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Abstract It is well known that positions of topological defects (TDs) in liquid crystals can be manipulated
experimentally by locally distorting the liquid crystalline (LC) order, as for example by melting induced
by optical tweezers. In this work, we study numerically the nematic ordering profiles and the correspond-
ing topological defect configurations in thin nematic liquid crystalline shells controlled by imposed local
distortion of LC order. We demonstrate that within curved LC films such manipulations could be strongly
affected by local Gaussian curvature if it exhibits strong spatial variations. We use mesoscopic approach in
which the shell geometry and LC orientational order are described by curvature of the surface and nematic
order parameter tensor. For illustration purposes, we consider LC shells exhibiting spherical topology. We
show that on increasing prolateness of shells, which imposes spatially inhomogeneous Gaussian curvature,
TDs are relatively strongly “glued” to a local Gaussian curvature.

1 Introduction

Topological defects (TDs) correspond to localized defor-
mations in a physical field that are topologically pro-
tected [1]. Due to its topological origin, this research
field is strongly interdisciplinary [2]. Consequently, it is
of interest to all branches of physics. The essential prop-
erty of TDs is their topological charge [1, 3], which is a
conserved quantity. Therefore, conservation rules gov-
ern transformations among different defects arrange-
ments, such as merging of defects and splitting [4, 5]

An ideal testing ground to study the impact of topol-
ogy and geometry on TDs are nematic liquid crys-
talline (LC) shells [6–10]. They consist of thin nematic
films, roughly of typical molecular length thickness,
covering micrometers-sized colloidal objects. Nowadays,
one can prepare colloids of almost arbitrary topology
experimentally [11]. TDs within films could be visu-
alized using relatively simple methods, such as polar-
izing microscopy [12]. Furthermore, nematic LCs [12]
are extremely stimuli-responsive owing to their inherent
softness. Finally, nematic shells are promising building
blocks to form different new effective materials in near
future, e.g., as colloidal crystals [6].

The simplest nematic LCs [12] consist of anisotropic
(e.g., rod-like) LC molecules. They exhibit liquid-like
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properties combined with orientational order. The lat-
ter is at the mesoscopic level commonly described by
the nematic director field −→n , pointing along a local
average molecular direction. In bulk equilibrium, −→n is
spatially homogeneously aligned along a single symme-
try breaking direction. Nematic shells exhibit effectively
two-dimensional (2D) systems, where orientations of −→n
are confined within a 2D curved film [6]. Consequently,
such structures are in general dominated by TDs.

In 2D nematic films, point topological defects are
characterized by the winding number m, which can be
half integer due to ±−→n invariance. It describes the num-
ber of rotations of −→n on encircling by any path the
defect center counter clockwise. TDs characterized by
a positive and negative value of m are referred to as
defects and antidefects, respectively. The free energy
costs of a single TD in a flat geometry are proportional
to m2. Consequently, if a TDs bearing a relatively high
topological charge is enforced, it tends to decompose
into elementary charges bearing |m| = 1/2. Within a
closed surface, the total charge in the system is deter-
mined [13, 14] by the Gauss–Bonnet and Poincare–Hopf
theorems: 1

2π

�
Kd2r = 2(1 − g) = mtot. Here K

stands for the Gaussian curvature, dA = d2r is the sur-
face element of a closed 2D manifold, g is the genus of
the surface (i.e., number of holes), and mtot stands for
the total topological charge within the system. For the
spherical topology (g = 0) it holds mtot = 2. There-
fore, a large enough spherical film hosts four TDs [7,
15] bearing m = 1/2. Furthermore, regions exhibiting
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K > 0 (K < 0) attract [16–19] TDs bearing m > 0
(m < 0). Therefore, a surface patch ΔA bearing pos-
itive (negative) Gaussian curvature acts locally as a
“smeared” negative (positive) topological charge given
by ΔmK = − 1

2π

∫∫
KdA. Consequence of this ten-

dency is the Effective Topological Charge Cancellation
(ETCC) mechanism [20] which claims that each sur-
face patch ΔA, characterized by the spatially averaged
Gaussian curvature K = 1

ΔA

∫∫
KdA, tends to be topo-

logically neutral, i.e. Δmeff = ΔmK + Δm = 0. Here
Δm stands for the total charge of TDs and Δmeff

stands for the effective charge within the surface patch.
Armed by Gauss–Bonnet & Poincare–Hopf theorems
along with the ETCC mechanism one could efficiently
predict the number of TDs within a system.

One of the key LC features is softness, i.e., strong
responsivity to local stimuli. In particular, it has been
shown that one could efficiently manipulate nematic
TDs using laser beams [21–24]. Namely, a laser beam
locally melts orientational order. Similar LC configu-
ration is formed within the core of topological defects.
Therefore, it is advantageous for TDs to be assembled
within regions with reduced nematic order because the
condensation melting penalty to form the defect core is
reduced. Due to similar phenomenon, TDs in arbitrary
physical field tend to be pinned to “impurities”. How-
ever, we show in this contribution that in effectively 2D
curved manifolds, nematic TDs are relatively strongly
“glued” to a local Gaussian curvature.

The plan of the paper is as follows. Is Sect. 2 we intro-
duce the model. The results are presented in Sect. 3 and
conclusions are summarized in Sect. 4.

2 Model

To describe the shapes of 2D curved manifolds and the
nematic ordering within them, we use mesoscopic mod-
eling, where the properties of the system are described
using the curvature tensor C and the nematic order ten-
sor Q. The Weingarten curvature tensor C [10] deter-
mines the local surface curvature:

C = C1
−→e1 ⊗ −→e1 + C2

−→e2 ⊗ −→e2 , (1)

where the unit vectors {−→e1 ,−→e2} point along the sur-
face principal directions exhibiting principal curvatures
{C1, C2}. In this formulation, the local mean curvature
(H) and the Gaussian curvature (K) are the invariants
of C and can be calculated as:

H :=
Tr[C]

2
=

C1 + C2

2
, K := Det[C] = C1C2

(2)

Local nematic orientational order on the surface is
described in terms of the 2D tensor order parameter
Q. The molecules exhibiting orientational ordering are
bound to lie in the local tangent plane of the surface

and are otherwise unconstrained. We assume rod-like
shaped molecules with the so-called head-to-tail invari-
ance. Tensor Q can be expressed in the diagonal form
as [15]

Q = λ(−→n ⊗ −→n − −→n ⊥ ⊗ −→n ⊥), (3)

where the unit vectors −→n and −→n ⊥ are its eigenvec-
tors, while λ ∈ [0, 1/2] and −λ are the corresponding
eigenvalues. The lower bound λmin = 0 corresponds to
locally isotropic state with no orientational order, while
the upper bound λmax = 1/2 corresponds to locally
ordered state with molecules rigidly aligned along the
direction−→n , commonly referred to as the nematic direc-
tor field.

We express the total free energy functional of the LC
shell surface as F =

∫∫
fd2r, where the free energy

density f = fc + fe consists of the order condensation
(fc) and elastic (fe) term. We use a minimal model to
illustrate the features of our interest. For this purpose,
we express the nematic elasticity in terms of a single
elastic constantk. The energy densities are expressed
as [15, 20]

fc = −αTrQ2 + β
(
TrQ2

)2
, (4a)

fe = kTr
((∇sQ

)2
)
. (4b)

The orientational ordering exists for positive values
of material constants α and β. The material depen-
dent order parameter correlation length is defined as
ξ =

√
k/|α| and estimates the distance at which a local

perturbation in order parameter relaxes on a flat sur-
face. The quantity R is introduced as a characteris-
tic geometrically imposed length in the system and is
defined as the radius of the sphere with the same surface
area as the surface of the investigated shell. The bulk
equilibrium value of order parameter in flat geometries
is given by λ0 =

√
α/β/2.

LC shells in this study are restricted to axially sym-
metric surfaces of revolution with rotational symmetry
about the z-axis. The position vector −→r of a generic
point lying on such surface can be parametrized as

−→r (ϕ, s) = ρ(s) cos ϕ−→ex + ρ(s) sinϕ−→ey + z(s)−→ez , (5)

where ρ(s) and z(s) are the coordinates of the LC shell
profile in the (ρ, z)-plane, ϕ ∈ [0, 2π] stands for the
azimuthal angle and s represents the arc length of the
profile curve [20, 25–27]. The unit vectors {−→ex,−→ey ,−→ez}
determine the Cartesian coordinate system. On the sur-
face of revolution, parallels and meridians represent the
lines of principal curvature. We set that the principal
directions (see Eq. 1) {−→e1 ,−→e2} point along meridians
(ϕ = const.) and parallels (s = const.), respectively.

In this paper we considered fixed axisymmetric sur-
faces, defined by their profile curve, on which the
nematic ordering was calculated by minimizing the free
energy with respect to Q. In simulations, shell surface is
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Fig. 1 Equilibrium
nematic ordering profile on
a spherical shell, where the
point affected by the laser
beam (distortion) is
denoted by an arrow in
each panel. a The nematic
order parameter λ variation
in the (ϕ, s) plane. b The
shell’s shape with the
superimposed color code
determined nematic order
parameter. c Superimposed
nematic director field and
order parameter profile λ in
the (ϕ, s) plane. The
calculations were performed
for R/ξ = 10

represented by 100 × 100 points. Equilibrium textures
are calculated with the Monte Carlo method, i.e. by
randomly changing the tensor Q in each of these poins
until the total free energy cannot be further minimized.
Laser beam was modeled by imposing a boundary con-
dition of locally melted orientational order. Melting is
enforced by setting λ = 0 in some points, while the
orientational ordering is calculated by minimizing the
total free energy in all other points. Smooth transi-
tion from the melted region to the surrounding ordered
regions is enforced by Eq. (4b) since any sharp changes
result in energy penalty.

3 Results

Of our interest is manipulation of TDs in nematic shells
by laser (or some other means) driven local distortions,
which give rise to local melting of nematic order. In
simulations we simulate such distortions via a melted
region whose spatial position within prolate shells is
varied. It is well known that local melting attracts TDs
[21–24] deep in the nematic phase. Namely, both melt-
ing and TDs introduce a relatively strong condensation
penalty. Since the core of a TD is essentially melted,
the total free energy penalty is in general reduced if the

melted region and TD occupy the same region. Hence-
forth we refer to a melted region as distortion.

For the reference we plot in Fig. 1 the configuration
of TDs in a spherical nematic shell, where the distortion
is marked by an arrow. In this case the Gaussian curva-
ture is spatially constant and consequently the relative
position of TDs is determined by their mutual elastic
repulsion and in our case also by the location of the dis-
tortion. More detailed analytical and numerical studies
are given in Refs.[7, 8, 15]. Four m = 1/2 TDs occupy
the vertices of a tetrahedron inscribed within the sphere
{see Fig. 1b and c). At the core of defects, whose lin-
ear size is roughly given by the nematic order param-
eter correlation length, the nematic order is melted
(Fig. 1a). We henceforth refer to such a spatial dis-
tribution of TDs as the tetrahedron configuration. We
can place the distortion on any point on the spherical
surface and the closest defect will get trapped within
its center. Because of mutual repulsion, other defects
rearrange in such a way that the tetrahedron configu-
ration symmetry is conserved. Note that the linear size
of the distortion has to be comparable to the nematic
correlation length ξ in order to effectively trap TDs.
If the distorted region represents only 1 point in our
100 × 100 surface discretization, it doesn’t significantly
change the orientational ordering profile. Therefore, in
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Fig. 2 Equilibrium nematic ordering profiles on a weakly
prolate shell. Panel a represents the case without the dis-
tortion (laser beam), while different positions of the distor-
tion are denoted by arrows in the panels (b, c, d). Left-hand
side in each panel shows the superimposed nematic director

field and color code determined order parameter profile λ
in the (ϕ, s) plane, while the shell shapes with the superim-
posed nematic order parameter are presented in the right-
hand side in each panel. The calculations were performed
for R/ξ = 10

our simulations, the distortion is represented by 3 × 3
points.

Firstly, we consider weakly prolate shells that are
close to a sphere. TDs are attracted to regions exhibit-
ing maximal Gaussian curvature. Consequently, pairs
of TDs in the upper and lower region of an ellipsoid
are shifted toward the corresponding poles as shown in
Fig. 2a. Next, we introduce a distortion whose position
we vary. In Fig. 2b we show the case where the dis-
tortion is slightly above the lower pole. One sees that
the closest TD moves toward this point and becomes
trapped within it. Due to the mutual elastic interac-
tion among TDs, all the remaining TDs rearrange in
order to minimize their mutual repulsion. Similar phe-
nomenon is observed in Fig. 2c, d. Figure 2 illustrates
that in such a geometry one can efficiently manipulate
the position of TDs. Due to spatially dependent Gaus-
sian curvature their relative position in general signifi-
cantly departs from the reference tetrahedron configu-
ration. The spatial profile K for weakly prolate shells
presented in Fig. 2 is shown in Fig. 3 (dashed line).

Next, we consider relatively pronounced prolate
shells where the Gaussian curvature exhibits strong spa-
tial dependency (Fig. 3, full line). In this case, TDs are
relatively strongly “glued” to the regions close to the

Fig. 3 Gaussian curvautre K(s) spatial variations for three
different shapes (sphere, weakly prolate shape, strongly pro-
late shape) analyzed in this paper. Ls is the length of the
profile curve and R the radius of the sphere with the same
surface area as the surface of the investigated shape

poles. In Fig. 4a we show the configuration of TDs in
the absence of a distortion: the defects are placed rel-
atively close to the poles. In Fig. 4b we introduce a
distortion close to the lower pole. One sees that one
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Fig. 4 Equilibrium nematic ordering profiles on a strongly
prolate shell. Panel a represents the case without the laser
beam (distortion), while different positions of the distor-
tion are denoted by arrows in the panels (b, c, d). Left-hand
side in each panel shows the superimposed nematic director

field and color code determined order parameter profile λ
in the (ϕ, s) plane, while the shell shapes with the superim-
posed nematic order parameter are presented in the right-
hand side in each panel. The calculations were performed
for R/ξ = 10

can manipulate the relative position of the two TDs
which are adjacent to this pole. Note that in the region
close to the poles Gaussian curvature exhibits a rela-
tively large value. One TD is always trapped within
the distortion, while the other adopts the position that
reflects the interplay between the mutual interaction of
these defects and their interaction with the local Gaus-
sian curvature. The position of other two TDs remains
essentially the same. This reveals that their position
is dominantly influenced by the local Gaussian curva-
ture and their mutual elastic repulsion. If the distor-
tion is dragged outside of the region where K is rel-
atively large, the trapped defect depins from the dis-
tortion and the defect configuration favored by K is
recovered (Fig. 4d).

4 Conclusions

Of our interest was manipulation of TDs within nematic
shells exhibiting spherical topology. In our simulations
we inserted a localized melted region (to which we

refer as a distortion) and observed its impact on spa-
tial distribution of TDs. Experimentally, this could be
achieved, e.g., by using a narrow laser beam. In this
case, in addition to thermal effects, also electromagnetic
field might play the role. In our approach we neglect
the latter effect. Our simulations reveal that responses
to distortions strongly depend on geometrical details,
i.e., spatial dependence of the Gaussian curvature. In
cases where the Gaussian curvature is constant, the
closest TD gets trapped within the distortion, while
the remaining TDs redistribute and adopt the configu-
ration which minimizes their mutual elastic repulsion.
The relative positions of TDs are enslaved by the dis-
tortion, however, the symmetry of their arranging is
conserved. In the case where K exhibits a weak spatial
dependence, we observe qualitative changes in the dis-
tribution of TDs as a function of the distortion position.
In this case the assembly of TDs is sensitively depen-
dent on the interplay between the local melting penalty
due to the distortion, repulsion interaction among all
TDs, and their attraction to the Gaussian curvature.
Even stronger qualitative changes are observed in cases
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where K exhibits a relatively strong spatial depen-
dence. In this case, the distortion can strongly affect
two defects near a pole if it is located close to the TDs.
The two TDs at the opposite pole are relatively weakly
affected, which means that strongly spatially dependent
K profile decouples the pairs of TDs at opposite poles.
Furthermore, TDs are in such cases relatively strongly
“glued” within regions exhibiting relatively large val-
ues of K. One could drag a TD if it is initially trapped
within the distortion within an area where K does not
significantly change. However, if it is dragged toward
the region exhibiting sufficiently lower value of K, the
defect depins from the distortion and restores the con-
figuration favored by spatial K dependence.

Ability to positionally manipulate TDs opens oppor-
tunities to diverse applications. For instance, TDs in
LCs could efficiently trap appropriate nanoparticles
(NPs) within their cores [28, 29]. Such NPs should
either be appropriately surface decorated or should be
small enough. These conditions are embodied in the
requirement [12] R/de < 1, where R stands for the
characteristic NP linear size and de stands for the sur-
face extrapolation length. The latter is inversely pro-
portional with the LC-NP surface anchoring interac-
tion strength. Thus via positional manipulation of TDs
one could indirectly control arrangements of trapped
NPs which might be exploited in diverse nanotechnolog-
ical applications. For example, nematic shells immersed
in an appropriate fluid could potentially form micron-
sized crystal structures [6], where the “valence” of basic
constituents (i.e., nematic shells) is determined by TDs
within the shell. In such structures, positional manip-
ulation of TDs would affect local bonding conditions.
Furthermore, TDs are sources or relatively long-ranged
distortions in nematic order. Moving their cores in gen-
eral causes apparent local optical changes which might
be exploited in diverse optical devices.
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8. G. Skačej, C. Zannoni, Controlling surface defect valence
in colloids. Phys. Rev. Lett. 100(19), 197802 (2008)

9. T. Lopez-Leon, V. Koning, K.B.S. Devaiah, V. Vitelli,
A. Fernandez-Nieves, Frustrated nematic order in spher-
ical geometries. Nat. Phys. 7(5), 391–394 (2011)

10. R. Rosso, E.G. Virga, S. Kralj, Parallel transport and
defects on nematic shells. Contin. Mech. Thermodyn.
24(4), 643–664 (2012)

11. B. Senyuk, Q. Liu, S. He, R.D. Kamien, R.B. Kus-
ner, T.C. Lubensky, I.I. Smalyukh, Topological colloids.
Nature 493(7431), 200–205 (2013)

12. M. Kleman, O.D. Lavrentovich (eds.), Soft Matter
Physics: An Introduction (Springer, New York, NY,
2003)
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