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Abstract We study transport properties of an active Brownian particle with an Rayleigh–Helmholtz friction
function in a biased periodic potential. In the absence of noise and depending on the parameters of the
friction function and on the bias force, the motion of the particle can be in a locked state or in different
running states. According to the type of solutions, the parameter plane of friction and bias force can be
divided into four regions. In these different regimes, there is either only a locked state, only a running
state, a bistability between locked and running states, or a bistability of two different running states
(corresponding to a systematic motion to the left or right, respectively). In the presence of noise, the
mean velocity depends in different ways on the noise intensity for the various parameter regimes. These
dependences are explored by means of numerical simulations and simple analytical estimates for limiting
cases.

1 Introduction

Active Brownian motion can describe self-propelled
motion in biology, ranging from vesicles pulled by
molecular motors at the subcellular level to the move-
ments of entire cells, of animals and even herds and
flocks of animals, see [1–5]. Furthermore, artificial self-
propelled particles have been developed [6–10] which
can be described in the same mathematical framework.
In contrast to a passive Brownian motion, active par-
ticles are driven by a source of negative “dissipation,”
which can be realized by making the friction coefficient
a function of the particle’s speed that becomes negative
for small values of the velocity [2,11]. That is to say, the
friction of active Brownian particles acts as an energy
pump and dissipation when its coefficient is negative
and positive, respectively.

The behavior of active particles in spatially struc-
tured environments, specifically in different spatial
potentials has been studied in various variants and has
been reviewed before, see, e.g., [2]; we just mention the
limit-cycle motion of active particles in harmonic poten-
tials [11], the nontrivial effect of a constant bias force on
the diffusion properties of active particles [12,13], the
escape rate of active particles out of a metastable poten-
tial well [14,15], and anomalous diffusion for active par-
ticles in random environments, e.g., in a Lorentz gas
[16–18].
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An elementary potential form that has not been stud-
ied in the context of active motion is a biased periodic
potential, corresponding to a periodic force field. Such a
potential has been extensively studied for passive Brow-
nian motion, where it appears in stochastic models of
diverse systems such as Josephson junctions [19], phase-
locked loops [20], or superionic conduction [21]. Early
work on passive motion in inclined periodic potentials
includes that by Risken and collaborators [22,23] and
is comprehensively reviewed in his text book [24]. Later
studies focused on the diffusion and transport regu-
larity [25–27], on the distinction between overdamped
and underdamped motion [28–35], and on experimental
realizations [36–39]. For noiseless active particles in a
biased periodic potential and under a periodic forcing,
the transport characteristics have been studied in [40].

As active motion becomes more and more interesting
in diverse scientific fields and a periodic force field is one
of the simplest possibilities to create a spatially struc-
tured but unbounded environment, we combine here
the two model ingredients and study active Brownian
particles in a biased periodic potential, focusing on the
mean velocity of the particles as the central statistics
of interest. We show that the velocity displays a rich
dynamics.

Our paper is organized as follows. We first introduce
the model for active Brownian particles in a biased peri-
odic potential and the main statistics of interest, the
mean long-time velocity used to characterize the trans-
port property of the model. We then consider first the
system in the absence of noise and divide the parameter
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plane of active friction strength and bias force into four
regimes according to the type of solutions. In order to
elucidate the transport characteristics in the presence
of noise, the mean velocity as a function of the noise
intensity is shown for the distinct regimes identified
previously. In the numerically challenging limit of weak
noises, we also investigate the effect of the simulation’s
time window and the initial conditions used to estimate
the mean velocity. We conclude with a brief summary
of our results and an outlook on open problems related
to the studied system.

2 Model and measures

The equations of motion for active Brownian particles
in a biased periodic potential reads

ẋ = v, mv̇ = −γ (v) v − dU

dx
+

√
2Dξ (t) , (1)

where U (x) = −u0 cos(x) − Fx is the biased cosine
potential function with bias force F and ξ (t) is Gaus-
sian white noise with intensity D and correlation func-
tion 〈ξ (t) ξ (t + τ)〉 = δ (τ). We consider particles with
unit mass m = 1 and a potential with unit amplitude
u0 = 1. The nonlinear friction γ (v) = γ0

(
v2 − v2

0

)
is

the Rayleigh–Helmholtz (RH) friction function [11], in
which v0 > 0 is the speed the particle would reach
within a long-time limit if the noise and potential
would be omitted. The friction function is negative for
−v0 < v < v0. When the velocity of particles is in
this range, they are subjected to a negative dissipa-
tion, i.e., they are energetically pumped, which results
in a self-propelled motion. Here, we consider v0 = 1.
For |F | < 1, the potential function has minima at
x = arcsin (F ) + 2nπ, where n is an integer. The par-
ticle is likely to oscillate around a minimum, escape to
another minimum, or keep running through the min-
ima. For |F | ≥ 1, the potential function is monoton-
ically decreasing or increasing. Correspondingly, the
velocity can only be in a running state. Since the case
for F < 0 is symmetric to that for F > 0, we only
consider positive bias forces.

In the absence of noise, we denote by

v̄det = lim
t→∞

x (t) − x (0)
t

(2)

the time-averaged velocity. If v̄det = 0, the particle is
captured around a minimum and is in a locked state,
whereas non-vanishing values of v̄det correspond to the
particle running to the right or left.

In the presence of noise, the mean velocity character-
izes the long-term properties of Brownian particles as:

Fig. 1 Active Brownian particles in a biased periodic
potential show diverse velocity dynamics. The particles can
not only switch between a locked state (green particle) and
running down of the potential hill (red particle) in a, but
also switch between running to the left (blue particle) and to
the right (red particle) in b. Examples of transitions (black
arrows) between the states are shown in the time series of
the velocity. Parameters are γ0 = 0.128, F = 0.334 in a and
γ0 = 3.0, F = 0.1 in b

〈v〉 = lim
t→∞

〈x (t) − x (0)〉
t

, (3)

where 〈·〉 indicates the statistical average over an
ensemble of trajectories. In this paper, we focus on the
mean velocity as the most important transport prop-
erty of the active Brownian particle. Equation (1) is
integrated with a stochastic Euler–Maruyama scheme
[41] with time step Δt = 10−4.

As illustrated in Fig. 1a, the particle cannot only be
captured in a local potential minimum but also run
down of the potential hill, and in Fig. 1b, transitions
between running to the right and left are observed.
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Fig. 2 The (γ0, F ) plane is divided into four regimes I–IV,
as shown in (g), according to the time-averaged velocity v̄det
on the initial velocity. Corresponding examples of v̄det as a
function of initial conditions in the four regions are shown
in (a–f), and the locations of the parameters are marked by
the crosses with corresponding colors in (g). Bistability can
be observed when γ0 and F are within particular param-
eter regions (II and III). F1, F2, F3, F4 are from numerical
solutions of the deterministic system; the dotted (approxi-
mating) line is obtained analytically

3 Transport regimes of the deterministic
dynamics

In this section, we consider the system in the absence of
noise (D = 0). Depending on the choice of parameters
and on the initial conditions (x(0), v(0)), the system
may attain one of several possible transport states. We
identify the number and nature of the different trans-
port states for one set of system parameters (γ0, F ) by
simulating the deterministic system for a large range

Fig. 3 Trajectories of the deterministic (a–d) and stochas-
tic (e–h) systems with parameters from the various regimes.
The two curves in a–d are the solutions of the deterministic
system with the same set of parameters and different initial
conditions. Under the same parameters (γ0, F ) and in the
presence of weak noise, corresponding phase diagrams are
shown in the right hand side. In the locked state area, the
particles are likely to overcome the potential hill and vibrate
around another potential minimum on the right, as shown
in e. In the bistable regimes, transitions between the states
take place (f and g)

of initial velocities (the initial position is always picked
at the minimum of the potential). This procedure is
illustrated in Fig. 2a–f and reveals different transport
regimes, as shown in Fig. 2g.

In the green area, for sufficiently small bias and small
γ0, the particle is constrained to the potential mini-
mum and approaches a limit cycle (locked state). Differ-
ent initial conditions may lead to different limit cycles
belonging to different minima of the periodic potential
(two distinct limit cycles are shown in Fig. 3a), all pos-
sessing vanishing time-averaged velocity, v̄det = 0. Take
γ0 = 0.5, F = 0.2 in the locked state area as an exam-
ple: Fig. 2e shows that the function v̄det is zero for all
initial velocities v(0).

In the gray and light blue areas, two types of bistabil-
ity can be observed. One type of bistability is encoun-
tered at very small friction coefficient and for a bias
force in the range

F1(γ0) < F < F2(γ0), (4)
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here the particle is either in the locked state or runs to
the right, i.e., in the direction of the bias force. Accord-
ingly, the time-averaged velocity attains two different
values depending on the initial velocity (see examples in
Fig. 2a–c and different types of trajectories in Fig. 3b).
The entire region of forces and friction coefficients for
which this bistability is observed is shown as the gray-
shaded area in Fig. 2g.

When the friction parameter γ0 is large enough, the
particle can attain sufficient energy to overcome dis-
sipative losses and climb up the potential hill. If the
parameter of the active friction function exceeds a crit-
ical value, γ0 > γ0,c ≈ 2.05, the other type of bistability
is observed when

F < F3(γ0), (5)

which is marked as the light blue area. The trajectory
either runs to the right or to the left, as shown in Fig. 2f
for v̄det(v(0)) and in Fig. 3c for the trajectories running
in different directions.

In the remaining white area, only one running state
can be observed. When the parameters are in this range,
no matter what the initial velocity is, the particle will
eventually run to the right. We note that for no param-
eter combination with γ0 > 0 we will be able to observe
more than two stable states.

The slope of F3(γ0) in Fig. 2g can be analytically
estimated based on a simplifying assumption. In the
absence of noise,

− γ0
(
v2 − 1

)
v − sin(x) + F = 0 (6)

determines the nullcline for the variable v. When the
friction parameter is large, we can assume that both the
active friction term and the force are large compared to
sin(x) and we can neglect the latter term. This leads to
a cubic equation in v, reading

(
v2 − 1

)
v = F/γ0, which

has one, two, or three solutions depending on F/γ0. If
there are three solutions, the upper and lower solutions
are stable, while the middle one is unstable in v. The
critical value for F/γ0 is 2/3

√
3, which is the slope of the

dotted line in Fig. 2g (note that there is also an offset
in the critical force F3(γ0) that we do not account for).

Returning to the first kind of bistability between
locked and running states, the gray region can be fur-
ther divided by the dashed line into regions in which the
locked or the running state is more stable, in the zero
noise intensity limit. As an approximate way to deter-
mine this line, we use stochastic simulations for a small
noise intensity of D = 0.005 to find this critical force
with the help of the distributions of the time-averaged
velocity. For a parameter set γ0, F for which the veloc-
ity’s probability density has a strong peak around v = 0
(with the integrated probability of the peak being larger
than 1/2), the locked state is the more stable state. The
opposite is true if the density of the velocity has a strong
peak at a non-vanishing value.

We note that if we plot the probability density of
the instantaneous velocity, the peaks do not become

Fig. 4 The gray area can be further divided into regions
above and below the dashed line in Fig. 2g [close-up in the
inset], in which the running or locked state is more stable
in the zero noise intensity limit. Corresponding time series
and distributions of the original (gray) and time-averaged
velocities (orange) for D = 0.005 are compared, in which
the parameters in a and c are from the regions that running
state and locked state are more stable, respectively. The set
of parameters in b is close to the critical curve

apparent but can show more than one peak both in
the locked state (because the active particle undergoes
a limit-cycle motion similar to that observed in a har-
monic potential [11]) and in the running state (because
the motion along the inclined periodic potentials under-
goes periods of faster and of slower motion depending
on the spatial region). Two peaks in the running state
can be also observed for some parameter values for a
passive Brownian particle in a harmonic potential and
have been referred to as multistability (as opposed to
a mere bistability) of the stochastic dynamics [35,42],
but we think that this is a misnomer, both in the case
of passive motion and also for the active motion in peri-
odic potentials considered here. The so-called multista-
bility in the running state would be even observed in the
absence of noise when the system systematically passes
back and forth between the two states. These “states”
(i.e., the velocities where the probability density dis-

123



Eur. Phys. J. E (2023) 46 :22 Page 5 of 8 22

plays maxima) are neither stable nor metastable in the
sense that without a sufficiently strong perturbation the
state would be attained for an infinite time1.

Instead of the instantaneous velocity, it is more mean-
ingful for the long-term transport characteristics of the
system to consider histograms of velocities that are time
averaged over a suitable time window (a similar aver-
aging has been used in the case of passive Brownian
motion in a biased periodic potential for the running
state [35]). The distributions of the original and time-
averaged velocity are compared in Fig. 4. When choos-
ing the time bin as 10 to obtain the time-averaged tra-
jectories, the main share of probability is located in
two ranges of velocities with a minimum in between—
this minimum can be regarded as the boundary that
divides the locked and running states for a certain set
of parameters. For a fixed friction coefficient γ0, equal
probabilities on each side of the boundary determine
the critical force F4.

In order to illustrate the above, we show in Fig. 4 the
velocity distributions for the original (gray) and time-
averaged velocities (orange) for three sets of parame-
ters. At γ0 = 0.05, F = 0.45 (Fig. 4a) and γ0 = 0.3, F =
0.38 (Fig. 4c), the running or the locked state is more
stable, respectively. The parameter set γ0 = 0.128, F =
0.334 (Fig. 4b) is on the critical curve, i.e., here the
probabilities to be in the locked and running state are
approximately equal when D = 0.005. We indicate the
locations of these parameter sets by crosses in Fig. 2g.

4 Mean velocity in the presence of noise

We now inspect how the mean velocity depends on the
intensity D of the uncorrelated fluctuations in the dis-
tinct transport regimes discussed in the previous sec-
tion.

For different parameter sets γ0, F , Fig. 5 shows the
mean velocity vs the noise intensity D. When estimat-
ing the long-term mean velocity from simulations, it
is important to keep in mind that the time window T
should be large enough; we use T = 105 in Fig. 5 but
will discuss the role of the time window below. The
number of realizations to calculate the mean velocity is
103.

One limit case is rather simple: When the noise
becomes stronger and stronger, the mean velocity con-
verges to zero. In this limit, the modulation of the force
by the periodic part of the potential can be neglected
(but not the systematic bias) and the effective dynamics
approaches the form

1 As an example consider a limit-cycle motion in a two-
dimensional system which projected on one coordinate dis-
plays a bimodal distribution in the time-averaged den-
sity (e.g., the two peaks associated with the locked state
in Fig. 4c). It does not seem reasonable to interpret the
bimodality of the probability density as an indication of a
bistability of the dynamics, which only reflects the speed
with which the system proceeds along the limit cycle.

Fig. 5 Mean velocities versus noise intensity for γ0 and
F in different regimes. The solid lines represent the
mean velocity in theory for strong noise, i.e., 〈v〉sn =∫ +∞

−∞ dvP0(v)v, where P0(v) is given in Eq. (9). The dot-
ted lines with symbols are results of numerical simulations

v̇ = −γ(v)v + F +
√

2Dξ(t). (7)

The corresponding Fokker–Planck equation for the
velocity variable

∂tP (v, t) = ∂v [γ (v) v − F + D∂v] P (v, t) (8)

has a simple stationary solution (∂tP0(v) = 0):

P0 (v) =
exp

[
−γ0v4/4−γ0v2

0v2/2−Fv
D

]

∫ +∞
−∞ dṽ exp

[
−γ0ṽ4/4−γ0v2

0 ṽ2/2−F ṽ
D

] . (9)

The mean value of this distribution, 〈v〉sn =
∫ +∞

−∞ dvP0

(v)v, indeed tends to zero as D → ∞ (solid lines in
Fig. 5) and generally agrees well with our simulation
results for large but finite D (for a discussion of this
asymptotic behavior, see [43]). We note that this limit-
ing behavior is very different to the behavior of a passive
Brownian particle in an inclined periodic potential for
which the mean velocity would approach 〈v〉sn = F/γ
[44], where γ is the Stokes friction coefficient.

If the parameters γ0 and F are in the regime of
the locked state (γ0 = 0.5, F = 0.2), the mean veloc-
ity first increases, attains a maximum at intermedi-
ate noise level, and then decreases as already discussed
above. The initial increase of the mean velocity is due
to the fact that, with noise, the particles get a chance to
repeatedly overcome the potential barriers to the right
(see Fig. 3e).

For parameters in the running regime (γ0 = 2.0, F =
1.2), the mean velocity as a function of D first remains
flat, i.e., the velocity does not depend on the noise, and
then decreases monotonically. The initial constant value
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Fig. 6 Effects of the time window T and initial velocity
v(0) used to estimate the mean velocity under weak noises.
When v(0) = 0 and 10, the particle starts from the locked
or running state, respectively

corresponds to the deterministic speed, Eq. (2), and has
been found for the parameter set in Fig. 2d.

When the parameters are in the regime of bistabil-
ity of running to the left or to the right (light blue
area in Fig. 2g), we observe a monotonic decrease of
the velocity with growing noise intensity. In the zero
noise limit, the system attains the more stable veloc-
ity which for F > 0 is the positive one (cf the upper
branch in Fig. 2f). Additional noise makes the second
(negative) velocity state also somewhat more likely and
thus reduces the mean velocity.

The two parameter sets γ0 = 0.05, F = 0.45 and
γ0 = 0.3, F = 0.38 are both in the other bistable regime
(gray area in Fig. 2g) where the locked state and a run-
ning state coexist. The two sets differ with respect to
the dominating stability of the two states (determined
by the histogram method discussed in the previous sec-
tion): For γ0 = 0.05, F = 0.45, the running state is more
stable, whereas for γ0 = 0.3, F = 0.38, the locked state
is more stable. The dependence of the mean velocity
on the noise intensity is qualitatively different for these
two cases. If the running state is more stable, the mean
velocity monotonically decreases with D, similar to the
case of the running regime discussed above. If the locked
state is more stable, we obtain a nonmonotonic curve
with a clear maximum, similar to the case of the locked
regime.

Close to the critical line which subdivides the bistable
area of locked and running states, the dependence of the
mean velocity on D becomes more complicated over the
entire range of noise levels. For γ0 = 0.128, F = 0.334
(black stars in Fig. 5), the mean velocity first decreases
to a minimum, then increases, passes through a maxi-
mum, and finally decays to zero.

At weak noise, the time window T and initial con-
dition of the velocity v(0) used to estimate the mean
velocity will become important such that the mean
velocity may strongly depend on the initial condition as

long as we cannot simulate the system for an extremely
long time. In particular, when the parameters are close
to the critical curve in the bistable regime and the noise
intensity is small, the mean velocity (determined via
a time average) depends strongly on the initial state
of the particle. If we start the particle in the running
state, then, irrespective of whether the running state is
more stable (Fig. 6a) or the locked state is more stable
(Fig. 6b), the mean velocity at low noise is high. If we
start the particle in the locked state on the contrary,
the mean velocity is very small. Independence on ini-
tial conditions requires larger and larger averaging time
windows for decreasing values of the noise intensity, as
illustrated in Fig. 6.

5 Summary

In this paper, we have studied the transport proper-
ties of active Brownian particles in a biased periodic
potential. For the noiseless system (D = 0), we have
identified qualitatively distinct transport regimes with
different numbers of stable states of the particle’s veloc-
ity: a purely running state, a locked state, a bistable
regime with two running states, and finally another
bistable regime with a running and a locked state. For
all these regimes, we have explored the noise depen-
dence of the mean velocity. The existence of the dis-
tinct stable states of the particle’s velocity as well as
noise-induced transitions between these states can also
be observed when other variants of the active Brownian
particle are used, for instance, the active friction model
by Schweitzer, Ebeling, and Tilch (not shown). In this
sense, our results do not hinge on the fine details of the
active particle model.

If the system is dominated by a running state, either
because it is the only stable state or it is the more prob-
able state, the mean velocity decreases with increasing
noise intensity and can be captured for strong noise by
our approximation Eq. (9). The decrease of the mean
velocity to zero in the strong noise limit is a nontriv-
ial result in marked contrast to the passive Brownian
motion in a biased periodic potential [24,44]. If the sys-
tem is dominated by the locked state, the velocity dis-
plays a nonmonotonic dependence on the noise inten-
sity; it vanishes for both D → 0 and D → ∞. Conse-
quently, there is an optimal noise that maximizes the
velocity. Close to the critical line of equal probability
for the locked and the running state, the velocity as a
function of D can become more complicated, attaining
a minimum and a maximum at finite values of D.

Here, we have focused on the mean velocity as the
sole characteristic of transport. In many applications,
however, also the regularity of transport is of interest.
This can be quantified by the Péclet number or by the
diffusion coefficient of the particles (see, for instance,
[25,44,45]). While the diffusion of passive particles in a
biased periodic potential is a well-studied subject [24–
26,33,44], there is nothing known to our knowledge
about the diffusion coefficient of active particles in such
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a potential. This constitutes an interesting problem for
future research.
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