later in this
section.) All boundaries are considered impermeable to
fluid, i.e. no penetration condition applies (u · n = 0,
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Fig. 4 Flow configurations (adapted with permission from
[52]). a Sketch of boundary conditions applied at the top
(label 1) and bottom (label 0) boundaries in terms of flux
F and concentration C. All boundaries are impermeable to
fluid (u · n = 0), and side boundaries may be also consid-
ered as periodic. The reference frame (x, z) and gravity (g)
are also indicated. Three flow configurations are shown: b

Rayleigh–Bénard, c one-sided and d Rayleigh–Taylor. An
exemplar field obtained for two-dimensional simulations at
Ra = 7244 is reported. The field is taken at the time indi-
cated by the green arrows in panels (b-ii), (c-ii) and (d-ii),

where the evolution of the parameters χ̂, F̂ and dt〈C
2〉/2

is reported (the operator dt stands for the time derivative).
Quantities are computed as in Eq. (25) and made dimen-
sionless with respect to the length scale L = ℓ. The time-

averaged value of F̂ is also shown (dashed lines) in pan-
els (b-ii) and (c-ii)

being u the fluid velocity and n the vector perpendic-
ular to the boundary. However, periodic conditions on
the side boundaries may be also considered for con-

venience in numerical studies, with no difference on
the modelling described in the following. In all cases
considered here, the domain boundaries are assumed
impermeable to fluid, and the fluid is supposed initially
still [u(t = 0) = 0]. The boundary conditions for the
solute (fixed concentration or no flux) will determine
the nature of the system considered (steady or tran-
sient), whereas the initial condition for the solute (uni-
form concentration, or two fluid layers with different
concentration) will control the flow evolution. The flow
configurations considered are:

i. Rayleigh–Bénard (Fig. 4b-i): the solute concentra-
tion is fixed at the horizontal boundaries, so that
the density of the fluid at the bottom wall (C = C0)
is lighter than the density of the fluid at the top
wall (C = C1) [53,54]. This unstable flow attains a
statistically steady state, which is rigorously steady
for sufficiently low Rayleigh–Darcy numbers [55]. A
scalar flux is possible through the upper (F = F1)
and the lower (F = F0) boundaries.

ii. One-sided (Fig. 4c-i): the concentration is imposed
at the upper wall, where a solute flux is also possible
(C = C1, F = F1), and the domain is impermeable
to solute at the lower wall (∂C/∂z = 0, correspond-
ing to F0 = 0). This configuration originates a time-
dependent flow, and the domain, initially filled with
uniform solute concentration C = C0, is gradually
filled with the solute coming from the upper bound-
ary [15,17,56].

iii. Rayleigh–Taylor (Fig. 4d-i): both walls are imper-
meable to the scalar (F0 = F1 = 0). The domain
initially consists of two uniform layers of different
density (C = C1 for the upper portion, and C = C0

for the lower portion), so that the flow configuration
is unstable [57,58]. Solute mixing evolves controlled
by the dynamics of the flow structures.

The flow configurations considered differ in terms of
boundary conditions and evolution, and suitable flow
observables are required to estimate the mixing state
of each system. For instance, the Sherwood number
Sh, defined as the ratio of the convective to the dif-
fusive mass transport, is suitable in solute-permeable
domains (e.g. the Rayleigh–Bénard case), but it does
not provide any indication in closed domains (e.g. the
Rayleigh–Taylor case). Therefore, in each flow config-
uration different quantities are used, which are related
through exact mathematical relations that are derived
here. Following [21], we take the advection–diffusion
equation (15) multiplied by C, and we integrate over
the entire domain. We use the hypothesis of incom-
pressibility of the flow (14) together with the imper-
meability of the boundaries to the fluid. (Note that the
same result is achieved assuming periodicity in horizon-
tal direction.) After some algebraic manipulations, we
obtain the following exact global relation:

φ

2

d〈C2〉
dt

=
φ

H
(C1F1 + C0F0) − φχ, (18)
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where 〈·〉 indicates the volume average. Equation (18)
relates the mean squared concentration, the solute flux
through the walls F and the mean scalar dissipation
within the domain χ, respectively, defined as

Fi =
D

L

∫ L

0

∂C

∂z

∣∣∣∣
z=zi

dx with i = {0, 1}, (19)

with L domain width, and

χ = D〈|∇C|2〉. (20)

When C is defined as a mass concentration, F may be
interpreted as the average mass of solute that enters (or
leaves) the domain per unit of surface area and time.
Equation (18) can be interpreted as follows. The rate
of change of mean squared concentration within the
domain is the result of external contributions (F0, F1,
either positive or negative) and dissipation of mixing
energy. (χ is always positive; therefore, it contributes
to a reduction of scalar variance 〈C2〉.)

To enable comparisons among different systems, a
possible set of dimensionless variables consists of L
for lengths, φL/U for time, and U for velocities. The

concentration C is made dimensionless as Ĉ = (C −
C0)/∆C, where ·̂ indicates dimensionless quantities and
∆C = C1 − C0. Making Eq. (15) dimensionless with
these variables and proceeding as above, we obtain a
dimensionless form of Eq. (18) that reads:

1

2

d〈Ĉ2〉
dt̂

=
φD

UL
(
F̂ − χ̂

)
(21)

with F̂ = F1L/(D∆C) the dimensionless flux and
χ̂ = χL2/[D(∆C)2] the dimensionless mean scalar dis-
sipation. Note that in this expression the contribution
of the flux at the bottom boundary vanishes, due to the
set of dimensionless variables considered. The reference
length scale L has not been defined yet and it can be
conveniently set in each configuration. With respect to
the systems previously introduced, the following sce-
narios appear:

i. Rayleigh–Bénard (Fig. 4b-ii): after an initial tran-
sient phase, the system attains a statistically steady
state [54,59]. The time average of Eq. (21) returns

F̂ = χ̂, (22)

where · indicates the time-averaging operator. We
observe in Fig. 4b-ii that while a nonzero instanta-

neous contribution d〈Ĉ2〉/dt̂ is present, F̂ and χ
fluctuate around their time-averaged value (black
dashed line). Note that the reference length scale
normally used in this configuration is L = H , which
gives in (21) the prefactor φD/(UL) = 1/Ra. The
quantity used to evaluate the mass transfer in this

configurations is the Sherwood number

Sh =
H

∆CL

∫ L

0

∂C

∂z

∣∣∣∣
z=z1

dx, (23)

defined as the relative contribution of convective
and diffusive to diffusive mass transport. Using the

definition of F̂ and Eq. (22), Sh can be related to
the flux and the mean scalar dissipation [53]:

Sh =RaF̂ =Raχ. (24)

ii. One-sided (Fig. 4c-ii): the domain is impermeable to
solute at the lower wall (F0 = 0). By setting L = ℓ
as defined in (9), Eq. (21) is independent ofRa and
reads

1

2

d〈Ĉ2〉
dt̂

= F̂ − χ̂, (25)

where

F̂ =
φD

U∆C

1

L

∫ L

0

∂C

∂z

∣∣∣∣
z=z1

dx. (26)

This choice for L is convenient to compare systems

having different Ra because the value of F̂ appears
to be universal, as will be later discussed in Sect. 4.
The time-dependent flow originated from this con-
figuration consists of three main flow regimes [17,

60,61]. Initially (t̂ < 103) diffusion dominates and a
high-concentration high-density unstable fluid layer
thickens. At a later stage (t̂ < 16Ra), convection
takes place and plumes formed at the top boundary
layer grow and invade the domain. In this phase

F̂ is statistically steady and characterised by a
value (black dashed line) that is independent of
the Rayleigh–Darcy number considered. A similar
behaviour holds for χ, but a closer inspection reveals
that after the fingers reach the bottom (t̂ > 10Ra)

an increase of d〈Ĉ2〉/dt̂ is observed. A corresponding
decreasing behaviour is reflected in χ, but with half
the amplitude. After the upper layer of the domain

is also saturated (t̂ > 16Ra), the dissolution flux F̂
drops, and the system enters the shutdown regime.

iii. Rayleigh–Taylor (Fig. 4d-ii): the domain is imper-

meable to the solute (F̂ = 0) and Eq. (21) reads

1

2

d〈Ĉ2〉
dt̂

= −φD

UL χ̂. (27)

The flow is initialised considering two fluid layers of
different density in an unstable configuration. Equa-
tion (27) suggests that all the potential energy ini-
tially stored by keeping the two phases segregated
is dissipated as time evolves. Both ℓ and H can be
considered as reference length scales, depending on
which part of the flow evolution is considered. How-
ever, De Paoli et al. [52] have shown that L = ℓ pro-
vides a universal picture for the evolution of χ̂, and
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results are presented in Fig. 4d-ii using this length
scale. Similarly to what observed in the one-sided
configuration, the flow is initially controlled by dif-
fusion (t̂ < 103). Afterwards (103 < t̂ < Ra/2) the
formation of fingers is observed, which merge and
grow, accelerating mixing. In this phase, occurring
atRa < t̂ < 3Ra in the simulations considered, χ̂ is
observed to increase in Darcy simulations, as shown
in Fig. 4d-ii, whereas it decreases in pore-scale sim-
ulations, due to finite-size effects [29]. The limits in
which these regimes set in are indicative, as the flow
evolution in strongly influenced by the initial per-
turbation. When the domain is nearly saturated, a
stable density profile is achieved, and local concen-
tration gradients are not sufficient to sustain convec-
tion, which is in turn overcome by diffusion. Corre-
spondingly, scalar dissipation is observed to reduce,
asymptotically attaining a zero value in correspon-
dence of a uniformly mixed domain.

A major proportion of recent studies focused on the
determination of correlations of the mixing parameters

(F̂ , Sh or χ̂) with the flow parameter (Ra). These results
will be reviewed in Sects. 3 and 4 for the Rayleigh–
Bénard and the one-sided configurations, respectively.

3 Rayleigh–Bénard convection

Rayleigh–Bénard convection produces the statistically
steady flow discussed in Sect. 2.3, with mass transfer
properties quantified by the Sherwood number, a time-
averaged ratio of total (convective and diffusive) to dif-
fusive mass transport at the boundaries of the domain
defined in Eq. (23). Alternatively, the Nusselt number
is used in case of thermal convection. In this section, we
will review the results relative to Darcy and pore-scale
flows in this configuration.

3.1 Darcy flow

In the Darcy case [Eqs. (13)–(15)], the system is
uniquely controlled by the Rayleigh–Darcy numberRa,
defined in Eq. (10), which sets the flow structure. The
behaviour of Sh withRa is reported in Fig. 5 for Darcy
studies available in literature for two- [31,54,62,63]
and three-dimensional [59,64] simulations. We briefly
recall here the main features of the flow, and we refer
to [14] for a detailed review of the flow structure.
For Ra < 4π2, the mass transport is purely diffusive
[65,66] and no convective motion arises (Sh = 1). The
flow is maintained quiescent by the dissipative (diffu-
sive) effects that dominate over convection. For increas-
ing Ra, instabilities appear in the form of steady con-
vective rolls [55] with corresponding increase of the
convective mass transfer. When Ra ≈ 400, unsteady
boundary layer instabilities take place and become pro-
gressively dominant. When the driving force is suffi-
ciently large, namely at Ra ≈ 1300 and Ra ≈ 1700

Fig. 5 Darcy simulations. panel a Sherwood number (Sh)
as a function of Rayleigh–Darcy number (Ra), and panel b in
compensated form (Sh/Ra). Results reported are obtained
in two- [31,54,62,63] and three-dimensional [59,64] simula-
tions of homogeneous and isotropic porous media. Best fit-
ting laws at high Rayleigh–Darcy numbers for two- (black
solid line) and three-dimensional flows (red solid line),
respectively Eqs. (28) and (29), are also reported. In panel
a a subset of the two-dimensional data of [53] (blue stars)
is also shown to mark the presence of hysteresis effects. The
solution obtained atRa = 1255 was used as initial condition
for these simulations. AsRa is decreased, the system evolves
on two branches (blue lines), both differing from the solution
obtained for increasing Ra

for two- and three-dimensional systems [53,64], respec-
tively, these instabilities turn into a dynamic formation
of small plumes at the boundary layer, which eventually
grow and merge into larger plumes spanning the entire
domain height. In this stage, the flow enters the high-
Ra regime [54]. The dynamics described above is similar
in two- and three-dimensional domains. However, in the
three-dimensional case the flow pattern obtained at low
Ra may be affected by the initial condition, i.e. differ-
ent flow structures are obtained starting from different
initial concentration distributions. In addition, hystere-
sis effects have been observed in the two-dimensional
case [53]: when the flow is initialised using a solu-
tion obtained at higherRa, the flow structure (number
of rolls) and the transport properties (Sh) differ from
those obtained starting from, for example, a linear tem-
perature distribution or from a solution obtained at
lower Ra. As a starting point, Ra = 1255 is used by
Otero et al. [53], andRa is progressively decreased. The
system evolves following two distinct branches (Fig. 5a),
both differing from the solution obtained for increasing
Ra.

Determining the scaling of Sh with Ra in the high-
Ra regime has been object of active investigation in
recent years, also due to the improvements of compu-
tational capabilities. In the frame of free fluids (i.e. no
porous medium), Malkus [67] and Howard [68] proposed
that at sufficiently high Rayleigh numbers the interior
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of the domain is well mixed, and the temperature gra-
dients are localised at the wall boundary layers. The
Sherwood number is then obtained as a result of the
diffusive heat flux across these layers, which is inversely
proportional to their thickness, and for porous media,
it is predicted to scale linearly with Ra, Sh ∼ Ra. An
accurate phenomenological description of the flow and
scaling arguments is provided by Hewitt [14]. The lin-
ear scaling best fitting the two-dimensional numerical
results [54] is

Sh = 0.0069 Ra + 2.75, (28)

and it agrees also with the best known theoretical upper
bound, for which Sh ≤ 0.0297 Ra [53]. The asymptotic
scaling proposed by Hewitt et al. [54] [solid black line in
Fig. 5a] fits well the numerical results, and it is in agree-
ment with the above mentioned linear predictions: The
compensated Sherwood number (Fig. 5b) approaches in
this case the asymptotic value (0.0069).

In three-dimensional domains, the situation differs,
as the compensated Sherwood number has not reached
yet the asymptotic linear scaling (Fig. 5b). The best
fitting is in this case provided by Pirozzoli et al. [59]

Sh = 0.0081 Ra + 0.067 Ra0.61, (29)

which consists of a linear relation with sublinear cor-
rections. The discrepancy existing between the scaling
obtained in three-dimensional porous media and the lin-
ear asymptotic prediction forRa → ∞ is due to the dif-
ferent flow structure produced by the additional degree
of freedom provided by the third spatial dimension, i.e.
the flow has not reached yet the asymptotic state. It was
estimated [59] that in three-dimensional domains the
asymptotic regime sets in atRa ≈ 5×105, i.e. more than
one order of magnitude beyond the threshold identified
in two-dimensional flows, and further investigations at
Ra ≈ 106 are required to confirm this finding.

Resolving the flow equations at the Darcy scale at
largeRa may require extensive computational resources
[58,59]. An interesting approach proposed to over-
come this obstacle consists of a new modelling strategy
labelled as large-mode simulation (LMS) [69]. With the
aid of a scale analysis, Jenny et al. [69] observed that:
(i) large-scale structures are responsible for the bulk
of the production of concentration variance, (ii) vari-
ance dissipation is dominated by the small diffusive
scales, and (iii) both production and dissipation rates
are independent of the Rayleigh–Darcy number. On
this ground, they propose a LMS model in which clo-
sure is achieved by replacing the actual diffusivity with
an effective one, in analogy with large eddy simula-
tions for turbulent flows. LMS is based on resolving
the low-wave number dynamics only, whereas the effect
of the unresolved scales on the large ones is modelled.
Results obtained with this new strategy are promising
to enable simulations for long-term predictions of con-
vective porous media flows in practical settings.

3.2 Pore-scale flow

Recent developments in computational methods allowed
numerical solution of pore-resolved convective flow
models, defined by Eqs. (3)–(6). Unlike the Darcy case,
in pore-scale problems the flow properties cannot be
lumped into a single governing parameter, and the
contribution of several flow features has to be consid-
ered. With respect to the medium, obstacles shape and
arrangement determine the medium permeability. The
medium conductivity influences heat transport through
the solid phase, and the volume fraction of solid sets
the porosity. Concerning the fluid and the scalar trans-
ported, kinematic viscosity and diffusivity set the rela-
tive thickness of thermal and kinematic boundary lay-
ers [measured by the Schmidt number Sc, defined in
(2)], while the density difference produced by the scalar
determines the driving force [measured by the Rayleigh
numberRaT , defined in (1)]. A key quantity to consider
is the relative size of the pore space to the flow struc-
ture, which determines the penetration of the buoy-
ant plumes, responsible of convective mixing, in the
domain. The influence of these flow parameters on the
convective transport efficiency, measured by Sh, is dis-
cussed here.

We initially consider a solid phase impermeable to
the scalar, e.g. the case of solute convection. Accurate
two-dimensional pore-scale simulations of Rayleigh–
Bénard solutal convection are presented by Gasow et
al. [31], where the porous medium is modelled as a
matrix of aligned squares. They explored different val-
ues of porosity (0.36 ≤ φ ≤ 0.56) and Schmidt num-
bers (Sc = 1 and Sc = 250). The results, reported in
Fig. 6 (green symbols) as measurements of Sherwood
number, indicate fair agreement with two-dimensional
Darcy simulations (black solid line, [54]). However, the
pore-induced dispersion, which may be as strong as
buoyancy, affects the flow structure and consequently
Sh, and the scaling Sh(Ra) appears sublinear when the
porosity is increased (φ = 0.56). At a low Schmidt
numbers (Sc = 1), pore-scale effects on the flow struc-
ture, e.g. wave number or width of the plumes, are
qualitatively similar to those at high Schmidt numbers
(Sc = 250). In a complementary study, Gasow et al. [70]
investigated large Schmidt numbers (Sc = 250) convec-
tion, while focusing on the role of the medium proper-
ties. Results of [70] are reported in Fig. 6 (red symbols),
and indicate that the dissolution coefficient depends on
Ra as

Sh = 1 + a Ra1−0.2φ2

, (30)

where a = 0.011 ± 0.002 is a pore-scale geometric
parameter depending on shape and arrangement of the
obstacles. The difference with respect to the Darcy case
[simulations by [54]—black line, asymptotic best fit—
Eq. (28)] is apparent, as it seems that within this range
of parameters, systems with same Ra (achieved with
different values of porosity) exhibit very different con-
vective transport properties.

An additional degree of freedom is introduced by
allowing a flux of scalar through the solid matrix, which

123

Eur. Phys. J. E (2023) 46:129129 Page 10 of 26



Fig. 6 Sherwood number (Sh) as a function of Rayleigh–
Darcy number (Ra) for two-dimensional pore-scale simula-
tions. Results refer to solutal convection [31,70] (i.e. solid
impermeable to solute, green and red symbols) and ther-
mal convection [30] (i.e. conductive medium, blue symbols).
Results of two-dimensional Darcy simulations [54] (black
solid line) and high-Ra scaling [Eq. (28), grey solid line] are
also shown

may be the case for thermal convection. The flow struc-
ture and the heat transfer coefficient are determined
by the relative size of thermal length scale (boundary
layer thickness) and porous length scale (average pore
space). These properties control the penetration of the
plumes into the boundary layer region, which in turn
determines the heat or mass transfer rate. This physi-
cal mechanism has been described by three-dimensional
pore-scale simulations of few pore spaces [71]. Later, in
a complementary experimental study, Ataei-Dadavi et
al. [72] observed that while at low Rayleigh numbers the
transport mechanism is less efficient than in free fluids
Rayleigh–Bénard convection, at larger Rayleigh num-
bers the classical scaling derived for free fluids [73,74]
is recovered. The nature of this transition has been
investigated in detail by Liu et al. [30] (blue symbols
in Fig. 6). Within the frame of conductive media, two-
dimensional direct numerical simulations have been
used to investigate the microscale flow field at Sc = 4.3.
The obstacles consist of circles arranged in a regular
manner. When the arrangement is not regular (not
shown in Fig. 6), a slight decrease of Sh is observed.
In Fig. 6 it appears that the convective heat trans-
port is less efficient compared to the configuration dis-
cussed before, in which the matrix was impermeable
to solute (for a detailed discussion on the importance
of the (im)permeability condition of the solid matrix,
see [75]). In addition to the effect of the thermal con-
ductivity of the solid, the measurements of [30] refer

to relatively high values of porosity. As predicted by
Eq. (30), the larger the porosity, the lower the Sh.
The transition from porous convection to unconfined
convection is controlled by two physical mechanisms,
which are set by the properties of the porous matrix
[30]. On the one hand, the presence of obstacles makes
the flow more coherent, with the correlation between
temperature fluctuation and vertical velocity enhanced
and the counter-gradient convective heat transfer sup-
pressed, leading to heat transfer enhancement. On the
other hand, the convection strength is reduced due
the impedance of the obstacle array, leading to heat
transfer reduction. The variation of Sh with RaT (not
Ra) is reported in Fig. 7c, where the presence of these
two distinct regimes is apparent. For sufficiently large
RaT or high porosity, the classical scaling is recov-

ered (Ra
1/3

T , Grossmann and Lohse [73,74]). When the
Rayleigh number is lowered, however, the role of the
porous structure in confining the flow is critical, and a
correlation for the Sherwood number Sh is proposed:

Sh ≈ 1 + cφ

(
H

ℓs

)4

Sc2Re2(RaT )−1, (31)

where the Reynolds number Re is computed based on
the velocity fluctuations and c = 8 is a fitting parame-
ter. This scaling is proved to be well approximated by
Sh ∼Ra0.65

T [30]). The transition between these regimes
appears clearly in Fig. 7d, when the compensated Sher-
wood number (Sh/Ra−0.3

T ) is shown as a function of
the boundary layer thickness [δ = H/(2Sh)] divided by
the average pore scale (ls). The situation is schemati-
cally illustrated in Fig. 7a and b. When the thickness
of the thermal boundary layer is comparable to the
averaged pore length scale (δ/ls = 1), the transition
from one regime to the other occurs. In addition to the
porous structure and the Rayleigh number, in case of
thermal convection, the boundary layer thickness and
the heat transfer coefficient are determined also by the
value of thermal conductivity of the solid and liquid
phases [76,77].

4 One-sided convection

The one-sided configuration introduced in Sect. 2.3 is
representative of natural instances like geological CO2

sequestration [12] and mixing in groundwater flows
[78]. In these cases, a fluid-saturated porous domain
(sketched in Fig. 4c-i) is allowed to exchange solute
through the top boundary. The system is initially driven
by diffusion [17,60,79]. The fluid layer below the upper
boundary becomes progressively rich in solute, increas-
ing the density of the liquid phase. When sufficiently
thick, this high-density layer eventually becomes unsta-
ble and finger-like structures form [80,81], evolve (i.e.
grow and merge) and if the Rayleigh–Darcy number is
sufficiently large [Ra > O(103)] the system may reach
a quasi-steady regime. In this phase, the dimension-
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Fig. 7 Pore-scale two-dimensional simulations [30]. a

Exemplar dimensionless temperature field (ϑ) (adapted
with permission from [30]), being 0 and 1 the temperature
values at the top and bottom boundaries, respectively. b

Detail with explicit indication of the boundary layer thick-
ness (δ = H/(2Sh)) and the average pore scale (ls). The
medium consist of aligned circular and conductive obstacles
for Schmidt number Sc = 4.3. c Sherwood number (Sh) is
reported as a function of the Rayleigh number (RaT ) for dif-
ferent values of porosity, φ. Note that results for unconfined
fluids (φ = 1) are also shown. d Compensated Sherwood
number (Sh/Ra−0.3

T
) as a function of δ/ls

less solute flux F̂ computed as in Eq. (26), indicating
the mass of solute dissolved through the top bound-
ary per unit of surface area and time, is nearly con-
stant over time. For simplicity, hereinafter we will refer

to F̂ as the time-averaged value of flux in this con-
stant flux phase. The role of the fingers in promoting
solute mixing is crucial, as initially proposed by Ennis-
King and Paterson [82] and Xu et al. [83], since the
contribution of convection accelerates considerably the
dissolution compared to the purely diffusive case. The
domain progressively saturates with incoming solute,
up to the point in which the local concentration differ-
ence between the upper fluid layer and the top bound-
ary is reduced, and the dissolution rate suddenly drops.
This phase is referred to as shutdown regime and it has
been accurately described [14,16,17,60,84]. A thorough

description of the whole dissolution process is provided
by Slim [17].

In this section, we will review the results relative to
Darcy and pore-scale flows in the one-sided configura-
tion, and we will focus on the dependency of the dissolu-

tion rate F̂ on the flow parameters during the constant
flux regime.

4.1 Darcy flows

When the Darcy model is considered [Eqs. (13)–(15)],
the flow is uniquely controlled by the Rayleigh–Darcy
number Ra, similarly to the Rayleigh–Bénard case dis-
cussed in Sect. 3.1. Numerical two-dimensional simula-
tions agree on the value of the flux during the constant
flux regime, which was initially determined by Hesse
[56] to be

F̂ = 0.017. (32)

This observation has been later confirmed by a number
of numerical studies [15–17,60,85–87]. We refer to [87]
for a review of literature scaling laws in the presence
of variations to this problem (anisotropy, geochemistry,
etc.).

In the instance of three-dimensional domains, the
dynamics is analogue to that discussed above. However,
due to the large computational costs, only few numer-
ical works are available [15,88,89]. A seminal work in
the field is presented by Pau et al. [15], who performed
three-dimensional simulations and estimated the flux to
be higher than in the corresponding two-dimensional
case (32). These results refer to Ra ≤ 9 × 103, and
additional data at larger Rayleigh–Darcy numbers are

required to determine at the exact value for F̂ , which
has been estimated not to exceed 25% of the two-
dimensional case [15,87,89]. It is apparent that the
additional degree of freedom represented by the third
spatial dimension adds significant complexity to the fin-
gering phenomena [15,88], with the flow structure being
more complex and dynamical [58].

4.2 Pore-scale and Hele-Shaw flows

The determination of F̂ has been carried out beyond
the Darcy model via pore-scale simulations and exper-
iments, and via Hele-Shaw set-ups. As discussed in
Sect. 3.1, a classical argument for Darcy convection
requires that Sh scales linearly withRa [67,68]. The the-
oretical interpretation is that in natural convection Sh
is uniquely controlled by the diffusive boundary layer,
and it is independent of the flow interior and any exter-
nal length scale. Only for an exponent of one forRa, i.e.
Sh ∼Ra, it is possible to have an expression for Sh that
is independent of H [18,68,90]. As a result [see also

Eq. (24)], the flux F̂ is expected to be independent of
Ra, as it emerges from Darcy simulations [e.g. see corre-
lation (32)]. Despite this robust theoretical framework,
a different scaling for Sh(Ra) was found by many stud-
ies.
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Fig. 8 Examples of
one-sided studies. a

Experiment with MEG in
water in bead packs
(adapted with permission
from [19]). b Experiment
with propylene glycol (PG)
and water in Hele-Shaw
cell (adapted with
permission from [21]). c

Darcy simulation with
non-monotonic density
profile (adapted with
permission from [21])

Most of the experimental studies investigating one-
sided convection have been carried out with the aid
of bead packs or Hele-Shaw cells, examples of which
are reported in Fig. 8a and b, respectively. In the man-
ner, the porous medium consists of a matrix of rigid
spheres, typically made of a transparent material to
allow optical access to the flow, enclosed in a trans-
parent container. A Hele-Shaw cell, in turn, is obtained
with two parallel and transparent plates separated by
a narrow gap b (usually, less than 1 mm thick). When
the fluid velocity in the cell is sufficiently low (gap-
based Reynolds number ≪ 1), the flow behaves as a
laminar Poiseuille flow, i.e. the gap average velocity is
proportional to the pressure gradient via the inverse of
viscosity and to a constant equal to k = b2/12, where
k is defined as the equivalent permeability of the cell.
Since this formulation represents an analogue of the
Darcy law (14), the Hele-Shaw cell is commonly used
as a tool to reproduce a flow through a porous medium.
Bead packs and Hele-Shaw experiments used to derive
scaling laws are discussed in the following.

A first Sh(Ra) scaling was proposed by Neufeld et al.
[19], who used experiments in glass beads to mimic one-
sided convection in porous media. The fluids employed
were methanol and ethylene glycol (MEG) and water.
MEG (upper fluid layer in Fig. 8a) is lighter than water
when pure, but it presents a non-monotonic density
profile as a function of the fraction of water. As a
result, at the interface between the two fluids (iden-
tified by the white boundary in Fig. 8a), a heavier mix-
ture forms and originates finger-like instabilities (white
structures). The Sherwood number, estimated by track-
ing the receding interface between the two fluid layers,

was measured to scale as Sh ∼ Ra4/5, and the result
was explained with a phenomenological model based
on a boundary layer theory: The lateral solute diffu-
sion from the downward plumes into the upward ones is
responsible for the reduction of local concentration gra-
dients and the corresponding density differences driv-
ing the flow. This translates into a reduction of the
flux, making Sh to reduce with respect to the classi-
cal scaling. An analogue approach was employed by
Backhaus et al. [20], who used Hele-Shaw cells and a
layer of water located vertically above a layer of propy-

lene glycol PG (a similar system is shown in Fig. 8b).
They obtained the scaling Sh ∼ Ra0.76 and identified
the plumes spacing as the key parameter controlling
the Sherwood number. Similar results are derived by
Tsai et al. [91] (Hele-Shaw and beads, Sh ∼ Ra0.84),
Ecke and Backhaus [92] (Hele-Shaw, Sh ∼Ra0.76) and
Guo et al. [93] (Hele-Shaw, Sh ∼Ra0.95). The discrep-
ancy existing between these sublinear scalings and the
linear theoretical [67,68] and numerical findings in case
of Darcy simulations [15–17,60,86] has been subject of
active investigations.

To examine this mismatch, numerical simulations
and theoretical arguments were used [21]. Accurate
simulations were employed to mimic the behaviour
of the fluids used in the experiments (characterised
by a non-monotonic density–concentration curve, and
with a concentration-dependent viscosity), which dif-
fer from the ones classically considered in Darcy sim-
ulations (linear dependency of density with concen-
tration, constant viscosity). A snapshot of the con-
centration field obtained for a Darcy simulation with
non-monotonic density profile is shown in Fig. 8c. It
was found that the dissolution flux is determined by
the mean scalar dissipation rate, χ̂. Mixing in porous
media has a universal character, and the nonlinear
behaviour observed needs to be explained with effects
not present in the classical Darcy–Boussinesq model.
In particular, the authors observed that several dif-
ferences exists between this simple Darcy model and
the experiments reporting sublinear scalings. Among
the others, they identified three main possible sources
of discrepancies: (i) dependency of viscosity with the
solute concentration, (ii) non-monotonic behaviour of
fluid density with solute concentration, and (iii) com-
pressibility effects (volume change during the process
of dissolution). The conclusion of [21] is that while the
concentration-dependent behaviour of viscosity has a
minor effect, the role of the non-monotonic density–
concentration profiles (shape of the density curves) may
considerably affect the Sherwood number scaling law.
The role of some of these fluid properties has been later
investigated and will be discussed in the following.

The scaling analysis performed by Amooie et al. [90]
for non-Boussinesq and compressible flows reveals that
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the scaling Sh ≈ 181.02 + 0.165Ra represents the best
fitting for their data. Therefore, the authors propose
that the previously reported sublinear relations could
be in part a result of relatively limited parameter range
of the simulations (as in the case of [94]) or in part
because the Rayleigh–Darcy number of the experiments
lies below the asymptotic limit, i.e. before the classical
linear scaling establishes.

To avoid a non-monotonic dependency of density
with concentration, i.e. to remove the fluid properties
as a possible reason of nonlinear scaling, experiments in
Hele-Shaw cells have been performed. Potassium per-
manganate (KMnO4) and water are used as analogue
fluids, with solid crystals of KMnO4 placed on a metal
grid located on top of the cell. Water gradually dis-
solves the crystals, which remain in a fixed position
hold by the mesh, and the resulting interface between
the light and the heavy fluid is always fixed and flat.
This methodology, initially introduced by Slim et al.
[79], allowed to cover a wide range of Rayleigh–Darcy
numbers. In addition, variations of volume and fluid vis-
cosity with solute concentration are negligible. Results
by [95] report a linear scaling of Sh withRa. Later stud-
ies [25,96] indicate that within the same value of per-
meability the scaling Sh ∼Ra holds. In general, Sh may
still be a function ofRa due to the presence of mechan-
ical dispersion [97].

The works presented indicate that the fluid prop-
erties may not be sufficient to justify the nonlinear
Sh(Ra) scaling observed. However, other physical mech-
anisms induced by the Hele-Shaw cell or the dispersion
in the porous medium are not present in the classi-
cal Darcy model. These effects, labelled as finite-size
effects, maybe be responsible of the nonlinear scaling
observed, and will be discussed in detail in the Sect. 5.

5 Finite-size effects

Domain features like lateral confinement, thickness-
induced Hele-Shaw dispersion and pore-scale dispersion
have been identified to play a role on the nonlinear scal-
ing of Sh withRa or the flow structure. The influence of
these finite-size effects on convection will be reviewed
in this section.

5.1 Effect of confinement

A natural question arising from numerical simulations is
what happens when the domain is confined in one of the
wall-parallel directions, and we will address this topic
here in the frame of Rayeligh–Bénard, the Rayleigh–
Taylor, and the full reservoir-scale flow dynamics.

The flow in a porous Rayleigh–Bénard system at
large Ra consists of two distinct regions (see Sect. 3):
(i) the near-wall region, characterised by the presence
of protoplumes, and (ii) the interior of the flow, con-
trolled by megaplumes. The average flow structure in
each of these regions is quantified by via the time- and
horizontally averaged wave number, k. While the near-

wall region is hard to be described theoretically, the
interior of the flow has been well characterised. In two
dimensions, stability analysis [98] of the flow interior

for Ra → ∞ suggests that k ∼ Ra5/14, in fair agree-
ment with numerical measurements that give k ∼Ra0.4

[54]. In three dimensions, theoretical results [99] indi-

cate that k ∼ Ra1/2, which is in excellent agreement
with numerical measurements of [58,64], who obtained
k ∼ Ra0.52 and k ∼ Ra0.49, respectively. In addition,
[59] observed with the aid of numerical simulations
that supercells, representing clusters of protoplumes
located near the boundaries, are the footprint of the
megaplumes dominating the bulk of the flow. Unex-
pectedly, the correlation between these flow structures
is observed to hold up to very high Rayleigh–Dacry
numbers. This flow structure, however, may be consid-
erably affected by the domain size.

Two-dimensional numerical simulations performed
by Wen et al. [62] revealed that identifying the wave
number may be complicated. Domains with low aspect
ratio can dramatically reduce or even suppress convec-
tion. The study shows that the interior structure of
a two-dimensional system may result strongly condi-
tioned by the domain width, suggesting that the inter-
plume spacing is not unique. The authors finally con-
clude that determining a precise high-Ra scaling of the
interior inter-plume spacing will require extremely long
simulations in very wide computational domains.

In three dimensions, the effect of the domain con-
finement has been investigated by De Paoli et al. [58].
They performed numerical simulations at Ra = 104

in Rayleigh–Bénard configuration, in domains having
variable extension in one of the wall-parallel directions,
namely x in Fig. 9a, and constant extension in the other
directions (W = H). Periodic boundary conditions are
applied in the wall-parallel directions. The relative size
of the domain extension in directions y, z with respect
to x is quantified by the aspect ratio A = L/H .
Four values of A are considered in Fig. 9, with the
domain progressively increasing in size from A = 1/8
toA = 1. The corresponding temperature fields, taken
at the centreline (z = 1/2) and close to the bottom
wall (z = 0.005), are shown in Fig. 9b-(i). A strong
confinement of the domain presents dramatic effects on
the flow structures. For sufficiently large domains, e.g.
A = 1, the near-wall cells reported in Fig. 9b are ran-
domly oriented and show a wide distribution of sizes.
When the domain width is progressively reduced, the
cells are strongly constrained (Fig. 9f, h) and eventually
end up in an extremely ordered pattern (Fig. 9d). The
same applies to the flow structures at the centreline that
for small domains (A ≤ 1/4) form sheet-like plumes.
More quantitative results, estimated by means of the
horizontal radial mean wave number of these simula-
tions and additional larger domains (not shown here),
indicate that the flow structures at the near-wall and
in the interior of the flow are strongly constrained by
the size of the domain. They found that at Ra = 104

the flow is independent of the size of the domain for
A ≥ 1.

123

Eur. Phys. J. E (2023) 46:129129 Page 14 of 26



Fig. 9 Influence of lateral confinement (domain width) on
the development of the flow structures. Three-dimensional
Rayleigh–Bénard simulations performed at Ra = 104 are
shown (adapted with permission from [58,59]). a Dimen-
sionless temperature distribution (ϑ) in a cubic domain,
being 0 and 1 the values at top and bottom boundaries,
respectively, with gravity g acting along z. Periodic bound-
ary conditions are applied in the wall-parallel directions
(x, y). The domain has dimensions L, W and H in direc-
tions x, y and z, respectively. The size of the domain is pro-
gressively increased in direction x, so that the aspect ratio
A = L/H increases from A = 1/8 (panels b, c) to A = 1
(panels h, i). For each value ofA, temperature fields taken
at the centreline (z = 1/2) (c, e, g, i) and close to the
bottom wall (z = 0.005) (b, d, f, h) are shown. Note that
different colour bars apply to centreline and near-wall panels

Decreasing the size of the computational domain in
one direction will inevitably change the flow structure
from a three-dimensional towards a two-dimensional
character. This transition has been investigated in the
frame of Rayleigh–Taylor instability by Borgnino et al.
[100]. Among the other indicators, they analysed the
evolution of the mixing length, i.e. the time-dependent
vertical extension of the tip-to-rear finger distance, to
determine whether the system exhibits a two- or three-
dimensional behaviour. They observed that for suf-
ficiently large Rayleigh–Darcy numbers (Ra > 105),

the growth of the mixing length is always linear in
time in two and three dimensions (note that at lower
Rayleigh–Darcy numbers the growth of the mixing
length may be superlinear [57,101]). The prefactor
of the growth for the mixing length varies, being
larger in two dimensions than in three dimensions.
They performed three-dimensional numerical simula-
tion with triply periodic boundary conditions, in which
the dimension of the domain in a direction perpendic-
ular to gravity, defined in the following “thickness”, is
progressively reduced. Results indicate that when the
thickness diminishes below a certain threshold value,
the systems transitions from a three-dimensional to
a two-dimensional behaviour. This critical value cor-
responds to the wavelength associated with the most
unstable mode obtained from linear stability analysis
[102,103]. The sharp transition observed in this case is
remarkably different than in turbulent convection [104].
In the turbulent case, the dimensional transition occurs
dynamically, i.e. when the width of the mixing region
exceeds the confined dimension, and it is smooth due to
the coexistence of direct and inverse energy cascades.

The horizontal domain extension is also a parame-
ter that dramatically affects the evolution of a buoyant
current from injection to complete dissolution, e.g. in
the configuration sketched in Fig. 1c relative to geolog-
ical sequestration of carbon dioxide. Using the model
for two-phase gravity currents proposed by MacMinn
et al. [105], De Paoli [11] analysed the effect of the
domain width on the maximum horizontal extension
of the current of carbon dioxide. They performed two-
dimensional simulations in which the domain width
is progressively increased, while keeping the domain
height and the volume of fluid injected constant. It was
found that the layer of CO2-rich solution may spread
over a horizontal distance greater than 100 times the
vertical extension of the layer, indicating that simula-
tions are width-dependent, and very wide domains have
to be considered (width to height ratio ≥ 140).

5.2 Hele-Shaw flows

The working principle of the Hele-Shaw apparatus,
briefly introduced in Sect. 4.2, is illustrated in Fig. 10a.
The fluid is contained between two parallel plates sep-
arated by a narrow gap of thickness b, and the flow
obtained in this configuration may be representative of
a Darcy flow. When the flow is dominated by viscous
forces (gap-based Reynolds number ≪ 1), the depth-
averaged fluid velocity is proportional to the vertical
pressure gradient and to the inverse of the viscosity,
in analogy to the Darcy law (14). This proportionality
constant, defined as equivalent permeability of the cell,
is k = b2/12, and it used to draw a link between Darcy
and Hele-Shaw flows.

In convective flows, the driving force of the system is
the presence of a solute with concentration C0 ≤ C ≤
C1, which produces a maximum density difference ∆ρ
within the domain. In this frame, the analogy between
Hele-Shaw and Darcy flow has been investigated quan-
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titatively by Letelier et al. [97], who observed that a
combination of fluid properties (Schmidt number, Sc),

cell geometry (anisotropy ratio, ǫ =
√

k/H) and flow
velocity (U , defined in (8), which depends onRa) deter-
mines the flow regime. They considered an incompress-
ible flow (3), and averaged the Navier–Stokes and ADE
equations, respectively (4) and (6), in the direction of
the gap thickness to obtain the following dimensionless
system

ǫ2Ra

Sc

[
6

5

∂u∗

∂t∗
+

54

35
(u∗ · ∇)u∗

]
= −∇p∗ − u∗+

+ C∗k +
6

5
ǫ2∇2u∗ − 2

35
ǫ2Ra(u∗ · ∇C∗)k (33)

∂C∗

∂t∗
+ u∗ · ∇C∗ =

1

Ra
∇2C∗+

+
2

35
ǫ2Ra∇ · [(u∗ · ∇C∗)u∗] , (34)

valid for ǫ small, Sc ≥ 1 and ǫ2Ra ≪ 1. A linear
dependency of density with concentration is considered.
In this case ∗ indicates dimensionless variables where
the velocity scale is U defined as (8), the length scale
is H , the timescale is H/U and the pressure scale is
µUH/k. The concentration is made dimensionless as
C∗ = (C −C0)/(C1 −C0) and k is the unit vector with
direction opposite to gravity. Equations (33)–(34) may
be respectively interpreted as a Darcy law (14) and an
advection–diffusion equation (15), both with additional
corrective terms taking into account the contribution
of inertia and solute redistribution due to the pres-
ence of the walls. In the frame of Hele-Shaw convection,
three main regimes have been identified [97]: (i) Darcy
regime (Fig. 10b) when ǫ → 0, the concentration pro-
file across the cell gap is nearly uniform and the flow is
well described by a Darcy model; (ii) Hele-Shaw regime
(Fig. 10c) when ǫ ≪ 1, ǫ2Ra ≪ 1 and Sc ≥ 1, charac-
terised a gradient of concentration across the cell gap,
but with one single finger; and (iii) three-dimensional
regime (Fig. 10d), when the parameters do not fall in
the above mentioned limits, the inertial effects become
dominant and the fluid layer in the gap is unstable, so
that multiple fingers appear across the cell thickness.
It is apparent that the cell geometry plays a key role
in determining the flow regime and that all laboratory
experiments fall either in the Hele-Shaw regime or in
the three-dimensional regime. With the aid of numeri-
cal simulations, Letelier et al. [97] provided an evidence
for the reduction of the scaling exponent discussed in
Sect. 4.2 for convective flows in the Hele-Shaw regime.

These finding were later confirmed by the laboratory
experiments of [25], where the flux has been measured
for different values of permeability (i.e. different b).
Note that when the Schmidt number is large (as in the
case of [25], where Sc = O(103)), the dispersive effects
dominate over to the inertial terms. As a result, Eq. (33)
reduces to the Darcy law (14) with additional disper-
sive corrections. These findings suggest within the Hele-
Shaw regime the scaling exponent is affected by the

Fig. 10 a Front view of a convective flow in a Hele-Shaw
cell in one-sided configuration [25], with the solute concen-
tration being constant at top. Fluids consists of an aqueous
solution of KMnO4 (purple to black) and water (white).
The reference frame (x, y, z) and the direction along which
gravity (g) acts are also indicated. b–d Schematic represen-
tation of the side views of the cell (the thickness b is not
to scale with respect to the height H). Three possible flow
regimes as identified by Letelier et al. [97] are shown

anisotropy ratio ǫ, as predicted by Letelier et al. [97],
possibly explaining the discrepancy observed between
Darcy simulations [21] and Hele-Shaw experiments [20].

Finally, the theoretical work proposed by Letelier et
al. [97] has been recently generalised by Ulloa and Lete-
lier [106] and Letelier et al. [107] to the case of more
complex systems characterised by the presence of two
layers of fluids with non-monotonic density profiles. The
framework provided in [107] allows to evaluate and com-
pare the mixing performance of different systems. They
propose a universal law for the evolution of Sh/χ̂, which
is independent of the cell geometry (ǫ) and directly pro-
portional toRa. Using this theoretical framework, they
suggest that a possible reason for the sublinear scal-
ing observed by Backhaus et al. [20] is the flow regime
(Hele-Shaw regime) in which the experiments are per-
formed.

5.3 Dispersion in bead packs

Recent developments in experimental techniques allowed
accurate and non-invasive measurements of convec-
tive dissolution in three-dimensional porous media.
The studies discussed in Sect. 4.2 are relative to thin
domains, i.e. laboratory experiments in which the
dimension of the cell in the direction perpendicular to
the transparent walls is much smaller than the other
two. This confinement may have an effect on the devel-
opment of the flow structures (see Sect. 5.1) and on
the dissolution efficiency of the system. We will present
here three-dimensional measurements of convection in
porous media, and discuss possible approaches to model
dispersion in this context.

A remarkable contribution in the field on convec-
tion in three-dimensional porous media was presented
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by Lister [108]. This work is original because of the
medium used, consisting of a fibrous material, and
because of the remarkable visualisations performed.
Beside this work, most of the investigations on con-
vection in three-dimensional porous flows involved the
presence of bead packs. The emergence of tomographic
imaging systems over the last years has considerably
sped up the research in this field. In a pioneering work
by Shattuck et al. [109], magnetic resonance imaging
(MRI) of three-dimensional convective flows in opaque
media were presented, and plumes at low Rayleigh–
Darcy numbers (< 20π2) were visualised. Also X-ray
computed tomography (CT) imaging scan is now fre-
quently used to study mixing of miscible fluids. Wang et
al. [110] and Nakanishi et al. [111] provided correlations
for Sherwood as a function of Péclet and Rayleigh–
Darcy number, and observed a sublinear scaling for
Sh with Ra, with exponent 0.40 and 0.93 respectively.
The same methodology was employed by Liyanage et
al. [112], who reported the emergence of characteris-
tic patterns that closely resemble the dynamical flow
structures produced by high-resolution numerical sim-
ulations. In a later study [113], the role of viscosity has
been also investigated. While on the one hand [112,113]
observed that the flow is heavily influenced by dis-
persion, on the other hand a linear scaling Sh ∼ Ra
holds, in contrast to previous studies. This discrepancy
may be due to the relatively short range and small
values of Ra explored, which is well below the value
in correspondence of which the system is observed to
attain an asymptotic linear scaling [54,59]. Employing
the same measurement technique but different fluids,
Eckel et al. [114] achieved larger Rayleigh–Darcy num-
bers (≤ 55,000). Through qualitative and quantitative
observations of flow evolution, they also observed an
enhanced longitudinal spreading of the solute, but in
this case a sublinear scaling for Sh(Ra) holds.

These works agree upon the fact that dispersion is
crucial in determining the Sh(Ra) scaling of the flow,
and non-Darcy effects should be included in the mod-
els employed [115]. Dispersion has been identified as
responsible for the early onset of convection [116]. In
addition, Ghesmat et al. [87,117] observed that the flow
structures are influenced by the strength of dispersion

and the dissolution rate F̂ is increased with increasing
strength of dispersion. However, this finding does not
apply in general and it seems to be limited to the range
parameters considered [84]. With the aid of laboratory
experiments, Liang et al. [26] proposed that, in addition
to the Rayleigh–Darcy number, a flow with dispersion
is controlled by a dispersive Rayleigh–Darcy number

Rad =
UH

φDT

=
RaD

DT

, (35)

with DT the transverse dispersion, U the buoyancy
velocity defined in Eq. (8) and H the domain height.
In geological formations, assigning appropriate values
to DT is not trivial, and it has been a debated topic
(we refer to [48], for a thorough review on this subject).

The anisotropy ratio r = DL/DT (see Sect. 2.2.1) is also
important to determine the flow character. As a result,
the parameters space for convective porous media flows
with dispersion is controlled by at least three param-
eters: Ra, Rad and r. In order to quantify the relative
importance of molecular diffusion to transverse disper-
sion, one can introduce the parameter [84,118]

∆ =
Rad

Ra
=

D

DT

, (36)

that can be used to rewrite the dispersion tensor (16)
in dimensionless form as:

D

D
= I +

1

∆U

[
(r − 1)

uu

|u| + uI

]
. (37)

This expression suggests that the case of pure diffusion
is recovered when DT ≪ D, corresponding to ∆ ≫ 1.

With specific reference to granular media, additional
simplifications allow a further characterisation of the
flow in the parameter’s space. Considering that the lon-
gitudinal dispersivity can be approximated [29,118] as
αL = DL/U ≈ d, we can rewrite Eq. (35) as

Rad =
UH

φDT

=
UH

φUαT

=
rH

d
. (38)

In bead packs, the permeability can be inferred from
the Kozeny–Carman correlation [45,119], i.e.

k =
d2

36kC

φ3

(1 − φ)2
, (39)

where kC = 5 is the Carman constant for monodis-
persed spheres randomly packed [120]. As a result, we
can provide an expression for Rad and Ra that is an
explicit function of the domain (g, H), fluid (D, µ, ∆ρ)
and medium (φ, d, r) properties. This information is
particularly important when we characterise the flow
in the three-dimensional parameters space (Rad,Ra, r),
which we will do in the following.

First, we reduce the parameters space to (Ra,Rad)
by taking into account [48] that r = O(10) may be a
reasonable approximation for advection-dominated sys-
tems, and we consider r = 10. Note that no remarkable
difference in the flow structure and Sh occurs for r > 10,
provided thatRa andRad are sufficiently large (namely,
104 and 103, respectively [84]). For r ≤ 1, the flow is
qualitatively similar or that observed in the absence of
dispersion [54]. With respect to the remaining param-
eters, Ra and Rad, we can rewrite both as a function
of the beads diameter and find that Rad ∼ 1/d and
Ra ∼ d2. This implies that if we consider an experi-
ment in which only d varies, we are locked to one of
the green lines of the parameters space (Ra,Rad) shown

in Fig. 11, corresponding to Rad ∼ Ra−1/2. Using real-
istic laboratory properties, we obtain that a possible
range for the experimental parameters (Rad,Ra) at vari-
able d consists of the circles in Fig. 11 (each series of
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Fig. 11 Parameters space (Ra,Rad) with indication of iso-
∆ lines (blue lines). With respect to experiments in bead
packs, if only d varies, the parameters (Ra,Rad) are locked to
the green curves. An example for a realistic range of param-
eters is shown by symbols (circles), where each line corre-
sponds to one value of density contrast (∆ρ). Conversely, if
only ∆ρ is varied in the experiments, (Ra,Rad) are locked
to horizontal lines (diamonds). Triangles indicate the slope
of the green and blue lines

circles corresponds to one value of density difference,
∆ρ). Alternatively, we consider the case in which the
medium is fixed (d constant) and the fluid density con-
trast varies. SinceRad is independent of any fluid prop-
erty, a variation of ∆ρ will correspond to a horizontal
line of the parameters space (red symbols in Fig. 11, in
which each series is a different d). Finally, we consider
the case of a constant value of ∆. It follows that this
is achieved when (∆ρ)−1d−3 is constant [blue lines in
Fig. 11]. This condition is extremely challenging to be
obtained experimentally because it implies a simulta-
neous variation of ∆ρ and d.

With the aid of numerical simulations the problem
of decoupling two of the governing flow parameters
(Ra,Rad) can be solved, and their relative effect on the

Sh or F̂ can be investigated. Wen et al. [84] consid-
ered a Rayleigh–Bénard configuration and investigated
systematically a range of flow parameters indicated in
Fig. 13 (red squares). The flow structure is mainly ruled
by ∆, which determines the mechanism controlling con-
vection. If ∆ > 105, the flow is ruled by molecular dif-
fusion, plumes grow symmetrically (Fig. 12a) and the
structure is analogue to the symmetric flow observed in
the absence of dispersion (see Fig. 4b-i). When ∆ < 1,
mechanical dispersion dominates over convection, and
its inherent anisotropy (r ≫ 1) sets the non-symmetric
flow structure (fan flow) shown in Fig. 12c, in which
plumes widen as they move away from the wall. A simi-
lar behaviour is observed in the corresponding one-sided
cases (Fig. 12b, d) by Liang et al. [26].

The effect of the flow structure on the Sherwood num-
ber was also quantified. Note that in case of dispersive
flows the Sherwood number contains the magnitude of
the velocity at the top wall in its definition. Indeed,

Fig. 12 Concentration distribution at high Ra and r =
10 (Rayleigh–Darcy number and ∆ indicated within each
panel). a and c Rayleigh–Bénard configuration (adapted
with permission from [84]). b and d One-sided configura-
tion (adapted with permission from [26]). When ∆ ≫ 1 (a,
b), plumes grow vertically in a symmetric fashion (colum-
nar flow). When ∆ ≪ 1 (c, d), dispersion makes the plumes
to expand in the horizontal direction (fan flow)

while the vertical component of velocity in zero at top
(no penetration), a nonzero velocity parallel to the wall
is admitted (free-slip), which produces solute spread
due to dispersion. Alternatively, Sh can be inferred from
the time derivative of the total mass of solute in the
domain. We report in Fig. 13 a visual interpretation of
the dominant mechanism in each region of the (Ra,Rad)
space, where regions controlled by different mechanisms
are separated by dashed lines. Liang et al. [26] found
that in Rayleigh–Bénard configuration, when ∆ > O(1)
molecular diffusion dominates over mechanical disper-
sion, although a small contribution of mechanical dis-
persion may increase Sh. When 0.02 < ∆ < O(1), both
mechanical dispersion and molecular diffusion deter-
mine the value of Sh. A linear scaling Sh ∼ Ra holds
when ∆ < 0.02, butRad is also important since it deter-
mines the prefactor of the scaling law, as it has been
later observed by Erfani et al. [121].

These results for dispersion-dominated flows (∆ <
0.02) could also provide an additional interpretation to
the Hele-Shaw experiments of [25], where within one
value of cell gap (i.e. one value of permeability and
mechanical dispersion), the flux remains nearly con-
stant, i.e. the prefactor is constant. On the other hand,
Hele-Shaw flows do not exhibit transverse dispersion
[122], therefore we believe that such one-to-one com-
parison between results of dispersion for Hele-Shaw and
bead pack flows may not be appropriate.

Recent works investigated the role of mechanical dis-
persion with the aid of simulations. A possible com-
plementary approach with respect to the formulation
used by Wen et al. [84] and Liang et al. [26] is
proposed by Dhar et al. [123], where the dispersive
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Fig. 13 Range of parameters space explored with simula-
tions [84,117,118] and experiments [19,26] with dispersion.
The configuration (one-sided—OS or Rayleigh–Bénard—
RB) is indicated. All cases refer to r = 10, with the excep-
tion of [117] where also different values of r are consid-
ered. Effect of r on convection is also discussed in [84], but
the corresponding data are not reported in this figure. In
this parameters space, ∆ sets the flow behaviour: diffusion-
dominated [∆ < O(1)], dispersion-dominated [∆ > 0.02] or
influenced by both diffusion and dispersion [0.02 < ∆ <
O(1)]

Rayleigh number is replaced by a parameter quanti-
fying the strength of longitudinal dispersion compared
to molecular diffusion. More recently, Tsinober et al.
[118] performed simulations in one-sided configuration.
They modelled fluids with constant viscosity and lin-
ear density–concentration profiles, and derived a linear
correlation between Sh and Ra, where the prefactor is
a function of molecular to dispersive Rayleigh–Darcy
numbers,Ra/Rad. This correlation fits well their results,
but it does not fully capture the trend predicted by Wen
et al. [84]. This difference may possibly be due to sev-
eral reasons, including the parameters space (and per-
haps the different regimes) explored compared to [84]
as it appears from Fig. 13, where the parameters inves-
tigated in some of these studies are reported. Each of
these works involves a specific configuration (Rayleigh–
Bénard or one-sided), a different formulation (different
model for the fluids and different dimensionless param-
eters) and a different region of the parameter space.
Therefore, providing a precise and general description
of convective and dispersive flows in porous media is
still not possible, and further studies systematically
investigating a broad range of the (Ra,Rad) space are
required.

Finally, an novel approach consists of including the
effects of dispersion also in the momentum equation.
Gasow et al. [124] used two-dimensional pore-scale and
Darcy simulations to study a Rayleigh–Bénard flow.
They observed that the pore-induced dispersion, which
may be as strong as buoyancy, affects also the momen-
tum transport and it is determined by two length scales
(the pore length scale, proportional to

√
k, and the

domain size, H). The authors proposed a two-length-

scale diffusion model, in which the pore-scale dispersion
is accounted into the momentum transport as a macro-
scopic diffusion term. A similar model, which is found
to be valid for a wide range of porosity values and is
based on the effective viscosity, has been proposed to
account for pore-scale effects in advection-dominated
systems in the absence of convection [125].

6 Summary and future perspectives

In this work, we have reviewed recent developments
on convection in porous media. We focused on state-
of-the-art measurements of dissolution and mixing in
archetypal flow configurations. Despite the well-known
mathematical formulation of the problem, the role that
several physical processes (e.g. finite-size effects) have
on the dissolution and mixing is not yet fully under-
stood. This is also due to the great complexity of the
physics involved: convection in porous media is a non-
linear phenomenon taking place in multiphase and mul-
tiscale systems, eventually located thousands of metres
beneath the Earth surface. Notwithstanding the intrin-
sic difficulties associated with performing reliable mea-
surements in such systems, remarkable developments
have been achieved in recent years.

The porous Rayleigh–Bénard configurations, consist-
ing of a fluid-saturated porous slab with fixed den-
sity at top and bottom boundary, has been extensively
investigated [53,54,62,63]. The governing parameter of
the flow is the Rayleigh–Darcy number Ra, a measure
of strength of convection relative to diffusion. Three-
dimensional Darcy simulations performed at unprece-
dented Rayleigh–Darcy numbers, O(105) have been
used, and the existence of new flow features labelled as
supercells emerged [58,59]. Two-dimensional and three-
dimensional simulations have shown that ultimately a
linear scaling of the dimensionless dissolution coeffi-
cient is attained, namely Sh ∼ Ra. While in the two-
dimensional case [54,62] this scaling sets in atRa ≤ 104,
in three-dimensional flows [58,59] the ultimate state
is expected to take place at Ra ≥ 5 × 105, which is
beyond the present numerical capabilities. Pore-scale
simulations have revealed a more complex scenario,
in which the heat/mass transfer is also influenced by
porosity [30,31], Schmidt number and relative conduc-
tivity of fluid and solid phases [76,77]. These extensive
numerical campaigns have led to the development of
physics-based correlations for Sh as a function of the
flow parameters. In addition, the relative size of bound-
ary layer and average pore space has been identified as
a critical flow feature controlling pore-scale convection
[30].

The second archetypal configuration considered is the
one-sided configuration [16], where solute dissolves in
an initially solute-free porous domain from the upper
boundary, with all other boundaries being impermeable
to fluid and solute. The flow is characterised by an inter-

mediate phase in which the dissolution rate F̂ is quasi-
steady. While Darcy simulations report a constantRa-
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independent value F̂ [16,17,56,60], experiments in bead

packs [19] and Hele-Shaw cells [20] revealed that F̂ is
a function of Ra. The discrepancy observed has been
attributed to non-Darcy effects present in the experi-
ments and not accounted by the simulations [21]. This
has stimulated further studies focusing on the role of
finite-size effects observed in Hele-Shaw [25,97,106,107]
and bead packs experiments [26,84]. The analysis of
recent numerical and experimental results [26,84,118]
highlights the complexity of this system, which is con-
trolled by at least three parameters, respectively quan-
tifying the relative strength of (i) convection and diffu-
sion (Ra), (ii) convection and dispersion (Rad), and (iii)
longitudinal and transverse dispersion (r). The huge
parameters space defined in this way and the need for
both numerical and computational studies represents a
major challenge in this field.

Improvement of numerical and experimental tech-
niques allowed a detailed characterisation of the flow
and a better understating of the phenomena involved.
The combination of theoretical modelling, numerical
simulations and laboratory observations will pave the
way to derive and validate large-scale models to be
employed in real geophysical and engineering situations.
These findings will be crucial to tackle problems asso-
ciated with grand societal challenges, such as energy
transition and climate change mitigation [7].

To conclude, in Sect. 6.1 we will briefly review
recent advancements in experimental techniques, and
in Sect. 6.2 we will also discuss the importance of addi-
tional effects not considered in previous sections of this
paper.

6.1 Recent developments in experimental

techniques

One intrinsic challenge associated with measurements
in porous media consists of the impossibility of opti-
cally accessing inner regions of the flow. An overview of
the experimental techniques available to perform mea-
surements in opaque media is presented by Poelma [23].
Among the different imaging techniques employed for
porous media [36], magnetic resonance imaging (MRI)
[126–128] and X-ray tomography [110,129] are the most
common, and allow to obtain non-invasive and non-
intrusive three-dimensional measurements of inner flow
regions. Despite the advantages mentioned, these tech-
niques are high-priced and typically lack in resolution
in both space and time, making fast and small-scale
flows hard to measure. However, thanks to the recent
technological progresses, these measurement techniques
allowed a detailed characterisation of both medium and
flow also at small scales. Some examples are the X-
ray synchrotron microtomography [130], with resolu-
tion in space of 3.25µm and in time of 6 s. Recent
experiments [131,132] have shown that the resolution
can be further lowered down to 2.3µm, with a tech-
nique also allowing for higher resolution in time. At the
time being, similar performances are also achieved by
commercial micro-CT systems. Optical measurement in

three-dimensional porous media can be also performed
by matching the refractive index of fluid and medium
[115,133,134], provided that a suitable fluid is available.
This is not always granted, since fluids with refractive
indexes of interest may come with side effects such as
high costs or high hazard [135].

Additional challenges associated with laboratory
experiments, in particular with respect to geological
sequestration of carbon dioxide, consist of reproduc-
ing realistic porous media and ambient conditions. For
instance, at the depths at which CO2 is supercritical,
the pressure is of the order of tens of bars, and per-
forming controlled experiments with optical access is
not trivial. This obstacle has been recently success-
fully overcome [61,136], and the methods proposed
may represent a first important step towards inves-
tigations in more complex geometries. With respect
to the design and production of synthetic media at
the laboratory scale, microfluidic devices mimicking
porous materials are usually made of polydimethylsilox-
ane (PDMS), which has the drawback of being perme-
able to CO2. A solution has been recently proposed by
De et al. [137], who developed a new method to fabri-
cate a two-dimensional porous medium (regular array of
cylinders), consisting of bonding of a patterned photo-
lithographed layer on a flat base. Additional examples
of manufacturing techniques for analogue porous media
are provided in [138]. Real geological formations are
inherently disordered and heterogeneous, and mimick-
ing this feature in laboratory models is essential to
capture the role of the medium heterogeneities on the
solute mixing. The technique proposed by Guo et al.
[139] addresses this issue, and it consists of a cell made
of 3D printed elementary blocks designed to be easily
rearranged to obtain a desired permeability field.

Finally, we conclude with an overview of recent devel-
opments in experimental techniques employed in Hele-
Shaw cells. The relative low cost and ease of imple-
mentation makes this apparatus widely employed to
study buoyancy-driven flows. Classical optical meth-
ods based on light intensity measurements of pat-
terns induced by density (or density gradients) fields,
such as Schlieren and related techniques [24,140], have
been combined or improved to increase the accu-
racy of the measurements performed. Accurate tem-
perature [141,142] and concentration [79,95,96] mea-
surement techniques have been recently introduced.
Velocity measurements have been also performed using
advanced particle image velocimetry (PIV) and parti-
cle tracking velocimetry (PTV) techniques specifically
designed for Hele-Shaw flows [143,144], or with the
aid of machine learning techniques, namely convolu-
tional neural network (CNN) [145]. A separate (i.e.
not simultaneous) measurement of scalar and veloc-
ity fields complicates the analysis of the phenomena
involved and the description the underlying physical
mechanisms. Recently, novel techniques for simultane-
ous temperature/concentration/velocity measurements
have been proposed [96,146], which are particularly use-
ful to enable reliable comparisons against numerical
findings.
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6.2 Additional effects influencing mixing

Convection and mixing in real engineering and geophys-
ical problems are far more complex than the idealised
conditions depicted in this review, due to the non-ideal
medium, fluid, and ambient conditions. Here we will
discuss the influence of conditions not present in the
configurations previously discussed, and we will provide
some references for the interested readers.

We focused on processes in which the Boussinesq
approximation applies, i.e. the density variations induced
by the presence of a scalar are only significant within
the gravitational term of the momentum (Darcy) equa-
tion, and can be neglected elsewhere. In general, this
may not be the case, and a criterion for the applicabil-
ity of the Boussinesq approximation has been derived
[28]. For instance, in case of iso-thermal brine trans-
port, fluid volume changes may be neglected when
Raρ̃r/∆ρ ≫ 1, being ∆ρ the maximum density differ-
ence and ρ̃r the reference fluid density. Interestingly,
this condition is independent of ∆ρ and it is widely ful-
filled for geothermal processes, when Ra ≈ 101 − 103

and ρr/∆ρ ≈ 102 − 103 [147]. Numerical simulations of
the fully compressible CO2 sequestration process sug-
gest that compressibility and non-Boussinesq effects do
not significantly impact spreading and mixing [90]. An
aspect particularly relevant when considering exper-
iments with analogue fluids is that the mixing rate
strongly depends on the shape of the fluids density–
concentration curve and, in particular, on the position
of the maximum of this curve [21]. This effect, along
with volume variations in the fluid phase [148], may
influence the dynamics of the mixing process, and the
findings discussed in this review cannot be generalised
to fluids with a non-monotonic density–concentration
profile or in the presence of significant volume varia-
tions.

Geological formations are typically characterised by
anisotropic and heterogeneous media. The effect of
anisotropy has been well characterised by assuming that
the permeability tensor is anisotropic [149,150], and it
has been shown that anisotropy is in general favourable
since it increases the rate of dissolution and antici-
pates the onset of convection [60,63,151]. These studies
assume that a preferential direction exists, i.e. the per-
meability tensor takes a diagonal form in a reference
frame that usually has a direction aligned with gravity.
This simplified model does not take into account that
formations have heterogeneities, which are also source
of anisotropy, and discerning these two features of the
medium represents a strong simplification. It has been
proposed [89,152] that the model of anisotropic medium
discussed above (in which the permeability tensor is
diagonal in some reference frame) may represent a good
candidate to investigate heterogeneous media. Different
models for heterogeneous formations have been intro-
duced, consisting of essentially three categories: spa-
tially variable permeability fields [153] (with no pref-
erential direction), long and thin impermeable barri-
ers [89,152,154], and layered formations (i.e. regions
in which high- and low-permeability strata alternate)

[155–157]. Although a general model for convection in
heterogeneous media is not available yet, these studies
provide an initial framework to understand the long-
term behaviour of these systems.

The role of the fluid properties may also affect the
flow evolution and solute mixing. The effect of viscos-
ity, for instance, may be crucial in determining the
stability of a layer, and we refer to [158,159] for a
review on this topic. Another effect that is increasingly
studied is the reactivity of the medium with the fluid:
the solute present in the fluid may induce dissolution
or precipitation, which corresponds to a variation of
the medium porosity and permeability. Recently this
problem has been actively investigated [121,160,161],
also due to the improvement of numerical capabilities.
It has been reported [87] that medium morphology
modifications occurring in the presence of convective
flows affect solute mixing in non-trivial manners. Car-
doso and Andres [162] showed that the reacting system
rock-CO2 may be described by a first-order chemical
reaction stimulating numerous studies on convective-
reactive porous media flows, reviewed in [163,164].

Finally, the effect of the ambient flow conditions may
be also important [165]. It was observed that the pres-
ence of a background flow influences the onset of con-
vection [166]. Experiments in one-sided configuration
[167] revealed that while convection may be hindered
and suppressed, dispersion enhances, with an overall
contribution with respect to flux in the absence of back-
ground flow that can be positive, negative or neutral.
Tsinober et al. [168] observed with the aid of simu-
lations that three regimes exist, in which convection
dominates, background flow dominates, or these two
contributions have the same strength. These results are
relevant, since they can contribute to derive new models
suitable for prediction of dissolution at the scale of the
reservoir [11,105,169] and through the entire lifetime of
a buoyant current in a porous formation [169–172].
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