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Abstract In the realm of low Reynolds number, the shape-changing biological and artificial matters need
to break time reversibility in the course of their strokes to achieve motility. This necessity is well described
in the so-called scallop theorem. In this work, considering low Reynolds number, a novel and versatile
swimmer is proposed as an example of a new scheme to break time reversibility kinematically and, in turn,
produce net motion. The swimmer consists of one sphere as a cargo or carried body, joined by one activated
link with time-varying length, to another perpendicular rigid link, as the support of two passively flapping
disks, at its end. The disks are free to rotate between their fixed minimum and maximum angles. The
system’s motion in two dimensions is simulated, and the maneuverability of the swimmer is discussed. The
minimal operating parameters for steering of the swimmer are studied, and the limits of the swimmer are
identified. The introduced swimming mechanism can be employed as a simple model system for biological
living matters as well as artificial microswimmers.

1 Introduction

Microswimmers are cutting-edge technology, with many
potential biomedical applications spanning from drug
delivery, artificial insemination, and imaging to micro-
surgery [1–4]. They are a class of micromachines with
the ability to harness external chemical, electrical or
acoustic fields to produce net motion [5,6]. Seminal
studies of translation of microorganisms, prominently,
first started in the 1950 s [7–10], focusing mainly on
their interactions, energy consumption, and kinemat-
ics [10–13]. In 1977, Purcell’s so-called scallop theorem
broadened our understanding of microorganism motil-
ity [14]. According to this theory, a swimmer at low
Reynolds number swimming condition must change its
shape so that the time-symmetry is broken. Physically,
this restriction arises since, at low Reynolds number
condition, which includes the microscale realm of motile
living matters, the inertial forces are less effective than
viscous forces [15]. Here, similar to Purcell’s original
paper, we will only focus on self-propelling microswim-
mers by their shape change, and we will not consider
phoretic motions [16–19] and chemically or externally
driven swimmers [20,21]. To overcome the constraint
of this theory, many strategies can be deployed mainly
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to change the assumptions of the theory [10]. These
include the introduction of inertia in the microswim-
mer body [22,23], having more than one swimmer [24],
moving close to an interface or deformable boundaries
[25], considering non-Newtonian fluids [26], and owing
elastic components [27].

Following Purcell, many swimming mechanisms have
been designed or inspired by living matters or biological
microswimmers [28–31]. The proposed self-propelling
mechanisms are configurated from the simplest ones,
such as the three-link swimmer by Purcell [14], three-
sphere swimmer by Najafi and Golestanian [32], and
the circle swimmer by Ledesma-Aguilar et al. [33], an
elastic two-sphere swimmer by Nasouri et al. [34], etc.,
to the complex ones such as two varying radii bladder
spheres by Avron et al., [35], Quadroar swimmer pro-
posed by Jalali et al. [36], snapping elastic disk swimmer
by Wischnewski and Kierfeld [37], etc.

Reviewing the proposed self-propelling mechanisms
in recent decades shows that many of them have more
than one active element. Moreover, when owing one
degree of freedom, they are mainly able to move for-
ward and backward. For instance, Montino and DeSi-
mone [27] considered a variant of the linear three-sphere
swimmer [32] with one of the active links replaced with
an elastic spring. Upon actuating the active link with
different frequencies, their swimmer can move forward
and backward. The net displacement of this swimmer is
frequency dependent as opposed to its original counter-
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part, where the net displacement only depends on the
sequence and range of the links’ deformation.

The orientation control as a key factor for the
maneuverability of the mechanism may be achieved by
external fields, but reorientation strategies by versatile
reshaping is still a desired topic.

Here, we introduce a strategy to circumvent the
time reversibility by considering a passive element, only
allowed to have restricted motion. In fact, an extra
degree of freedom that is constrained between two val-
ues, despite being passive, along with an actively vary-
ing degree of freedom, can result in a sequence of body
movements that are not time reversible. The proposed
mechanism is an instance of such strategies. This mech-
anism consists of one active link. It may be arranged
in both symmetric and asymmetric configurations so
that both straight and curved (simple and complex)
trajectories and pseudo-self-rotational motion can be
achieved. The proposed mechanism can be utilized as
an autonomous swimming microrobots, drug delivery
system, microcarrier, mixing element, etc., involving
simple (straight or curved) or complex trajectories. The
swimmer consists of two flapping disks connected via a
rigid link and one sphere, as a cargo container, perpen-
dicularly linked to the middle of the connecting link by
a time-varying telescopic arm. Disks are free to rotate
passively about their revolute joint between their preset
minimum and maximum angles.

The rest of the paper is organized as follows: In
Sect. 2, we introduce geometry, describe the motion and
the phases of the swimmer’s cycle, and subsequently
discuss the governing dynamics of the motion. The case
of symmetric constraining angles or straight propul-
sion is discussed in Sect. 3 while Sect. 4 is dedicated to
the asymmetric case of the constraining angles, and we
also discuss the possible trajectories of the swimmer.
Finally, we conclude in Sect. 5.

2 Geometry and Description of the cycle of
motion

Our swimmer consists of two identical, very thin disks
of radius a, a sphere of radius b, and two slender links
with a T-shape arrangement as shown in Fig. 1. The
length of the body link, which connects the center of
the sphere, B, to the middle of the front link is h + l,
where l ≥ 0 is the time-dependent deformation of the
body link and h is a constant length. The front link
has a constant length of 2g (Fig. 1). Consider a body-
fixed coordinate system (x1, x2, x3) with the unit vec-
tors (̂i1, î2, î3), whose x1 and x2 axis is along the body
link and front link respectively, with origin O at the
intersection of two links. The plane of each disk is per-
pendicular to the connecting link. Each disk is hinged at
its circumference to its corresponding end of the front
link and can rotate about an axis perpendicular to the
plane of the links until reaching its designated limit-
ing angles. The angle of rotation of the nth disk, θn
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Fig. 1 a Geometry of the swimmer. b The body link, the
only active part, is a prismatic actuator. Disks are hinged to
the front link and can have a limited rotation. c The x1x2

plane of the body-fixed coordinate system (x1, x2, x3) lies
in the plane of links, which coincide with xy plane of the
global frame. As an example, the angle of disk-1, θ1, and its
constraining angles, θ1,min and θ1,max, are shown

(n = 1, 2), is defined as the angle between x1 and the
plane of each disk, as shown in Fig. 1. Each of these
angles is constrained by constant minimum and maxi-
mum angles, θn,min and θn,max, respectively, such that
−90◦ < θn,min ≤ θn ≤ θn,max < 90◦. In this study, we
assume θ1,max = θ2,max = 0◦, where each limit occurs
when the corresponding disk is along the front link (see
Fig. 1). Hence, each disk rotates along or below the
front link. Without loss of generality, we further assume
|θ1,min| ≤ |θ2,min|. The swimmer can swim by extending
and contracting its body repeatedly. Due to symmetry,
motion can only occur in the plane of links, which we
assume to be the xy plane of the global coordinate sys-
tem, (x, y, z). Hence the orientation of the swimmer can
be determined by a single angle φ, the angle between
x and x1 axis of global and body-fixed coordinate sys-
tems, respectively. Thus, the positive direction of the
x and y axes can be transformed into the î1 and î2
directions, respectively, using the rotation matrix [38],

Rφ =

[cos φ − sin φ 0
sin φ cos φ 0

0 0 1

]
(1)

Point C is considered in the middle of points B and O,
xC = −h+l

2 î2, to describe the position and motion of
the swimmer.
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We consider the initial state of the swimmer such that
the body link is initially at its minimum size (l = 0)
and disks are along the front link (θ1 = θ1,max = 0◦,
θ2 = θ2,max = 0◦). We denote the designated maxi-
mum length of l (the deformable part of the body link)
by lmax (Fig. 2). The complete cycle of non-reciprocal
motion can be presented in six phases as follows:

1. In the first phase of the motion, the body link
extends with the expansion rate l̇ > 0, l̇ = dl/dt,
and due to the induced flow of fluid, the disks rotate
and translate similarly (symmetrically) until reach-
ing the limit of disk-1, angle θ1,min. We denote the
extension of the body link, corresponding to this
phase, by l1.

2. The body link keeps extending similar to the preced-
ing phase, while disk-1 translates without rotating
relative to the front link, θ1 = θ1,min, and disk-2
translates and rotates relative to the front link until
reaching the limit θ2 = θ2,min. We denote the exten-
sion of the body link, corresponding to this phase,
by l2.

3. In this phase, the body link extends until reach-
ing its maximum length, h + lmax, while both disks
translate without rotating relative to the front link
(θ1 = θ1,min, θ2 = θ2,min).

4. The body link contracts with the expansion rate
l̇ < 0, which has the same magnitude as the previous
phase, and disks rotate and translate until disk-1
retains its initial orientation relative to the main
body, i.e., it orients along the front link. We denote
the contraction of the body link, corresponding to
this phase, by l4.

5. The body link keeps contracting the same as the pre-
ceding phase, while disk-1 translates and remains
along the front link, and disk-2 translates and
rotates relative to the front link until it orients along
the front link. We denote the contraction of the body
link, corresponding to this phase, by l5.

6. Finally, the body link contracts, until reaching its
initial length, h, while both disks translate as they
remain along the front link.

These phases and the corresponding configuration of
the swimmer are depicted in Fig. 2 (for straight and
curved motion). To have a complete cycle, the maxi-
mum deformation length of the body link (lmax) must
satisfy max{l1+ l2, l4+ l5} < lmax. Deformation lengths
li (i = 1, 2, 4, 5) are parts of stroke length in which disks
transform in designated orientations, while during the
rest of each stroke, disks retain their orientations rel-
ative to the links. Hence, analogous to push-me-pull-
you [35], the swimmer extends or contracts while being
transformed into a new configuration.

2.1 Dynamics of the motion

Denoting velocity of the center of the disk-1, disk-2,
sphere and origin O by v1, v2, v3 and vO, respectively,

Fig. 2 The swimmer’s cycle of motion, for straight and
curved motion, versus time. Vertical dashed lines indicate
the initial position of the swimmer, and curved dashed lines
correspond to the position of the swimmer throughout its
cycle for each class

we obtain

v1 = vO + φ̇ × r1 + θ̇1 × (a cos θ1î1 + a sin θ1î2)
(2a)

v2 = vO + φ̇ × r2 + θ̇2 × (−a cos θ2î1 + a sin θ2î2)
(2b)
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v3 = vO + φ̇ × r3 − l̇̂i2 (2c)

where the over-dot denotes d
dt , φ̇ = φ̇î3, θ̇1 = θ̇1î3,

θ̇2 = −θ̇2î3, and the positions of the centers of disk-
1, disk-2, and the sphere (all in the body frame), are
written as

r1 = (g + a cos θ1)̂i1 + a sin θ1î2 (3a)

r2 = −(g + a cos θ2)̂i1 + a sin θ2î2 (3b)

r3 = −(h + l)̂i2 (3c)

We assume that hydrodynamic perturbation of the T-
frame is negligible compared to disks and the sphere,
and also, the disks and the sphere are far enough,
a, b � h, g, that we can neglect hydrodynamic inter-
actions between them. The translation tensor for a cir-
cular disk of radius a and sphere of radius b can be
obtained as [39]

Kdisk =
16
3

a(2ê1ê1 + 3ê2ê2 + 2ê3ê3) (4)

Ksphere = 6πbI (5)

where I is an identity matrix and (ê1, ê2, ê3) are basis
vectors of an orthogonal coordinate system fixed to the
center of the disk with ê2 directed normal to the disk.
Assuming ê3 to be directed along the positive î3 axis
of the body frame, to obtain the translation tensor of
the nth disk (n = 1, 2) with respect to the frame of the
swimmer, we use the rotation matrix [38]

Rn =

⎡
⎣(−1)n+1 cos θn sin θn 0

− sin θn (−1)n+1 cos θn 0
0 0 1

⎤
⎦

(6)

which yields:

Kn = RT
nKdiskRn (7)

The background fluid exerts a hydrodynamic force on
each part of the swimmer as it moves. The hydrody-
namic forces that disk-1, disk-2, and the sphere expe-
rience as they move are denoted by F 1, F 2, and F 3

respectively, which reads [39]

F i = −μKivi (i = 1, 2, 3) (8)
K3 = Ksphere (9)

The hydrodynamic torques exerted on the disks can
be obtained as [39]

T n = −μΩdisk(φ̇ + θ̇n) (n = 1, 2) (10)

where Ωdisk = 32
3 a3I, and for the case of a sphere, we

have

T 3 = −μΩsphereφ̇ (11)

where Ωsphere = 8πb3I. In the absence of external forces
and torques, the swimmer will be force and torque-free,
meaning the swimmer is subjected to the constraints

3∑
j=1

F j = 0 (12)

3∑
j=1

(rj × F j + T j) = 0 (13)

where rj × F j are the torque vectors due to the first
moment of the hydrodynamic force about the origin of
the body frame. If the nth disk (n ∈ {1, 2}) rotates
relative to the links during a phase, it must be torque-
free; thus, it is subjected to the constraint

T n + ((−1)n+1a cos θnî1 + a sin θnî2) × F n = 0
(14)

Eq. 14 puts a constraint on both disks during phase 1
and phase 4, as disks are free to rotate. It also applies
to disk-2 during phase 2 and phase 5.

Considering each phase separately, upon substituting
from Eqs. 2 and 3 into Eqs. 12–14, we drive first-order
ODEs, describing the motion of the swimmer that can
be used to find the position and orientation of the swim-
mer in each phase. In the proceeding sections, analytical
solutions are calculated for the case of the symmetric
constraining angles of the disks, while we use a numer-
ical approach in general. We first treat the problem for
the case of symmetric constraining angles of the disks
and then for the asymmetric one.

3 Pure translational (straight) motion:
symmetric constraining angles of disks

In the case of symmetric constraining angles, θ2,min =
θ1,min, simplifies phases of the cycle of motion to 4
phases by eliminating phases 2 and 5. Therefore, the
swimmer’s phases 1, 2, 3, and 4 of this case will be the
same as general phases 1, 3, 4, and 6, respectively, where
the orientations of the disks are symmetric (θ1 = θ2)
during the motion. This is depicted in Fig. 2 (straight
motion). Since the swimmer is symmetric with respect
to the yz plane of the body frame, it will undergo a lin-
ear path without rotation. For each phase of the swim-
mer’s motion, its corresponding ODE is given in the
Appendix A. Upon solving these ODEs, we can find the
translational displacement of the swimmer Δsym as

Δsym =
(

48πba sin2 θsym
(16a + 3πb)(32a + 9πb + 16a cos2 θsym)

)
(lmax − lsym) (15)
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where

θsym = −θ1,min = −θ2,min

lsym = l1 = l3

=
a

5.4πb
[(32a + 9πb) ln (sec θsym + tan θsym)

−12.8a sin θsym] (16)

for the case of lmax ≥ lsym. As mentioned in Sect. 2,
lsym is the extended (contracted) length of the body
link corresponding to the first (third) phase. As the
disks and the sphere are not influenced by the pertur-
bations caused by each other, the displacement during
phases 1 and 3 is equal and in the opposite direction,
which can be thought of as the latter is the time rever-
sal of the former. Thus, the link extension (or contrac-
tion) lsym, only contributes to changing the shape of
the swimmer, while the translation occurs during the
lmax − lsym portion of extension and contraction of the
body link. Figure 3 shows lsym as a function of con-
straining angle θsym for some selected values of b/a.
For a specific set of design parameters, lsym always
increases as θsym rises, which is reflected in the figure.
Furthermore, as θsym → π/2, lsym → ∞. Physically,
the torque exerted on the disks decreases as θsym goes
up, and in turn, much further extension of the body
link is required for larger values of θsym. According to
the graph, any increase in b/a reduces lsym. In fact, the
sphere acts as an anchor for the disks; hence larger val-
ues of b/a give rise to an increase in the force exerted
on the disks as the link expands.

Figure 4 shows Δsym/a as a function of possible val-
ues of θsym, which keeps the condition lsym ≤ lmax, for
some selected values of lmax/a. It is clear that as the
stroke length increases, the displacement of the swim-
mer increases too. More importantly, the dependency
on θsym shows an optimum value for which the displace-
ment reaches its maximum value. The value of θsym
affects displacement in two ways: Firstly, the increase
in θsym provides more difference in the resistance of
disks during extension and contraction of the active
link, which results in an increase in displacement of
the swimmer. Secondly, the greater the value of θsym,
the larger lsym would be, as discussed about Fig. 3. This
means a larger portion of the link would be dedicated to
changing the shape of the disks without having any net
displacement. As a result of these two opposing effects,
there is indeed expected to be an optimal value of θsym
for each assumed value of stroke length lmax/a.

As expected for a low Reynolds number swimmer,
the expression for Δsym shows that the displacement
of the swimmer in each cycle does not depend on the
deformation rate l̇. The mean translational velocity of
the swimmer in the case of straight motion, Vsym, can
be derived as

Vsym =
(

48πba sin2 θsym
(16a + 3πb)(32a + 9πb + 16a cos2 θsym)

)

Fig. 3 Dimensionless expansion or contraction length of
the body link in the phases 1 and 3, lsym/a (Eq. 16), as
a function of the constraining angle θsym (Eq. 15). Dotted
(blue), dotted (red, marked with ’+’), dash-dotted (green),
dash (purple), and solid (blue) lines correspond to b/a =
0.25, 0.5, 1, 2, 4, respectively

(
lmax − lsym

τ

)
(17)

where τ is the time required for a complete cycle. The
above expression can be compacted as Vsym = Δsym/τ .

4 2D curved motion: asymmetric
constraining angles of disks

The translational displacement Δ = (Δx,Δy) and the
change in orientation β of the swimmer over the first
cycle can be calculated by summing contributions Δi

and βi, respectively, correspond to the ith phase (1 ≤
i ≤ 6) as

Δ =
∫ τ

0

Vs dt =
6∑

j=1

Δj (18)

β =
∫ τ

0

φ̇ dt =
6∑

j=1

βj (19)

where τ is the time required for a complete cycle. We
recall that the body-fixed coordinate system initially
coincides with the laboratory frame. Figure 5 shows the
trajectory and the orientation of the swimmer for a
specific geometry of g/a = 15, h/a = 10, b/a = 2,
θ1,min = −45◦, θ2,min = −60◦, and the stroke length of
lmax/a = 8 during the first cycle. It can be seen that
during the extension of the active link, the swimmer
moves forward (in y direction), whereas it moves back-
ward as the active link contracts. Since the disks’ orien-
tations are different during expansion and contraction,
the resultant translation is a forward movement (in y
direction). The first and second phases of the motion are
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Fig. 4 Dimensionless translational displacement Δsym/a,
as a function of the constraining angle θsym (Eq. 17). Solid
(green), dash (red), and dash-dotted (blue) lines correspond
to lmax/a = 4, 6, 8, respectively

not affected by the stroke length lmax/a; hence, their
contribution is an intrinsic property of the swimmer
when it is fabricated ( dΔj

dlmax
= dβj

dlmax
= 0, j = 1, 2). Sub-

sequently, at the beginning of the third phase, the body
link has the constant extension length of l = l1+l2, and
the corresponding body deformation l3 = lmax−(l1+l2)
linearly depends on the stroke length lmax. During this
phase, the swimmer rotates counter-clockwise, and the
larger values of lmax increase the magnitude of this rota-
tion (we recall that |θ2,min| ≥ |θ1,min|). While phase 6
does not contribute to the swimmer’s rotation, in the
fourth and fifth phases, the swimmer experiences rota-
tion. As phases 3, 4, and 5 depend on the stroke length
lmax, we can alter this length to control the rotation
of the swimmer. Figure 6 shows dimensionless trans-
lational displacements, Δx/a, Δy/a, and angular dis-
placement β of the swimmer as a function of lmax for
the same geometry as Fig. 5, and some selected values
of θ2,min. Analogous to symmetric constraining angles
of the disks, as lmax/a increases, the swimmer achieves
larger displacements in y direction. The nonzero val-
ues of Δx/a and β are the results of the deviation of
the swimmer’s constraining angles from its symmetrical
configuration. Here larger values of |θ2,min| correspond
to more asymmetry in the shape of the swimmer, which
increases the magnitude of these two quantities.

4.1 The trajectory of the swimmer over many
cycles of motion

As we have shown in Appendix B, the noise-free tra-
jectory of any swimmer undergoing multiple cyclic
motions must be a circle. The center and radius of this
circle are given in Appendix B, which only depend on
the translational and angular displacement of the swim-
mer. In particular, the polar angle and magnitude of the

Fig. 5 Assuming a specific geometry of g/a = 15, h/a =
10, b/a = 2, θ1,min = −45◦, θ2,min = −60◦, and lmax/a = 8,
the swimmer initially starts from the origin of the global
frame, (0, 0) and φ = 0. a The trajectory of the swimmer
in a cycle where x and y axes have different scales. b The
evolution of the orientation of the swimmer as a function
of the extension of the body link during a cycle. Solid and
dash lines correspond to odd and even phases of the motion,
respectively

translational displacement are needed in Eqs. B5 and
B6. Assuming that the swimmer position, xc, initially
coincides with the origin of the global frame, the polar
angle associated with the orientation of the transla-
tional displacement Δ(lmax) can be obtained as arg(Δ).
Considering small values of angular displacement, we
can interpret this angle as a direction tangent to the
circular trajectory. This angle, in general, differs from
the orientation of the active link.

Using Eq. B6 from Appendix B, the radius of the
swimmer’s trajectory, ρ, can be obtained as

ρ =
‖Δ‖

2 sin β/2
(20)

In Fig. 6 (panel (d)), the curvature of the swimmer’s
possible trajectories, a/ρ, is shown as a function of
stroke length. The negative part of the curve indicates
clockwise rotation, while the positive part corresponds
to a counter-clockwise rotation of the swimmer. For
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Fig. 6 Translational (a max and b) and angular (c) dis-
placement of the swimmer as a function of stroke length,
lmax/a, over one cycle, for a model with the same geometry
as Fig. 5 (g/a = 15, h/a = 10, b/a = 2, θ1,min = −45◦).
d Dimensionless curvature of the trajectory as a function
of the stroke length ρ. Solid, dashed, and dash-dotted lines
correspond to θ2,min = −60◦, −70◦, −75◦, respectively

lmax/a ≈ 5.46, the curvature of the swimmer’s tra-
jectory is zero, indicating that for a specific value of
lmax/a, the swimmer has a linear trajectory. Figure 7
illustrates several possible trajectories of the swimmer
performing a cyclic motion. According to this figure,
for small values of stroke length, the swimmer’s move-
ment is counter-clockwise along its circular trajectories,
whereas for lmax/a > 5.46, the motion is clockwise. As
it was interpreted from Fig. 6, for lmax/a ≈ 5.46 the tra-
jectory is a straight path. This straight path, in general,
is not parallel to the direction of the active link (also y
direction).

To reach any destination (outside of the two limiting
circles of red and yellow colors), the swimmer can move
along the circles, shown in Fig. 7, by performing cyclic
motion with a specific choice of stroke length, lmax/a,
corresponding to the desired circle. There is a specific
choice of lmax/a that leads to the straight motion of the
swimmer, while below this value, the swimmer follows
a circular trajectory counter-clockwise; when lmax/a
exceeds this value, the swimmer undergoes a clockwise
one. Unlike the case of symmetric constraining angles,
this straight path is not parallel to y axis. Motion along
a straight path can be obtained for other sets of unequal
constraining angles with various orientations and is not
limited to this specific pair of constraining angles. This
orientation can be defined as the polar angle of their
displacement, Δ, in the laboratory frame (arg(Δ)). In
Fig. 8, orientation of straight path (arg(Δ)) is illus-

Fig. 7 Possible noise-free trajectories of the swimmer,
which are circles. Geometrical parameters are g/a = 15,
h/a = 10, b/a = 2, θ1,min = −45◦ the same as Fig. 5.
Each path (circle) can be followed by repeatedly performing
expansion and contraction with a specific stroke length cor-
responding to the circle. The above trajectories are obtained
by considering different values for the stroke length, lmax/a,
wherein 3.5 ≤ lmax/a ≤ 9. Dotted (red) and dash-dotted
(yellow) circles correspond to lmax/a = 3.5 and lmax/a = 9,
respectively. Moreover, the dash (blue)line correspond to
lmax/a = 5.46

Fig. 8 Straight path’s orientation (the angle between pos-
itive x direction and the path) as a function of constrain-
ing angle θ2,min for three constant values of θ1,min =
−5◦, −10◦, −15◦. The geometry of the swimmer is consid-
ered as Fig. 5 (g/a = 15, h/a = 10, b/a = 2)

trated as a function of |θ2,min|, for three constant val-
ues of θ1,min. According to this figure, for small values
of |θ1,min|, the straight path’s orientation can be signif-
icantly oblique toward the −x direction.
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5 Concluding remarks

In this work, a novel scheme of a cargo container swim-
mer at low Reynolds number is introduced in which its
propulsion is due to the activation of one telescopic link.
This is an example of a strategy for relaxing the scallop
theorem constraint. Although, here, the case of two pas-
sively revolving disks is considered, more generally, any
two passively flapping elements with different hydro-
dynamic resistance in two perpendicular directions can
be used. Some technical discussions about the operation
condition of the swimmer are given to extend the poten-
tial capabilities of the presented approach in designing
and fabricating swimmers with minimum active ele-
ments. The presented model can be used as a model
for some biological elements such as Chlamydomonas
and as a design scheme for synthetic swimmers.
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Appendix A ODEs for the case of straight
motion

For the case of symmetric constraining angles, the governing
ODEs can be derived upon substituting from Eqs. 2 and 3
into Eqs. 12–14 and solving the subsequent linear system of
the equations. Considering each phase separately, the ODEs
are calculated as:

For the first and third phases:

θ̇1 = −l̇

(
27bπcos(θ)

a(160a + 45πb − 64acos2(θ))

)
î3 (A1)

vO = l̇

(
45bπ

96a + 45πb + 64asin2(θ)

)
î2 (A2)

For the second phase:

vO = l̇

(
9bπ

32a + 9πb + 16acos2(θ1,min)

)
î2 (A3)

For the fourth phase:

vO = l̇

(
9bπ

32a + 9πb + 16a

)
î2 (A4)

By integrating Eq. A1, expansion (contraction) length of the
body link in the phase 1 (phase 3) can be found, which is

Fig. 9 The trajectory of an arbitrary swimmer (green line)
over two cycles (starting from point A and passing point B,
which is the swimmer’s final position in the first cycle and
the initial position for the second cycle, the swimmer reaches
the eventual position at point C in the second cycle). The
body-fixed coordinate system EA

1 EA
2 EA

3 initially coincides
with the laboratory frame XY Z

denoted by lsym and given in Eq. 16. From the above equa-
tions, it is evident that only the second and fourth phases
contribute to the swimmer’s displacement over each cycle,
as also explained in Sect. 3.

Appendix B General description of the tra-
jectory for an arbitrary cyclic motion of a
swimmer in 2D

Here we consider the motion of a cyclic swimmer in the XY
plane of the inertial frame XY Z, in which each cycle of
motion leads to the resultant translation δ and rotation γ
as illustrated in Fig. 9.

We will show that all initial and final positions of the
swimmer in each cycle are concyclic. We consider an arbi-
trary cycle during the motion of the swimmer, initially start-
ing from point A and reaching point B at the end of this

cycle. We assume Θ to be the angle between
−→
AB, the vec-

tor joining point A to point B, and the positive X axis.
Without loss of generality, we assume that EA

1 EA
2 EA

3 is the
body-fixed frame initially coinciding with XY Z frame, and
EB

1 EB
2 EB

3 is the same body-fixed frame at the end of the
first cycle at point B (Fig. 9). It can be shown that there is a
point oc = (oc,1, oc,2) such that its position (mathematical
representation) is the same in both the former and the latter
frames (i.e., oc = (oc,1, oc,2)EA

1 EA
2 EA

3
= (oc,1, oc,2)EB

1 EB
2 EB

3
).

This point can be calculated as

oc =

(
δ sin (Θ − γ/2)

2 sin γ/2
,
δ cos (Θ − γ/2)

2 sin γ/2

)
(B5)

As we obtained the point oc in an arbitrary cycle of the
motion, this point has the same property for all the pro-
ceeding cycles of the swimmer; thus, it is the center of the
circle passing through all the initial and final positions of the
swimmer. Each cycle gives rise to the rotation of the body
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frame about point oc with angle γ. Thus, the positions of
the swimmer at the end of each cycle are concyclic, with oc

being the center of the circle. The radius of this circle ρ can
be derived as

ρ =
δ

2 sin γ/2
(B6)

The system closes the circle after n cycles of motion, simply
calculated as, n = � 2π

γ
�, where �x� is the ceiling function

mapping the least integer greater than or equal to x [40].
For small values of γ, the noise-free trajectory, analogous to
Reference [33], is a circle.
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