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Abstract Shear strain localization into shear bands is associated with velocity weakening instabilities
and earthquakes. Here, we simulate steady-state plane-shear flow of numerical granular material (gouge),
confined between parallel surfaces. Both constant shear stress and constant strain-rate boundary conditions
are tested, and the two types of boundary conditions are found to yield distinct velocity profiles and friction
laws. The inertial number, I, exerts the largest control on the layers’ behavior, but additional dependencies
of friction on normal stress and thickness of the layer are observed under constant stress boundary condition.
We find that shear-band localization, which is present in the quasistatic regime (I < 10−3) in rate-controlled
shear, is absent under stress-controlled loading. In the latter case, flow ceases when macroscopic friction
coefficient approaches the quasistatic friction value. The inertial regime that occurs at higher inertial
numbers (I > 10−3) is associated with distributed shear, and friction and porosity that increase with
shear rate (rate-strengthening regime). The finding that shear under constant stress boundary condition
produces the inertial, distributed shear but never quasistatic, localized deformation is rationalized based
on low fluctuations of shear forces in granular contacts for stress-controlled loading. By examining porosity
within and outside a shear band, we also provide a mechanical reason why the transition between quasistatic
and inertial shear coincides with the transition between localized and distributed strain.

1 Introduction

Shear of granular media controls many industrial and
geological settings. For rocks, granular shear occurs
within geological fault zones and in landslides. Dur-
ing shear and sliding, faults experience wear and accu-
mulate an increasingly thick layer of crushed grains
(termed fault gouge), which becomes the locus of slid-
ing, e.g., [1–3]. Field observation of fault zones [4–9],
laboratory experiments of shearing confined grains [10–
17] and numerical simulations [18–21] show that shear
strain often localizes into discrete, planar zones that
constitute gouge layers. Also in landslides, when the
slide is thick enough, most of the shear is concentrated
at its base, in a localized shear band [22].

Results from laboratory experiments on analog fault
zones suggest that strain localization within granular
layers also coincides with the transition to velocity
weakening and unstable sliding, manifested by stick-
slip behavior. This transition for geological fault zones
is in turn identified with the transition from stable creep
to unstable earthquakes [10–13], marking the ques-
tion of localization as a fundamental aspect of earth-
quake physics [23,24]. The transition between stable
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and unstable sliding has been found to be predomi-
nantly controlled by mineral composition and structure
[14,25,26], effective confining stress [25,27], stress path
[28,29], pore fluid effects [28,30–32], temperature effects
[17,33,34] and time-dependent chemical processes at
grain contacts [35]. Here we leave thermo-, hydro- and
chemical effects aside and seek purely mechanical origin
for this transition and conditions under which consti-
tutive laws of granular media allow localization.

The physics of localization onset in continuum
mechanics has been the subject of long research. A gen-
eral theory, e.g., [36–44], views localization as a bifurca-
tion point for which constitutive equations of the rate-
boundary-value problem change their type from elliptic
(prior to localization) to hyperbolic [45]. Conditions for
the onset of shear band localization can be predicted
if the constitutive equations of the material (prior to
localization) feature bifurcation for which a solution in
the form of localized deformation exists. Rudnicki and
Rice [36] predicted both the shear band orientation and
the amount of strain accommodated within the shear
band for realistic constitutive relations for brittle rocks
under compressive principal stresses. Later studies have
analyzed effects of pore fluid pressure, shear heating
and chemical reactions [46–51].
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Experimental work in soil mechanics [52] and the
associated theory of the critical state [53] point at a
close connection between localization and porosity. The
experiments of Desrues et al. [52] (see their Fig. 19)
demonstrate that porosity may be tweaked to control
localization: shearing over-consolidated sand localizes
shear into shear bands, while under-consolidated sam-
ples compact diffusely, both cases shearing finally at a
porosity value which is independent of the initial condi-
tion, the critical porosity. The critical value is attained
only within the shear band in the over-consolidated
sample.

In dry granular media, such as sand, steady-state
porosity and also friction are observed to be functions
of normal stress and shear rate via the dimensionless
inertial number [54–57], which is proportional to the
shear rate and inversely proportional to the square
root of the normal stress. The inertial number mea-
sures the relative importance of grain inertia to stress
forces; larger inertial numbers produce increased agita-
tion of grains. As the inertial number increases, e.g., by
increasing shear rate, both porosity and friction coef-
ficient increase. In this so-called inertial regime, fric-
tion becomes clearly rate strengthening as a result of
increased dissipation in granular collisions and work
against confining stress invoked by the dilatant behav-
ior. The strengthening stabilizes flow, producing uni-
formly distributed shear rate in planar shear configura-
tion, and facilitates approach to steady shear in tran-
sient flows [58–60].

Localization has been mapped to emerge under low
slip rates and high normal stresses [19,22,60], corre-
sponding to low inertial numbers (quasistatic regime).
In this quasistatic regime, friction and porosity attain
seemingly constant (independent of the inertial number
or shear rate), low values. However, some authors argue
that this regime is in fact slightly rate-weakening [61–
63]. Such weakening may rationalize initiation of shear-
band localization, as well as hysteresis of the angle of
repose observed in granular avalanches down inclined
planes [64]. DeGiuli and Wyart [61] proposed that the
origin of the weakening is an acoustic noise induced
by collisions between grains. The noise can trigger slip
on contacts sufficiently close to the sliding threshold,
in a similar way originally proposed within the model
of acoustic fluidization [65]. Activation of these con-
tacts amplifies slip and produces more acoustic noise,
promoting an instability. Barker and Gray [66] investi-
gated stability of the inertial-number controlled rheol-
ogy, similarly to the approach adopted by Rudnicki and
Rice [36] for brittle plasticity. They found that at suf-
ficiently low inertial numbers the rheology becomes ill-
posed, amplifying small-wavelength perturbations. This
instability may either be viewed as the onset of shear-
band localization or attributed to the empirical nature
of the functional form describing friction coefficient as a
function of the inertial number. Interestingly, the insta-
bility forms even in the incompressible flow approxima-
tion and therefore is not driven by changes in poros-
ity. Apparently, there is much controversy regarding the
question of the relative roles of porosity and granular

rheology in controlling strain localization, mostly due
to the fact that mechanisms driving localization in dry
granular media are not well understood and lack solid
quantitative description.

In this paper, we study, using numerical discrete ele-
ment simulations, the effect of boundary conditions
on the distribution of strain and porosity in granular
layers subject to planar shear. We compare constant
shear rate and constant shear stress boundary condi-
tions and test the ability of the two boundary con-
ditions to localize strain into shear bands. In agree-
ment with the vast majority of experiments and numer-
ical simulations, shear driven by controlled shear rate
indeed allows for strain localization into planar struc-
tures [12,13,16,19,21,56]. On the other hand, studies
of shear under stress control are extremely rare. An
exception is the work of Clark et al. [67]. They mea-
sured the amount of shear strain before flow cessation
as a function of applied shear stress and system size,
but do not report on strain localization. In this work,
we find that shear-band localization, which is present
in the quasistatic regime in the rate-controlled shear, is
absent for the stress-controlled loading. In the case of
constant applied stress, flow ceases when macroscopic
friction coefficient approaches the quasistatic friction
value. We rationalize this finding based on low fluctu-
ations of shear forces in granular contacts, leading to a
reduced mechanical noise.

An additional major finding of this paper is related
to a mechanism controlling strain localization based on
critical porosity. The mechanism is derived from energy
balance following Frank and later studies [11,68]. The
theory relates strength of a confined layer to its dila-
tancy: dilatancy provides strengthening of the layer as
a result of work expended in effecting a volume change
against the confining stress. While dilatancy is neces-
sary for the onset of shear in compacted layers [69], the
energetic penalty is minimized when the system dilates
only locally, within a shear band, to reach the critical
porosity, whereas the spectator regions have sub-critical
porosity. This is consistent with the triaxial compres-
sion tests on sand [52] (see their Fig. 19), where over-
consolidated samples reach critical porosity only within
a shear band, while the global porosity is lower. Since
the global porosity is an increasing function of the iner-
tial number, reflecting the level of mechanical noise in
the system, the critical porosity can be reached globally
throughout the layer for a large enough inertial number.
Such conditions mark the transition to the distributed
shear regime, when localization fully vanishes.

2 Numerical procedures

We employ discrete element method (DEM) [70] to sim-
ulate planar shear of a granular layer under constant
applied shear stress or shear strain rate. The layer is
confined in the vertical direction by two parallel, gran-
ular surfaces, as in Fig. 1.
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Fig. 1 Numerical representation of granular shear. A
dense assembly of dissipative frictional disks is sandwiched
between two parallel walls made of glued disks. The bottom
wall is static, while the top wall is subject to normal stress
N . Shear motion is driven either by constant x-velocity V of
the top wall (RBC), or by constant shear stress τ applied on
the top wall (SBC). The system is periodic in x direction.
Colors and line widths indicate magnitude of the normal
force between grains (red grains connected by thick lines
are most stressed)

Grains are modeled as two-dimensional (2D) disks
with rotational and translational degrees of freedom.
Disks interact via pair-wise contact forces according to
a linear spring model with velocity-dependent damp-
ing and Coulomb friction criterion. Let Ri, mi, vi, ωi

and ri be radius, mass, linear and angular velocity, and
position vector of the center of grain i, respectively.
Grains i and j interact only when they form a contact,
defined by the condition that the two disks overlap,
Ri + Rj − rij > 0, where rij is the length of the vector
rij = rj −ri connecting disks’ centers. Normal and tan-
gential forces on grain i due to interaction with grain
j, Fnij

and Ftij
, respectively, are given by

Fnij
= −knδijnij + γnmeffvnij

, (1)
Ftij

= −ktλijtij + γtmeffvtij
, if Ftij

< μgFnij
, (2)

in which kn,t and γn,t are elastic and viscoelastic con-
stants (material parameters), respectively, nij = rij/rij

is the unit vector in the normal direction to the con-
tact, tij is the unit vector in the tangential direction,
vnij

= (vj − vi) · nij nij is relative normal velocity,
vtij

= vj − vi − vnij
+ (Riωi + Rjωj) × nij is rela-

tive tangential velocity, meff = mimj/(mi + mj) is the
effective mass, δij = Ri +Rj − rij is the contact deflec-
tion (overlap between disks), and λij =

∫
vtij

dt is the

tangential displacement of the two contacting grains,
where the integration over time t runs from the time of
formation of the contact.

The magnitude of the tangential force in Eq. (2) is
truncated once the Coulomb friction criterion is met,
Ftij

= μgFnij
, where μg is grain surface friction coeffi-

cient. At that moment, the tangential force is switched
to the frictional force Ftij

= μgFnij
, independent of

elastic or viscoelastic contributions. The truncation of
the resisting tangential force allows the grains to slip
past that contact.

Forces defined by Eqs. (1)–(2) are plugged into New-
tonian equations of motion to solve linear and angu-
lar momenta for each grain; more details can be found
in Refs. [56,70,71]. The velocity Verlet integrator [71]
was used to propagate the equations of motions with a
time step of 0.1 of the time required for a sound wave
to travel across the smallest grain in the system. This
time step is small enough to resolve elastic waves due
to particle collisions, which represent the fastest energy
and momentum transfer in the system.

Grains are packed into a layer confined in the y direc-
tion by two parallel surfaces. The surfaces are con-
structed from grains glued together into a linear array.
The size distribution of the surface grains is the same
as for the interior grains, and interactions between the
surface and the interior grains are governed by the same
contact forces, Eqs. (1)–(2), using the same mechanical
parameters. Our choice of boundaries sits between per-
fectly smooth, planar walls, which promote boundary
slip, and very rough walls, e.g., constructed of grains
separated by gaps between them [72], which impose no-
slip boundary conditions. Periodic boundary conditions
are applied in the x (flow) direction to model spatially
extensive and homogeneous deformation along the x
axis.

The bottom surface is fixed, while the top surface
is pushed against the layer by normal stress, N . The
normal stress is applied by exerting an external force
Fy = −NL onto the top surface. Shear flow of the layer
is driven by two distinct types of boundary conditions.
The first type is a constant rate boundary condition
(RBC), in which the top surface moves with constant
velocity V in x direction. The second type of the bound-
ary condition is a constant stress boundary condition
(SBC). Here, a constant shear stress τ is applied by
applying an external force Fx = τL onto the top sur-
face. Note that instantaneous normal and shear stress
fluctuates even under SBC due to the fluctuating forces
exerted by grains in contact with the boundary. Gravity
and pore fluid effects are absent in this work.

The friction coefficient was calculated by averaging
local stress tensor, σ(r), over the entire system, μ =
〈σxy(r)/σyy(r)〉. The stress tensor is calculated from
grain configurations as described in e.g., [56,57]. Nev-
ertheless, almost identical values were obtained by cal-
culating the friction coefficient as the ratio of shear and
normal stresses measured at the boundaries, because
the stress tensor σ(r) is homogeneous in the steady
planar shear flow, apart from deviations that arise for
smooth boundaries [72].
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Samples are initialized as dense packings with solid
fraction close to the random close packing. This is
achieved by pre-shearing at a low velocity V = 10−6

followed by a static relaxation. Simulations are allowed
sufficient time for a steady flow to develop. To obtain
steady-flow time averages, measurements from the tran-
sient period are discarded. Local and single-grain quan-
tities are averaged over surface-parallel layers 2 grains
thick. The resulting averages are functions of y only,
reflecting homogeneity in the x direction.

3 Units, parameter ranges and dimensional
analysis

Our results are given in non-dimensional units using
length, mass and force scales of mean grain diameter, d̂,
mass of the mean-size grain, m̂, and grain normal stiff-
ness coefficient times mean grain diameter, k̂nd̂, respec-
tively. All other quantities are scaled by proper func-
tions of d̂, m̂ and k̂n to match their dimensions, e.g.,

time is measured in units of t̂0 =
√

m̂/k̂n. Hat over a

symbol indicates dimensional quantities, e.g., Ĥ is in
[m], while H = Ĥ/d̂ is dimensionless.

A list of material parameters and boundary condi-
tions characterizing numerical setups is given in Table
1. Material parameters are chosen in close similarity to
previous DEM studies of 2D systems [19,56]: kn = 1,
kt = 0.5, γn = 0.5, γt = 0, μg = 0.5. The coefficient
of restitution, which characterizes inelasticity of colli-
sions, is ≈ 0.3 for the selected parameters. Nevertheless,
the dominant mechanism for energy dissipation in dense
granular flows is work of the friction force Ftij

= μgFnij

[56]. On that basis, we neglect the viscous damping in
the tangential force by setting γt = 0.

The distribution of grain sizes is derived from Gaus-
sian distribution with σ = 1 while keeping the maxi-
mum polydispersity of ±20%. Polydispersity prevents
crystallization of the system. Thickness of the layer, H,
which directly affects shear rate across the layer, was
varied between H = 24 − 200. The domain length in
periodic direction, L, was maintained at L = 96; varia-
tion of L between 48 and 120 resulted in no significant
effect on the studied structural and rheological charac-
teristics.

The applied normal stress, shear stress and shear
velocity ranged N = 10−7−10−3, τ = (0.25−0.4)N and
V = 10−5 − 10−3. In real units, illustrative ranges of
normal stress and shear velocity are N̂ = 6 · (103 −107)
Pa and V̂ = 6.6 · (10−2 − 1) m s−1, using grain size
d̂ = 10−3 m, Young’s modulus Ê = k̂n/d̂ = 6 · 1010

Pa and density ρ̂ = 6m̂/πd̂3 = 2640 kg m−3 represen-
tative of quartz grains. The range of applied normal
stress reflects realistic values typical for the geological
setting of landslides and not too deep fault zones, e.g.,
[9,11,12]. Shear velocity corresponds to fault rupture
nucleation and propagation slip rates.

The parameters listed in Table 1 have been subject
to numerous tests in previous studies to determine their
effect on constitutive behavior. The effects of material
parameters kt/kn, γn, γt and μg were found rather small
for dense granular flows [56,73], except for the case of
frictionless grains (μg = 0). The key parameter groups
controlling the constitutive behavior were identified to
be the inertial number and the contact stiffness number
[54–57,74]. The inertial number, I, describes the ratio
of inertial to stress forces, or, alternatively, the ratio

of the inertial timescale (d̂
√

ρ̂/N̂) and the macroscopic

deformation timescale (Ĥ/¯̂vx(Ĥ))

I =
¯̂vx(Ĥ) d̂

Ĥ

√
N̂/ρ̂

, (3)

where ¯̂vx(Ĥ) is the average slip rate of the top wall and
ρ̂ is mass density of grains (in [kg m−D], where D is the
spatial dimension). In the case of RBC, ¯̂vx(Ĥ) is iden-
tical to the applied slip rate V̂ . Note that all quantities
in Eq. (3) could also be non-dimensional (without the
hats) because the product is dimensionless.

The contact stiffness number, κ, is proportional to
the ratio of squares of the inertial timescale and the

collision timescale (
√

m̂/k̂n). For our choice of a stress

scale, k̂n/d̂D−2 (≈ Young’s modulus Ê in 3D), the
non-dimensional normal stress N is identical with the
inverse contact stiffness number

N =
1
κ

=
N̂ d̂D−2

k̂n

. (4)

Because of the linear elasticity model employed in this
work, N can be interpreted as the average compressive
strain of a grain, N ≈ δ̂/d̂. This can be seen by bal-
ancing the average (compressive) normal-stress-induced
force on a grain, N̂ d̂D−1, and the repulsive elastic force,
k̂nδ̂, in Eq. (1). Hence, N represents contact softness,
i.e., inverse contact stiffness: larger N induces larger
δ̂/d̂, making grains effectively softer.

When N is varied such that I is kept constant (e.g.,
by simultaneous change in V̂ and N̂ so that V̂ ∼

√
N̂),

constitutive behavior may still display a dependence
on N due to the variation in κ. We will convention-
ally refer to such changes in constitutive behavior as
the effect of the contact stiffness number rather than
the effect of normal stress. This is to prevent confu-
sion with a simultaneous effect of the normal stress on
the inertial number, according to Eq. (3), which often
dominates the system’s rheology. Note, however, that
the normal stiffness coefficient of grains, k̂n, was kept
constant among different setups in this work, while it
was the normal stress, N̂ , that was actually varied, giv-
ing rise to changes in the “contact stiffness.” A similar
situation is met in the field: stiffness of various geolog-
ical grains varies only moderately, e.g., by a factor of
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Table 1 List of parameters and their values in non-dimensional units using length, mass and force scales of d̂, m̂ and k̂nd̂,
respectively

Parameter Symbol Value or range

Tangential stiffness coefficient kt = k̂t/k̂n 0.5

Normal damping coefficient γn = γ̂n

√
m̂/k̂n 0.5

Tangential damping coefficient γt = γ̂t

√
m̂/k̂n 0

Surface friction coefficient μg 0.5
Polydispersity ±20%

Layer thickness H = Ĥ/d̂ 24 − 200

Normal stress or inverse contact stiffness numbera N = 1/κ = N̂ d̂D−2/k̂n 10−7 − 10−3

Apparent friction coefficientb μ = τ/N 0.25 − 0.4

Shear velocityc V = V̂

√
m̂/k̂nd̂2 10−5 − 10−3

Hatted parameters (̂ ) denote dimensional quantities
aSee text below Eq. (4). D is the spatial dimension
bμ is controlled under SBC
cV is controlled under RBC

7 from halite to garnet, but closer to a factor of 2 for
more common silicates, while the normal stress differs
by several orders of magnitude among various tectonic
loadings and burial depths of faults.

4 Constant rate boundary conditions

Shear driven by RBC is the most frequent choice of
boundary conditions applied in experiments and simu-
lations. The planar shear configuration studied here has
been extensively addressed in the literature, e.g., [54–
56,60,61]. In this section we review results of numeri-
cal simulations for this type of boundary conditions in
order to make a comparison to SBC-driven shear in the
next section.

Figure 2 shows local flow velocity, vx(y), evolution of
the center-of-mass velocity, vCOM

x (t), and macroscopic
friction coefficient, μ, of a granular layer sheared under
RBC. The response of the layer can be categorized into
two regimes depending on a dimensionless parameter
called the inertial number. The left panel of Fig. 2 (a,c)
displays results for relatively low I = 4 · 10−5 using
a setup with V = 10−4, N = 10−3 and H = 96,
while the right panel (b,d) displays results for high
I = 10−2 using a setup with V = 10−3, N = 10−6 and
H = 96.

Under low inertial numbers, I < 10−3, imposed shear
is accommodated in narrow shear bands (Fig. 2a). Each
line represents instantaneous flow velocity profile at a
random time step. Velocity varies significantly over a
narrow interval of y coordinate (shear band), about 20
grains thick. Position of the shear band changes ran-
domly throughout the layer as documented by the lin-
ear time-averaged profile (dashed line). Change of the
location of the shear band is accompanied by a transient
diffuse shear (yellow line). Migrating shear bands are
characteristic for shear with rough boundaries; smooth
boundaries help localize shear at the boundaries [60].

Thickness H used to normalize the y-coordinate in
the plots displaying velocity profiles is the steady-state
thickness.

The center-of-mass shear velocity, vCOM
x , varies inter-

mittently with time (Fig. 2c) as a result of variation in
the position of the shear band. Since velocity below
the shear band’s position is small and velocity above
the shear band is close to V , different portions of the
layer are mobilized as the shear band’s position changes,
leading to intermittent jumps in the evolution of vCOM

x .
The range of vCOM

x varies between ≈ 0 and ≈ V cor-
responding to the shear band occurring at the moving
and the fixed wall, respectively.

Finally, friction coefficient associated with shear
localized within shear bands is μ ≈ 0.26 with little
dependence on the applied shear velocity and normal
stress (Fig. 2e). The value of friction coefficient in this
regime is identified with yield strength, μqs. A subtle
decreasing variation of friction with the inertial num-
ber for I < 10−3 was reported in Refs. [61,63]. This
trend is somewhat apparent also in the data in Fig. 2e,
albeit the prominence of the suggested minimum of fric-
tion at I = 10−3 is of a similar size as the uncertainty
of the data, which is approximately equal to the size of
the data points.

For high inertial numbers, I > 10−3, i.e., fast dis-
placement rate or low normal stress, the response of
the system is qualitatively different. Shear is distributed
over the entire layer and flow velocity has a persistent,
close-to-linear profile (Fig. 2b). A closer examination
of shear strain rate, γ̇ ≡ ∂vx/∂y, reveals that γ̇ expo-
nentially decays from the walls to a constant value fur-
ther away—see the inset for the time-averaged shear
rate. The excess shear rate near the boundaries is a
non-local diffusive effect accompanying discontinuity in
shear rate at the boundaries [75–79]. The effect of the
excess shear rate on friction leads to a size dependence
of μ vs. I relation, which will be analyzed in Sect. 5.3.
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Fig. 2 Response of the layer under RBC. a–b Instantaneous shear-velocity profiles at random time instants show shear
bands under I < 10−3 and distributed shear under I > 10−3. Thickness H = 96 in both cases. The dashed line denotes
steady-state time average. Inset of (b) displays the profile of shear strain rate, showing a deviation from a uniform value
near boundaries. c–d Center-of-mass velocity as a function of time for the same conditions as in (a–b). e Friction coefficient
vs. inertial number. Different symbols represent different values of normal stress as given in the legend. The dashed line is
Eq. (5). Inset shows the same data in a linear scale

The center-of-mass velocity for the high inertial-
number regime (Fig. 2d) fluctuates around V/2, which
is the mean value of the time-averaged velocity pro-
file shown in Fig. 2b by the dashed line. Fluctuations
of velocity, both spatial and temporal, increase as the
system approaches the transition to the shear-banding
regime, I ≈ 10−3.

Friction in the distributed-shear regime is an increas-
ing function of I (Fig. 2e). The following phenomenolog-
ical friction law (dashed line) is commonly used [54–56]
to capture the observed variation of friction over the
entire studied range of I � 10−1

μ(I) = μqs + aμIbμ , (5)
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where μqs = 0.258 ± 0.002, aμ = 0.85 ± 0.05, bμ =
0.81 ± 0.04 in agreement with previous studies [56,61];
uncertainties correspond to the 95% confidence inter-
val estimated from the fitting procedure. The yield
strength of the system, i.e., the minimum friction that
permits continuous shear, is equal to μqs. In the shear-
banding regime (I < 10−3) the friction coefficient is
constant (neglecting a possible shallow minimum of fric-
tion) and equal to the yield strength, as the second
term in Eq. 5 is small. The second term becomes sig-
nificant for I > 10−3, when the system transitions into
the distributed-shear regime. The shear-banding regime
is often called quasistatic, while the distributed-shear
regime is termed inertial in the literature [54–56,75,80],
reflecting the relative magnitudes of the inertial and
stress forces. In this work we will use both variants
interchangeably depending on whether our focus is on
the level of strain localization or the magnitude of iner-
tial number. In Sect. 6 we will provide an explanation
why the transition between the quasistatic and the iner-
tial regimes coincides with the transition between the
localized and the distributed shear regimes.

The friction coefficient under RBC, Eq. 5, is a sole
function of the inertial number and is independent of
the contact stiffness number. Indeed, Figure 2e demon-
strates that the μ(I) curve is independent of N , i.e., the
whole dependence of friction on N is through the depen-
dence of I(N). The observed independency of friction
of the contact stiffness number under RBC holds in the
so-called rigid particle limit of N � 10−3 [61,74], which
covers the range applied in this study. For higher N ,
Refs. [57,74] reported a decrease of μqs and porosity
with N , and Ref. [61] reported an N -controlled tran-
sition from non-monotonic to monotonic μ(I) depen-
dence.

5 Constant stress boundary conditions

5.1 Shear localization and friction law

Unlike RBC, shear imposed by constant applied shear
stress has been little studied so far. While RBC always
generate continuous deformation, SBC may lead to
transient deformation that ceases eventually, if driving
shear stress is not strong enough. In Fig. 3 we report
results for samples and conditions that led to persistent
shear. The left panel (a,c) displays results for a setup
with τ = 0.26N , N = 10−3 and H = 96, i.e., fric-
tion coefficient μ = τ/N is close to μqs, while the right
panel (b,d) is for a setup with τ = 0.28N , N = 10−6

and H = 96, i.e., friction coefficient is well above the
yield friction μ > μqs.

In contrast to RBC, the shear-banding regime is
absent and only distributed shear is observed, albeit the
symmetric shear profile (Fig. 3b) becomes asymmetric
(Fig. 3a) when the ratio of applied shear and normal
stresses is close to the yield condition, τ/N − μqs <
10−2. Nevertheless, the asymmetric shear profile is more

diffuse compared to shear bands observed under RBC,
cf. Fig. 2a. In addition, evolution of the center-of-mass
velocity (Fig. 3c) shows smaller fluctuations compared
to the intermittent dynamics observed in Fig. 2c for the
shear-banding regime. Therefore, we reserve the term
“shear band” for a highly localized and intermittent
shear state observed under RBC and low I, whereas the
asymmetric and the symmetric shear states developed
under SBC are both examples of the distributed-shear
regime.

Figure 3e shows variation of I with μ, in log-linear
and linear scales. Note that while in the case of RBC
we control the value of I and the system responds with
a value of μ, under SBC we control the value of μ =
τ/N by setting the boundary stresses τ and N , and
the system responds with a value of I. A layer with a
given thickness H under prescribed normal and shear
stresses N and τ thereby responds with shear strain
rate γ̇, resulting in a certain displacement rate v̄x(H).
Since any increase of τ leads to an increase of both μ
(at a constant N) as well as the displacement rate, the
rate-independent part of μ(I) is missing, cf. Fig. 2e.

Another interesting consequence of SBC is that μ is
not a sole function of I, but, in addition, it system-
atically varies with the non-dimensional normal stress
N—see Fig. 3e. Comparison with the friction law under
RBC, Eq. (5), indicated by the dashed line, shows that
larger N leads to a larger I at a given μ. We propose
the following mechanism to explain this. As discussed
in Sect. 3, N is. Larger N therefore induces larger grain-
level compressive strain δ̂/d̂. Consequently, the elas-
tic energy stored in compressed contacts, ∼ k̂nδ̂2, is
an increasing function of N . The elastic energy builds
up during collisions and configurational jamming, and
afterward it is released in the form of kinetic energy,
increasing grain inertia. Unless the collisions are fully
dissipative, the released energy retains the increasing
trend with N . Shearing at a fixed μ, high N condi-
tions are therefore associated with larger elastic energy
stored in contacts, which, when released, leads to larger
grain inertia relative to low N conditions. As a result, I
increases with N at a fixed μ, in agreement with Fig. 3e.

The effect of N is much less pronounced for RBC, cf.
Fig. 2e. Since μ is not constrained under RBC, jammed
configurations are associated with increased shear force.
The added shear force is used to overcome jammed
configurations sufficiently fast to maintain the imposed
boundary strain rate. This leads to increased dissipa-
tion and friction relative to SBC for the same I (dashed
line in Fig. 3e). It is likely that the increased friction can
dissipate the elastic energy stored in compressed con-
tacts, impeding the effect of N . The friction law under
RBC, Eq. (5), is therefore approached for low N (in the
hard-particle limit) under SBC, when the elastic energy
is small.

All data in Fig. 3 were obtained for a fixed layer thick-
ness H = 96 to capture the N -dependence of the μ vs.
I relation. In addition, there is also a size dependence
for variable H, which will be discussed in Sect. 5.3.
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Fig. 3 Response of the layer under SBC. a–b Instantaneous shear-velocity profiles indicate distributed shear that is
asymmetric (a) when μ − μqs < 10−2 and symmetric (b) for larger μ. The dashed line denotes steady-state time average.
Insets show shear strain rate deviating from a uniform value near boundaries. c–d Center-of-mass velocity as a function of
time for the same conditions as in (a–b). e Friction coefficient vs. inertial number. Symbols are numerical data and solid
lines are fits to Eq. (6). Different colors represent different values of normal stress N as given in the legend. The dashed
line is the friction law under RBC, Eq. (5), for reference. Inset shows the same data in a linear scale

The effect of N can be empirically described as a
shift in the value of I relative to the value I0 = μ−1(μ)
observed under RBC for given μ: μ−1(μ) is an inverse
function to Eq. (5), which returns I for given μ. The
shift I − I0 of the inertial number for SBC relative to
that for RBC is found to depend on N as ∼ N0.3 at
fixed μ. In addition, it also increases with the proximity

to the yield friction coefficient as ∼ I0/(μ − μqs). This
leads to I −I0 = cNN0.3I0/(μ−μqs). Consequently, the
friction law under SBC can be expressed as

I = μ−1(μ)
[

1 + cN
N0.3

μ − μqs

]
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Fig. 4 Evolution of center-of-mass velocity a and porosity
b for two distinct samples (differing in positions and sizes
of grains, although randomly drawn from the same distri-
bution) under SBC for N = 10−3, τ = 0.26N (μ = 0.26)
and H = 48. Despite the similarity in initial evolution, one
sample (light line) reaches steady flow, while the other (dark
line) stops after a transient deformation

≈
(

μ − μqs

0.85

) 1
0.81

[

1 + cN
N0.3

μ − μqs

]

(6)

with cN = 0.17 ± 0.03 obtained from a fit to the sim-
ulation data. Equation (6) for various N is depicted in
Fig. 3e (solid lines).

The dimensional variant with dimensional N̂ [Pa] (in
3D) reads

I = μ−1(μ)

[

1 + cN
(N̂/Ê)0.3

μ − μqs

]

, (7)

where Ê [Pa] is Young’s modulus of grains.
Yield strength observed under SBC tends to the same

value as for RBC, μqs = 0.258. Under lower applied
shear stress, τ < μqsN , only transient deformation
occurs and the system eventually stops. However, not
all systems at τ/N ≥ μqs reached steady flow. The tran-
sient dynamics is found sensitive to sample preparation.
Some samples deformed transiently and stopped even
for τ/N up to ≈ 0.28, while other samples for the same

conditions did flow steadily. A comparison of time series
of two different initial configurations for otherwise same
conditions (N = 10−3, τ = 0.26N and H = 48) is
shown in Fig. 4. Despite the similarity of initial evo-
lutions of center-of-mass velocity and porosity, φ, one
sample (light line) reached steady flow, while the other
(dark line) stopped after a transient deformation. We
therefore conclude that the yield strength under SBC is
sample-dependent and thereby it is not, strictly speak-
ing, a proper material parameter as for RBC. Porosity,
in this manuscript is conventionally defined as the vol-
ume fraction of voids.1

The transient flow for both SBC and the inertial
regime of RBC is free of shear bands. Slip is initiated
along a weak plane in the material, typically near one of
the boundaries. Shear rate spreads out from the initial
slip zone via a diffusion front that controls the transient
time [59,60]. The transient phase is proportional to the
time it takes for the diffusion front to swipe through the
system. For planar shear, the transient time is propor-
tional to the square of layer thickness and inversely pro-
portional to the normal stress and a rate-strengthening
coefficient, dμ/dˆ̇γ. On the other hand, time to stop for
a system under SBC in the vicinity of yield stress is
a random variable depending on how long the system
wonders in its phase space before it reaches a mechani-
cally stable microscopic configuration [67]. As a result,
the system may jam earlier or later than flow becomes
fully developed.

The lack of steady flow under SBC when μ → μqs

is related to the fact that the force exerted on the sys-
tem is fixed by τLD−1 in the case of SBC, whereas it is
unbound in the case of RBC. Consequently, when the
system hits a strong asperity2, the force might not be
sufficient to break it under SBC and the system eventu-
ally stops. This hypothesis is confirmed in Fig. 5. Here
we examine the effect of boundary conditions on fluc-
tuations of shear stress measured at the moving bound-
ary, std(σxy(H)), where std(·) denotes the standard
deviation of a time series. The boundary shear stress
σxy(H) is calculated as the x-component of the force
acting on the boundary due to contacts with internal
grains, normalized by the length of the boundary (area
in 3D), σxy(H) = Fx/LD−1. Note that σxy fluctuates
even for SBC because of fluctuations of contact forces
with grains adjacent to the wall. The fluctuations of σxy

are a measure of the range of shear forces experienced
by the layer in the course of deformation: the largest
magnitude forces arise to overcome strong asperities
(jammed states), while the smallest magnitude forces
occur as the system unjams and accelerates. A similar
picture was introduced in Ref. [40], where fluctuations

1 Porosity φ should not be confused with solid (volume)
fraction, equal to one minus porosity, which is unfortunately
also often denoted by the same symbol.
2 In DEM an asperity may be thought of as a grain config-
uration that requires above-average shear stress for defor-
mation to proceed, either by dilatancy or by enhanced dis-
sipation.
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Fig. 5 Effect of boundary conditions on fluctuations of
shear stress, normalized by the applied normal stress. The
fluctuations, calculated as the standard deviation of the
boundary shear stress, reflect the magnitude of above-
average shear stress that is momentarily generated to over-
come strong force chains or asperities. The stress fluctua-
tions are larger for RBC (open symbols) than for SBC (filled
symbols), pointing at the ability of RBC to sustain steady
deformation for any I. Deformation under SBC ceases for
I � 10−3 once the fluctuations drop sufficiently below their
quasistatic limit ≈ 2 · 10−2. Reduced shear-stress fluctu-
ations imply restricted ability to overcome fluctuations in
strength of the shearing layer. Different symbols and colors
represent different values of normal stress as given in the
legend

of shear stress were attributed to the buildup and col-
lapse of force chains.

Figure 5 demonstrates that RBC (open symbols)
is indeed able to generate larger stresses to overcome
asperities. The stress fluctuations grow as ∼ I0.7 in the
inertial regime, as a result of increasingly stronger col-
lisions. However, the coefficient is lower in the case of
SBC relative to RBC. The SBC data suggest that defor-
mation ceases if stress fluctuations fall below about
10−2. This happens at I 	 10−3. Lower fluctuations
of shear stress are not sufficient to overcome fluctu-
ations in strength that arise during shear. For RBC,
on the other hand, the standard deviation of shear-
stress fluctuations saturates in the quasistatic regime
at ≈ 2 · 10−2. The larger magnitude of fluctuations for
RBC means that shear stress generated during a jam-
ming episode momentarily exceeds shear stress encoun-
tered during jamming under SBC. Therefore RBC runs
are able to overcome and move past configurations that
will cause SBC runs to stop.

In the framework of constitutive modeling, non-local
models allow interpretation of shear localization as an
instability by which local plastic deformation induces
redistribution of the elastic stress within a predicted
“cooperativity distance,” potentially triggering other
plastic events [76,77]. A similar argument was used by
DeGiuli and Wyart [61], who identified the key dynamic
parameter controlling local shear rate with acoustic
noise. Whether the flow law is controlled by rate of
plastic events or by acoustic noise, fluctuations of shear

Fig. 6 Porosity is controlled by inertial number. The same
functional dependence is observed for RBC (circles) as well
as SBC (‘+’ symbols). The dashed line is a fit to Eq. (8).
The inset displays the same data in a linear scale

stress in Fig. 5 can be viewed as a measure of such
mechanical noise. RBC always generates sufficient noise
to sustain shear of the layer owing to the unlimited
energy input from the boundaries. In contrast, limited
energy input under SBC generates sufficient noise only
for rapid enough sliding. This is manifested by larger
I required under SBC to generate the same magnitude
of fluctuations as for RBC. In addition, fluctuations of
shear stress decrease with increasing N at constant I
in a similar way found for acoustic noise [61].

5.2 Dilatancy law

Similarly to friction, porosity of sheared granular
media under RBC is controlled by inertial number as
expressed by a function φ(I), referred to as the dila-
tancy law [56]. Figure 6 demonstrates that the same
function characterizes porosity also under SBC. Both
RBC and SBC data under various conditions collapse
onto a single master curve that is well described by a
similar functional form as for to the friction law

φ(I) = φqs + aφIbφ , (8)

where φqs = 0.1858 ± 0.0004, aφ = 0.224 ± 0.004,
bφ = 0.85 ± 0.02 with uncertainties corresponding to
the 95% confidence interval estimated from the fitting
procedure.

Data for SBC fall within the inertial regime, I ≥
10−3, as already discussed above. No dependence of
porosity on the contact stiffness number is observed,
contrary to the case of friction coefficient under SBC.
In other words, φ is a sole function of I and no addi-
tional dependence on N , besides the intrinsic depen-
dence I(N), arises. The applied normal stress levels
induce grain compressive strain of δ/d = 10−7 − 10−3.
Such strain has a negligible effect on porosity in the
inertial regime, cf. Fig. 6. While the effect of the contact
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Fig. 7 Porosity profiles for RBC (blue) at I = 4 · 10−5,
N = 10−3 and H = 96 (same setup as in Fig. 2a, c) and
SBC (orange) at μ = 0.26, N = 10−3 and H = 96 (same
setup as in Fig. 3a, c). Both setups lead to overall porosity
φ = 0.1864 ± 0.0004, close to the minimum value φqs

stiffness leads to compression of the system’s volume by
a factor no higher than 10−3, the inertial effect induces
expansion by a factor ≥ 10−2 relative to the volume
in the quasistatic regime, corresponding to φqs. Iner-
tial effects thus dominate the value of porosity in the
inertial regime, which explains the observed indepen-
dency of the φ(I) curve of N . In the quasistatic regime,
decrease of porosity φqs with N was reported in [57,74],
but only for N > 103, i.e., higher normal stresses than
applied here.

Porosity in the present 2D system is calculated as
the area fraction of voids in the total area of the
layer excluding boundary regions of thickness 6 grains
near each wall. Within the boundary regions porosity
increases toward the wall due to the excluded-volume
effect, as shown in Fig. 7. Further away from the walls,
porosity is uniform.

A comparison of RBC and SBC runs reveals similar-
ity of the time-averaged porosity profiles (Fig. 7). The
selected profiles were obtained for conditions resulting
in the overall porosity being close to the minimum value
φqs, for both the RBC and the SBC runs. The scat-
ter in local porosity is notably larger in the RBC case,
despite the number of independent time frames used
in the calculation of the averaged profiles is the same
for the two boundary conditions. The larger fluctua-
tions of porosity under RBC are associated with poros-
ity changes between periods when the given point is
within a randomly migrating shear band (high poros-
ity) and when it is in the spectator static or creeping
region (low porosity). This hypothesis will be further
elaborated in Sect. 6 (Fig. 9).

5.3 Role of layer thickness

It should be noted that both friction and dilatancy
laws, μ(I) and φ(I), plotted in Figs. 2e, 3e and 6, suf-
fer from slight dependence on layer thickness H. Fig-
ure 8a shows the effect of H on the friction coefficient

Fig. 8 Effect of layer thickness H on the friction law under
SBC for N = 10−3 and various H as given in the legend. a
μ vs. I. The dashed line is Eq. (5) representing the friction
law under RBC. b μ vs. Iloc, i.e., the local inertial number
in the center of the layer. Iloc is independent of H for fixed μ
and N provided that H is large enough to support uniform
shear-rate region around the center. The last condition is
violated when μ is sufficiently close to μqs = 0.258 or when
H is small (blue circles)

for N = 10−3 and SBC. The H dependence arises
because the mean shear rate vx(H)/H, which enters I,
is affected by boundary contributions due to tails dis-
played in the insets of Figs. 2b and 3a–b. These tails are
diffusive features accompanying discontinuity in shear
strain rate at the boundaries [75,77–79].

The excess shear rate due to the presence of bound-
aries, γ̇e, decays exponentially with the distance from
the boundary. The width, i.e., the decay length, of the
exponentially decaying tails is a function of friction
coefficient ∼ 1/(μ − μqs)α with α = 0.4 − 0.5 consis-
tent with Refs. [77,78]. The μ-dependent width makes
it impossible to fully remove the boundary effects with
increasing thickness, because the tails eventually span
the entire layer if μ approaches μqs. To estimate the rel-
ative magnitude of the boundary effects, we write the
total shear rate as a sum of the excess shear rate and the
bulk shear rate, γ̇b: γ̇ = γ̇e + γ̇b. The bulk shear rate is
the shear rate in the homogeneous shear region, which
occurs around the center of the layer (far away from
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the boundaries) in the limit H → ∞ (at a fixed μ). The
average shear rate, which appears in the definition of I,
is v̄x(H)/H = (1/H)

∫
(γ̇b+ γ̇e)dy = γ̇b+(1/H)

∫
γ̇edy.

The observed H dependence is due to the last term,
which decreases with increasing H at a fixed μ, but
increases with decreasing μ−μqs at a fixed H. In other
words, the H dependence vanishes for thick enough lay-
ers, for which the bulk region is much larger than the
boundary region, but this condition requires increas-
ingly larger thickness when approaching the quasistatic
conditions (μ → μqs), in agreement with Fig. 8a.

Figure 8b demonstrates that the size effect cannot be
removed by considering a local inertial number Iloc =
ˆ̇γmidd̂/

√
N̂/ρ̂, defined using the local shear strain rate

in the center of the layer, γ̇mid = γ̇(H/2). Although
the collapse of the data for different H for μ > 0.3
is better than in Fig. 8a, a significant H dependence
persists for lower μ. The reason is lack of the uniform-
shear, bulk region in the center of the layer under the
latter conditions. As μ approaches μqs, the boundary
tails penetrate into the center of the layer, and γ̇mid

contains a contribution from γ̇e ∼ e−H/2ξ, where ξ ∼
1/(μ − μqs)α is the decay length [77,78].

The H dependence of μ(I) curves, shown in Fig. 8
for SBC, also exists for RBC because the excess shear
rate is roughly independent of the boundary conditions.
However, the effect of H is mitigated for RBC near
μ ≈ μqs, where it is the strongest for SBC, because
of the transition to the shear-banding regime. This is
evident from low scatter of data in Fig. 2e, calculated
for a range of H = 24−200, compared to Fig. 8a. Note
also that data in Fig. 8a are shifted to the right to the
friction law under RBC, Eq. (5), represented by the
dashed line, even for large H. This is due to the N
dependence whereby I increases with N for fixed μ and
H, as described by Eq. (6).

The effect of H is likely to be mitigated for rougher
boundaries, because rough walls hamper generation of
excess shear. The effect of roughness was studied, e.g.,
in Ref. [72].

6 Connection between porosity variation
and strain localization

In this section, we introduce a simple model for shear
localization based on a) critical porosity required for
shear, similar to the concept of the critical state in
soil mechanics [53], and b) relation between porosity
changes and friction, developed in [11,68].

Dilatancy plays a critical role in accommodating
shear in granular media, so that compacted material
needs to dilate for shear to commence, as already real-
ized by Reynolds [69]. On the other hand, dilatancy
incurs a penalty on the energy budget due to work per-
formed against the applied normal stress. This energy
penalty provides a direct, causal relation between dila-
tion and friction, which has been demonstrated in geo-
physical experiments that study friction in geological

faults [11,24] and has also been studied theoretically
[68,81]. The theoretical analysis, relating friction and
dilation, is next reviewed and then applied to explain
localization in the quasistatic regime and absence of
localization in the inertial regime.

Work expended during shear per unit volume of
material is τdγ, where dγ is shear strain increment.
This work can be decomposed into work done against
contact forces, τfdγ, where τf is shear stress on slip-
ping granular contacts, and work done against the nor-
mal stress, NdεV , where dεV = dH/H = dφ/(1 − φ) is
volumetric-strain increment [11,68]

τdγ = τfdγ + NdεV . (9)

The first term on the right-hand side is associated with
dissipation in granular contacts, while the second term
is work associated with volume change of the layer. The
last equation can be rewritten in terms of friction, divid-
ing it by Ndγ,

μ = μf +
dεV

dγ
, (10)

where μf = τf/N .
Equation (9) constrains microscopic configurations of

grains to those for which the dissipation due to dis-
placements dγ and dεV does not exceed the amount of
energy supplied by the boundaries, τdγ. In the lowest
energy shear state, the layer dilates only locally within
a shear band to minimize the last term associated with
an increase in global volumetric strain dεV . Indeed, if
dilatancy is limited to the Δy required to overcome
asperities on a single (weakest) plane, then the incre-
ment of global volumetric strain is only Δy/H, albeit
local volumetric strain over a shear band of thickness
h << H, Δy/h, is much larger. In contrast, for uni-
form shear the global and local volumetric strains are
the same and of the order of Δy/h. Therefore, uniform
shear requires larger volumetric change than localized
shear.

When the work expended in the system is increased,
e.g., as in the inertial regime, kinetic energy due to
grain collisions provides configurations with larger dεV .
In other words, under higher-energy conditions the
mean porosity increases, reducing the contrast between
the porosity inside a shear band and that of the back-
ground. Once the global porosity is uniformly equal to
(or exceeds) the critical porosity originally present only
within the shear band, there is no longer incentive for
localization, and the layer shears with uniform shear
rate.

This idea agrees with the quasistatic shear experi-
ments of [52], which show that initially loosely packed
sand layers have no incentive to localize, while initially
densely packed layers localize by increasing porosity to
the critical porosity value only within a shear band.
The experiments of [11] show that dense granular lay-
ers transiently deform via distributed shear, but steady-
state shear is accommodated by localized shear struc-
tures that form as soon as the peak stress is achieved
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Fig. 9 Transition from localized to distributed shear is
facilitated by enhanced porosity due to inertial effects. a
Schematic of the transition. In the quasistatic regime of
small I, porosity attains the critical value φc, required for
shear, only locally within a shear band, while the overall
background porosity ≈ φqs < φc is below the critical thresh-
old. Upon increasing grain inertia, the background porosity
rises along with Eq. (8) (dashed line) and reaches the criti-
cal porosity for I = Ic. For I > Ic, porosity is uniform and
larger than φc, allowing for distributed shear in the entire
volume. Shaded areas and yellow lines schematically repre-
sent sheared zones and displacement profiles, respectively.
b Numerical data for porosity inside (asterisks) and out-
side (circles) localized-shear zones for RBC and H = 96.
The inferred critical values are φc − φqs = 3.2 · 10−3 and
Ic = 6 · 10−3

during constant-rate loading. However, the previous
works did not investigate the connection of localization
to the stress and rate conditions.

In an attempt to explain the transition from localized
to distributed shear as the inertial number increases,
we suggest a simple mechanical model based on the
following assumptions: (a) shear, whether localized or
distributed, requires local porosity to attain a critical
value, φ(y) ≥ φc, and (b) global porosity is dictated
by inertial number, as in Fig. 6, reflecting the growing
agitation of the system due to inertial effects.

The model is schematically depicted in Fig. 9a. In
the quasistatic regime, porosity is constrained to have a
bimodal distribution: φ(y) = φc inside a shear band, as
required for shear to occur, and a lower value φ(y) = φqs

outside the shear band. The background porosity, out-
side the shear band, is identified with the global, depth-
averaged porosity, φqs, because the thickness of the
shear band is assumed negligible compared to the thick-
ness of the layer. The background porosity attains the
lowest permitted value in quasistatic shear, consistent
with the requirement to minimize work associated with
volume change. On increasing the inertial number, the
background porosity increases following the dashed line
representing the dilatancy law, Eq. (8). As soon as the
background porosity equals the (critical) porosity inside
the shear band, shear becomes uniformly distributed
over the layer as the whole layer is uniformly dilated at
the critical porosity. This moment localization vanishes.
The transition occurs at the inertial number

Ic = φ−1(φc) , (11)

where φ−1(φ) is the inverse function to Eq. (8).
Figure 9b shows numerical data used to estimate φc

and Ic. Red asterisks and blue circles represent porosi-
ties inside and outside of a shear band, respectively. The
shear band porosity is calculated as the average porosity
over zones where local shear rate is larger than the aver-
age shear rate, i.e., γ̇(y)H/V > 1. Analogously, back-
ground porosity is calculated as the average porosity
in zones of reduced shear rate, γ̇(y)H/V < 1. Result-
ing porosities inside and outside of a shear band have
consistent values across various setups for I < 10−3

with averages: φc = 0.1886 ± 0.0009 for the shear band
porosity (horizontal red line) and φ = 0.1854 ± 0.0011
for the background porosity (horizontal blue line). The
latter value is identical with φqs obtained from the fit to
global porosity data, Eq. (8), along with the assumption
of small shear band thickness. For I > 10−3, the back-
ground porosity rises following Eq. (8) (dashed line) and
eventually exceeds φc. The inertial number at the tran-
sition of localized-distributed shear was calculated from
Eq. (11) using the average difference between shear-
band and background porosities under I < 10−3 (i.e.,
the difference between red and blue lines)

φc − φqs = (3.2 ± 0.7) · 10−3 → Ic = (6 ± 1) · 10−3 .

(12)

The inertial number Ic = 6 · 10−3, corresponding to
the transition between the localized and the distributed
shear regimes as derived from the simple model, is
close to the transition I = 1 · 10−3 inferred from the
results of numerical simulations (Fig. 2). It should be
noted that the observed transition is not sharp. Instead,
the contrast between high and low shear-rate zones
fades gradually in the range 10−4 < I < 10−2 as
the background porosity approaches φc. The barrier
φc − φ(I) for shear to commence in the background
diminishes with growing I and may be overcome by
fluctuations of φ. This leads to formation of widespread
zones of enhanced shear that are intermittent in time.
The threshold Ic = 6 ·10−3 should be considered as the
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condition leading to uniformly distributed shear with
little fluctuations in space and time.

To sum up, the transition between the localized and
the distributed shear regimes coincides with the tran-
sition between the quasistatic and the inertial regimes.
The latter is identified with I = 10−3 when the friction
coefficient (Fig. 2e) and global porosity (Fig. 6) depart
from their constant, rate-independent values. This is a
simple consequence of the fact that porosity, which gov-
erns the localized-distributed shear transition, is con-
trolled by inertial number. In the quasistatic regime of
low I, the shearing layer is in the most compacted and
ordered state allowing shear, in which φ is minimum.
The layer dilates only locally within a shear band to
minimize the global volumetric strain dεV , cf. Eq. (9).
In addition, τf (and thus μf ) is minimized by grains
rolling on a single plane [82] and is rate-independent
due to the independency of contact friction forces of
velocity, Ftij

= μgFnij
, characterizing enduring con-

tacts. On the other hand, once shear rate is increased
upon the transition to the inertial regime, grain inertia
becomes important and both τf and εV grow. Inertial
effects lead to stronger collisions and agitation. This
in turn generates larger interparticle penetrations and
therefore larger dissipation τfdγ, while agitation leads
to more uniform and enhanced porosity. As a result,
μ and φ increase hand in hand from the onset of the
inertial regime.

A similar qualitative description was provided in
[11,83]. The relationship between friction and poros-
ity can be rationalized based on changes in shear band
width. The shear band width increases with slip rate
(and thereby with I), as grain inertia and fracture
become increasingly active and mobilize particles sev-
eral grain diameters from the slip surface. This leads to
slip rate-dependent porosity and also friction, because
dilatancy associated with a wider shear band requires
additional work, according to Eq. (9).

Since the transition into the distributed shear regime
coincides with frictional strengthening due to iner-
tial effects, such transition may be completely miss-
ing if localization is accompanied by frictional weak-
ening that overcompensates the inertial strengthening.
Effects such as shear heating or grain comminution
inside a shear band may produce sufficient weaken-
ing and persistent localization [16,20,21,41,46]. The
present micro-mechanical model (Sect. 2) does not
include additional weakening effects. One of the conse-
quences is that a shear band is not locked at its incipient
position but migrates through the layer.

Previous works also considered the connection bet-
ween strain localization and rheology. A possible ratio-
nalization for the onset of shear banding is non-
monotonic rheology, as observed by e.g., [61–63]. In
particular, DeGiuli and Wyart considered a similar sim-
ulated system of disks under RBC and observed a non-
monotonic μ(I) rheology (see their Fig. 1C) with the
transition to a positively sloped (and hence strengthen-
ing) friction for an inertial number around 10−3. Barker
and Gray [66] performed stability analysis of the classi-
cal form of μ(I) relationship [80] and found that small

wavelength perturbations grow unstably for I < 4·10−3,
using parameters for spherical glass beads. Again, this
critical inertial number is very similar to that observed
here. Surprisingly, the transition to unstable regime
occurs also for incompressible flow and monotonic fric-
tion law, so neither dilatancy nor frictional weakening
is required to rationalize onset of instabilities at the
continuum scale. Barker and Gray proposed a modified
friction law that provided regularization of the incom-
pressible granular flow for inertial numbers down to 0,
and its results matched several experimental observa-
tions. On the other hand, the regularized friction law
lacked shear localization within shear bands at low I.

One of the most successful approaches in constitu-
tive modeling of granular media are non-local models
[75–79], which postulate a distance-dependent drop in
yield stress induced by diffusion of a dynamic variable
(e.g., fluidity) from slip zones. These models have suc-
cessfully predicted flow profiles in geometries with inho-
mogeneous stress distributions. However, for the simple
shear geometry considered here, stress is uniform and
so is the predicted shear rate. Presence of a shear band
would perhaps require a perturbation of the flow law
that would render the uniform solution for shear rate
unstable. Note that porosity within the non-local flu-
idity model [77,78] is dictated by the inertial number,
similarly to Eq. 8. As a result, porosity is a constant
independent of stresses in the quasistatic regime, in
contrast to the classical localization models [36], which
require dilatant hardening or weakening. Another pos-
sibility for including shear banding within non-local
models would correspond to a first-order phase transi-
tion scenario, i.e., the spatial coexistence between two
states of different fluidity for the same shear stress, as
suggested in [76].

Future work is required to reveal the connection
between instabilities formed in the continuum models
and shear bands.

7 Summary

In this paper we presented results from a series of
2D steady-state simulations of shearing granular layers
between rough walls, under different inertial numbers
I, normal stresses N , and layer thicknesses H. Two dif-
ferent boundary conditions were tested: constant shear-
strain rate (RBC) and constant applied shear stress
(SBC). The simulation results indicate that shear states
can be categorized into two main regimes:

1. At low I < 10−3 (slow shear rate, large normal stress
or small grain size) quasistatic deformation prevails,
with porosity and friction attaining minimum val-
ues. This regime occurs only under RBC. Quasistatic
shear exhibits intermittent localized shear states,
i.e., shear concentrated within shear bands that
migrate randomly with time throughout the depth
of the layer. This migration is associated with lack
of any additional frictional weakening mechanisms in
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the present model; weakening effects such as shear
heating or grain breaking may lock localization onto
a persistent position.

2. For high I > 10−3 both friction and mean porosity
increase monotonically with I as a result of stronger
dissipation and agitation due to growing grain iner-
tia. This inertial regime exhibits distributed flow
with no shear bands. The inertial regime occurs
for both RBC and SBC. In the latter case, friction
depends not only on I, but also on the contact stiff-
ness number and layer thickness.

The transition between the localized and the dis-
tributed shear regimes is explained via the physics of
dilatancy and its connection to energy [11,68,81]: In
order to shear, compacted granular media must dilate
and attain a porosity larger than or equal to φc, the crit-
ical state value [14,52,53,69,81]. According to Eq. (8)
and Fig. 6, porosity is an increasing function of I. Thus,
at high enough I porosity exceeds the critical state
value and shear can occur within the entire volume
of the flow. Dilation needs to only occur in the qua-
sistatic shear, where the overall porosity is below the
critical porosity. In this case, dilation within a localized
thin shear band minimizes work associated against the
applied normal stress, cf. Eq. (9), and also minimizes
friction [11,81]. This is the reason why localization only
emerges in quasistatic shear, and why the transition to
distributed shear coincides with the transition to the
inertial regime of enhanced friction and porosity.

Despite the common thinking that constant rate and
constant stress boundary conditions are equivalent, the
quasistatic shear regime appears only under constant
rate boundary conditions, while constant applied shear
stress always leads to the inertial regime. This can be
rationalized using the observation of enhanced shear-
stress fluctuations under RBC, Fig. 5. In the quasistatic
regime, these fluctuations are associated with buildup
and collapse of force chains [40]. Shear resistance is
momentarily high when there is configurational “jam-
ming” (e.g., buildup of a force chain) and low when
the system unjams and accelerates (e.g., collapse of
the force chain). On average this gives the low value
of quasistatic friction during slow RBC shear. If the
shear-stress fluctuations are reduced, as in SBC, we
must choose a higher value of mean shear stress, suffi-
cient to unjam the system, or else the system will stop
the moment it encounters a strong enough configura-
tion. Therefore, friction required to sustain deformation
under SBC slightly exceeds the quasistatic value.

Friction coefficient is a function of the inertial number
for RBC. For SBC, friction is also dominantly controlled
by the inertial number, but some deviation is observed
relative to the μ(I) dependence measured for RBC.
This deviation increases with normal stress. An increase
in normal stress leads to an increase in compressive
strain of grains. Squashing of grains during configu-
rational jamming accommodates a part of the layer’s
recoverable elastic energy. After the jammed state, the
elastic energy is released and converted into grains’ iner-

tia. As a result, larger normal stresses result in larger
I at a given friction coefficient (Fig. 3e) and smaller
fluctuations of shear stress at a given I (Fig. 5). For
RBC, jammed configurations are associated with gen-
eration of larger shear stress compared to SBC. This
leads to increased dissipation and friction relative to
SBC for the same I. Consequently, increased wear and
grain comminution is expected under RBC.

We finally discuss the consequences of this work for
natural granular flows. Most landslides and faults move
in the quasistatic (low I) regime, even if intuitively
we think of them as inertial since they are rapid. For
example, the inertial number of a 100 m deep landslide
that moves at the rapid velocity of 1 ms−1, and has
grains of diameter of 1 cm, is I 	 10−6. A fault that is
buried 1 km deep, has a gouge zone 10 cm thick, grains
of 10−4 m diameter and moves at the seismic speed of
1 ms−1, has I 	 10−5. In contrast, relatively thin debris
flows, with thicknesses up to a few tens of meters and
with large boulders of 0.1-1 m diameter, are in the iner-
tial non-localized regimes. Such debris flows indeed tend
to bounce around, e.g., the famous Elm landslide was
described to move like a “herd of galloping sheep” [84].
Also the recent work of [22] showed that shallow slides
tend to flow with a distributed deformation, while deep
slides localize deformation. The present work implies
that many slides and faults, especially deep ones, will
move quasistatically and as a consequence will localize
shear. Localization will occur first via the mechanism of
minimization of dilation, as described above, and after
a little strain this localization will lock its position via
a variety of mechanisms including grain breakage, shear
heating, pore pressure effects and mineral alterations,
e.g., [32,46,49,50,85–87]. Thus localization is the rule,
rather than the exception in deep geophysical motion,
while distributed shear is restricted to motion within
the upper 10–20 meters near the surface.
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