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Abstract Translation is one of the main steps in the synthesis of proteins. It consists of ribosomes that
translate sequences of nucleotides encoded on mRNA into polypeptide sequences of amino acids. Ribosomes
bound to mRNA move unidirectionally, while unbound ribosomes diffuse in the cytoplasm. It has been
hypothesized that finite diffusion of ribosomes plays an important role in ribosome recycling and that
mRNA circularization enhances the efficiency of translation, see e.g. Lodish et al. (Molecular cell biology,
8th edn, W.H. Freeman and Company, San Francisco, 2016). In order to estimate the effect of cytoplasmic
diffusion on the rate of translation, we consider a totally asymmetric simple exclusion process coupled
to a finite diffusive reservoir, which we call the ribosome transport model with diffusion. In this model,
we derive an analytical expression for the rate of protein synthesis as a function of the diffusion constant
of ribosomes, which is corroborated with results from continuous-time Monte Carlo simulations. Using a
wide range of biological relevant parameters, we conclude that diffusion is not a rate limiting factor in
translation initiation because diffusion is fast enough in biological cells.

1 Introduction

Cells synthesize proteins by first transcribing the hered-
itary information encoded in genes into functional
mRNA and subsequently by translating the mRNA
nucleotide sequence into polypeptide sequences [1]. The
translation of mRNA into a polypeptide sequence can
be divided into three stages, namely the initiation, elon-
gation and termination stages [1]. During initiation, a
ribosomal complex (consisting of two ribosomal sub-
units, initiation factors, and tRNA) is assembled at the
5’ end of a mRNA chain. After initiation, the ribosomal
complex moves (or elongates) from the 5’ end towards
the 3’ end of the mRNA while forming a polypeptide
chain. In the final termination stage, the ribosome com-
plex releases the polypeptide chain, unbinds from the
mRNA and disassembles.

Translation is mainly controlled at the initiation step,
as it is the rate limiting step in translation [2–5]. Ini-
tiation is a complex process involving several molecu-
lar actors, and it is therefore difficult to understand all
the molecular mechanisms that are relevant for transla-
tion control. Nevertheless, coarse-grained mathematical
modelling can uncover which physical mechanisms play
a role in translation control.
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It has been argued that the recycling of ribosomes
through Brownian diffusion in the cytosol plays an
important role in the control or regulation of transla-
tion [1,6–8]. When a ribosome unbinds from the mRNA
after termination, it can either rebind to the same
mRNA or bind to another mRNA. If the diffusion of
ribosomes is slow enough, then circularization of the
mRNA could enhance the rate of ribosome recycling
through cytosolic diffusion [1,6,9,10]. On the other
hand, this effect would be negligible if diffusion of ribo-
somes is fast enough. In this paper, we use physical
modelling to determine whether recycling of ribosomes
through diffusion can play a role in controlling mRNA
translation.

In order to study how ribosome mobility affects the
mRNA initiation rate and thus the protein production,
we present a minimalistic physical model that describes
both the translation of mRNA by ribosomes and the dif-
fusion of ribosomes in the cytoplasm. We call this model
the ribosome transport model with diffusion (RTD).
From a physical viewpoint, the RTD consists of par-
ticles (the ribosomes) that diffuse in a box and can
bind to a one-dimensional substrate (mRNA). Parti-
cles bound to the substrate move unidirectionally and
cannot overtake. The RTD consists thus in a totally
asymmetric simple exclusion process (TASEP) [11] in
contact with a diffusive reservoir. If diffusion is fast
enough, then we recover the standard TASEP model,
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which describes in detail the elongation stage of mRNA
translation [12–16]. On the other hand, when diffusion
is slow, then a concentration gradient is formed in the
reservoir and there will be a tight coupling between
active transport on the filament and diffusion in the
reservoir. In this regime, the RTD describes the inter-
play of active and passive transport in cellular media,
leading to the formation of a gradient of molecular
species. Phenomena of active transport coupled to a
diffusive reservoir have been studied before in the lit-
erature, see, for example, Refs. [6–8,17–28]. In these
studies, much focus has been put on nonequilibrium
phase transitions [11,22,29,30].

In the present paper, we use mean-field theory to
derive an analytical expression for the protein synthesis
in the RTD model, which is corroborated with numeri-
cal results obtained from continuous-time Monte Carlo
simulations. Subsequently, we use the analytical expres-
sion for the protein synthesis rate to discuss the biolog-
ical relevance of Brownian diffusion in ribosomal recy-
cling. By considering a broad range of biological param-
eters, we come to the conclusion that under physiologi-
cal conditions finite diffusion of ribosomes is not impor-
tant in the control of mRNA translation. Thus, circular-
isation should not occur in order to prevent the limiting
effect of Brownian diffusion of ribosomes in the cyto-
plasm on initiation of translation [1,6,9,10]. In addi-
tion, we discuss how the spatial dimensions of the reser-
voir and geometry impact the protein synthesis rate
and we find qualitative difference in the dependence of
the protein synthesis rate on the length of the mRNA
between two and three dimensions. Both cases are bio-
logically relevant: the three-dimensional case applies to
cytoplasmic translation, whereas the two-dimensional
case applies to endoplasmic reticulum translation.

The paper is organized as follows. In Sect. 2, we define
the RTD model. In Sect. 3, we present a mean-field the-
ory for the RTD model and derive analytical expres-
sions for the protein synthesis rate as a function of the
diffusion coefficient of ribosomes. In Sect. 4, we compare
theory with simulations results using a continuous-time
algorithm. In Sect. 5, we discuss the biological relevance
of the model. We conclude the paper with a discussion
in Sect. 6, and in Appendix A we present analytical
results for the concentration profile of ribosomes in the
cytoplasm.

2 Model definition: Ribosome Transport
with Diffusion

We introduce here the RTD, a minimalistic model that
allows us to study how diffusion determines the rate of
protein synthesis. The RTD consists of ribosomes that
diffuse in a medium embedded in two or three dimen-
sions and can bind to a one-dimensional substrate, say
a mRNA filament. Bound ribosomes then move unidi-
rectionally along the filament by converting the intra-
cellular chemical energy from the hydrolysis of guanine

Fig. 1 Graphical illustration of the ribosome transport
with diffusion model (RTD). The mRNA is represented with
a dashed line, ribosomes processing along the mRNA at a
rate p are represented by dark blue discs, and ribosomes dif-
fusing freely at a diffusion coefficient D are represented by
light blue discs. Grey discs of radius r centred at the end-
point of the mRNA are the reaction volumes: if a diffusing
ribosome is located in the reaction volume at the mRNA
end-point centred around position rα, then it attaches at a
rate α̃ to the mRNA. On the other hand, if a ribosome is at
the last site of the mRNA, then it detaches at a rate β and
is released inside the reaction volume centred around rβ

triphosphate (GTP) into mechanical motion, which is
modelled by a totally asymmetric simple exclusion pro-
cess (TASEP). In Fig. 1, we present an illustration of
the model and its parameters.

We consider a filament immersed in a medium con-
taining ribosomes at a concentration c∞. The filament
is a homopolymer consisting of � monomers of length a.
The first and last monomers of the filament are located
at positions rα and rβ , respectively. For simplicity, we
consider that rα and rβ are fixed in time.

The dynamics of unbound molecular motors is mod-
elled as a Brownian motion with diffusion coefficient
D.

The dynamics of bound molecular motors is a unidi-
rectional, hopping process with excluded volume inter-
actions, which we model with a TASEP on a one-
dimensional lattice of length L = �a [12,13,29,30].
The TASEP model is a Markov jump process with the
following rates: the hopping (or elongation) rate p at
which particles make a step of length a, the exit rate β
at which particles detach from the filament end-point,
and the entry rate

α(t) = α̃ Nr(t), (1)

where α̃ is the rate at which ribosomes contained in
the reaction volume bind to the filament and Nr(t) is
the number of ribosomes present in the reaction vol-
ume at time t. The reaction volume is considered to be
a sphere (in three dimensions) or a disc (in two dimen-
sions) of radius r centred around the first monomer
of the filament located at rα. The reaction volume
radius is of the same order of magnitude as the size
of a ribosome. When ribosomes detach from the fila-
ment, they appear at a random location in a sphere (in
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three dimensions) or disc (in two dimensions) of radius
r centred around rβ . Because of excluded volume inter-
actions, each monomer can be bound to at most one
ribosome. Therefore, ribosomes cannot hop forward if
the subsequent monomer is already occupied by a ribo-
some and ribosomes cannot bind to the first monomer
when it is already occupied, as illustrated in Fig. 1.

3 Mean-field theory for coupling of
diffusion with active transport

We present a mean field theory for the RTD model
that couples diffusion with active transport. First, in
Sect. 3.1, we discuss how the protein synthesis rate is
related to the stationary current of the TASEP model.
Second, in Sect. 3.2, we derive an analytical expression
for the protein synthesis rate that is independent of
the geometrical properties of the medium or reservoir
in which the one-dimensional substrate is immersed, in
the sense that the geometrical aspect of the problem
is captured in the value of one nonuniversal constant.
Lastly, in Sect. 3.3, we discuss the impact of the geome-
try of the surrounding reservoir on the protein synthesis
rate.

3.1 Protein synthesis rate is given by the stationary
current on the filament

The quantity of interest from a biological point of view
is the protein synthesis rate J , which corresponds with
the stationary current of particles on the filament [12,
13].

The stationary current of the RTD model in the limit
of infinitely large D is equal to the stationary current
J of the TASEP model. In the limit of large �, it holds
that [11,29,31]

J =

⎧
⎪⎪⎨

⎪⎪⎩

α
(
1 − α

p

)
, α < β and α < p/2, (LD),

β
(
1 − β

p

)
, β < α and β < p/2, (HD),

p
4 , α ≥ p/2 and β ≥ p/2, (MC).

(2)

The three branches in Eq. (2) correspond with three
nonequilibrium phases: a low-density phase (LD) at
small entry rates α < β and α < p/2, a high-density
phase (HD) at small exit rates β < α and β < p/2, and
a maximal current phase (MC) when both α ≥ p/2 and
β ≥ p/2. In the LD phase, the ribosome attachment
process is rate limiting and the current is a function of
α; in the HD phase, the ribosome detachment process
is rate limiting and the current is a function of β; and
in the MC phase, the filament hopping process is rate
limiting and the current is independent of both α and
β. Experimental data in yeast cells [32] and in neurons
of mammals [33] show that the rate limiting process for
translation is the initiation of ribosomes.

In the RTD model at finite values of D, the entry rate
α(t) on the filament is not a constant but a fluctuating

quantity, see Eq. (1). In the stationary state, the aver-
age current J is well approximated by the expression
(2) with the entry rate α replaced by its average value

〈α(t)〉 = α̃ 〈Nr(t)〉, (3)

where 〈·〉 denotes the average over many realizations
of the stationary process. Since in the stationary state
the average number 〈Nr(t)〉 of ribosomes in the reaction
volume is independent of time, we set

〈α(t)〉 = 〈α〉. (4)

Replacing in Eq. (2) α by 〈α〉, we obtain for the sta-
tionary current of the RTD model the expression

J =

⎧
⎪⎪⎨

⎪⎪⎩

〈α〉
(
1 − 〈α〉

p

)
, 〈α〉 < β and 〈α〉 < p/2, (LD),

β
(
1 − β

p

)
, β < 〈α〉 and β < p/2, (HD),

p
4 , 〈α〉 ≥ p/2 and β ≥ p

2 , (MC).

(5)

Note that replacing α by 〈α〉 is a mean-field approxima-
tion because it neglects correlations between particles in
the reaction volume and particles on the filament. From
Eq. (5), we observe that if the filament is in the HD or
MC phase, then the protein synthesis rate is indepen-
dent of the diffusion process in the reservoir. However,
in the LD phase when the initiation step is rate limit-
ing, which is the biologically relevant case, the current
J depends on the concentration of unbound ribosomes
through 〈α〉, and hence in this regime we are required
to include diffusion into our theoretical analysis. Often
it will be insightful to consider the limiting case where
particle excluded volume on the filament is irrelevant
for which the simpler formula

J = 〈α〉 (6)

holds. Note that this condition is fulfilled for low density
of ribosomes on the filament.

3.2 Protein synthesis rate: universal expression

From the point of view of the reservoir of diffusing ribo-
somes, the filament serves both as a sink and a source
of ribosomes.

If the initiation and termination sites overlap, as will
be approximately the case for circular mRNA, then
the concentration of ribosomes in the reservoir will be
homogeneous since source and sink exactly compensate
for each other, and therefore in this case

〈α〉 = α∞ = α̃c∞V, (7)

where V is the reaction volume of radius r, which for two
dimensions and three dimensions is given by V = πr2

and V = 4πr3/3, respectively.
On the other hand, if the termination site is distant

from the initiation site, then 〈α〉 will have a reduced
value, with respect to Eq. (7) due to the depletion of
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ribosomes in the reaction volume at the initiation site.
Indeed, the current on the filament carries away ribo-
somes from the reaction volume, which in the station-
ary state will be compensated by the diffusive current
in the reservoir. As we will show in the next section,
the depletion effects due to finite diffusion are captured
by the formula

〈α〉 = α∞

(

1 − Jμd

Deffα∞

)

, (8)

where μd is a constant that depends on the geometry
of the problem and where

Deff =
D

α̃r2
(9)

is an effective diffusion coefficient. The dimensionless
quantity Deff quantifies the competition between injec-
tion of ribosomes on the filament and the diffusion of
ribosomes into the reaction volume. Equation (8) fol-
lows from solving the diffusion equation for ribosomes
in the reservoir, as we shall describe in detail in the
next section. Equation (8) states that the rate 〈α〉 is
the sum of the entry rate α∞ for a homogeneous reser-
voir minus a correction term that captures the effect of
finite diffusion on the entry rate. The correction term
is negative since the filament depletes particles in the
reaction volume at the initiation site. Moreover, Eq. (8)
states that the correction term is proportional to the
current J on the filament, inversely proportional to the
effective diffusion constant Deff , and it is also propor-
tional to the dimensionless, nonuniversal constant μd

that depends, as we shall see in the next section, on the
geometrical properties of the system, namely, the end-
to-end distance |rβ − rα|, the location of the filament
in the reservoir, the dimensionality of the system, and
the boundary conditions of the reservoir of diffusing
ribosomes. Here, we would like to focus on the physical
consequences of Eqs. (8) and (9).

To obtain the protein synthesis rate J , we combine
Eqs. (5) and (8). In the LD phase, we obtain a second-
order algebraic equation whose solution 〈α〉 ∈ [0, p/2]
is given by

〈α〉 = p
Deff + μd

2μd

(
1 −

√
1 − 4ζ

)
, (10)

where the adimensional parameter

ζ =
α∞Deffμd

p(Deff + μd)2
(11)

quantifies the effect of exclusion on 〈α〉. The argument
of the square root in (10) is always positive when the
filament is in the LD phase because in the LD phase
α∞ < p/2(1+μd/(2Deff)), which implies ζ < 1/4. Note
that if the diffusion coefficient Deff is small enough, then
ζ � 1/4 and exclusion has a minor effect. Plugging 〈α〉
inside the expression for the current, given by Eq. (5),

we obtain the following expression for the protein syn-
thesis rate,

J =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈α〉 (1 − 〈α〉/p) , α∞ < β
[
1+ μd

Deff
(1 − β/p)

]

and α∞ <p/2
(
1+ μd

2Deff

)
, (LD),

β
(
1 − β

p

)
, α∞ >β

[
1 + μd

Deff
(1 − β/p)

]

and β < p/2, (HD),
p
4 , α∞ ≥ p/2

(
1 + μd

2Deff

)

and β ≥ p/2, (MC),

(12)

where 〈α〉 is given by (10). For small values of ζ, the
filament will be in the LD phase, and we obtain the
simpler expression

J =
α∞Deff

Deff + μd
, (13)

which also follows from Eq. (6). Equation (12) implies
that the current J admits a universal expression that
only depends on four parameters: the entry rate α∞
for a homogeneous reservoir, the elongation rate p, the
exit rate β, and the parameter μd/Deff that quanti-
fies the effect of finite diffusion on the current J . From
Eqs. (12) and (13), it also follows that the effect of finite
mobility of ribosomes on the protein synthesis rate J is
significant when μd � Deff . On the other hand, when
μd � Deff , then the finite mobility of ribosomes will be
irrelevant for J .

In Fig. 2a, we present the phase diagram for the
RTD model for three values of μd/Deff , namely the
case with an infinite diffusion rate, μd/Deff = 0, and
two cases with finite diffusion rates, μd = Deff and
μd = 5Deff . For μd/Deff = 0, we recover the phase
diagram of TASEP [11,29,31], while for finite values of
μd we observe an increase of the LD phase and a cor-
responding decrease of the MC and HD phases. This
is because finite diffusion depletes particles in the reac-
tion volume surrounding the initiation site of the fil-
ament, and hence reduces the current on the filament
for a given α∞. This is shown in Fig. 2b, where we plot
the current as a function of α∞/p for a fixed value of
μd/Deff and β/p ≥ 1/2. If μd � Deff , then the reservoir
is homogeneous and we obtain the standard TASEP
result [11,29,31]

J =
{

α∞(1 − α∞/p), α∞ < p/2,
p/4, α∞ > p/2.

(14)

In the opposing limiting case when μd � Deff , the reser-
voir is strongly inhomogeneous and we obtain that

J =
{

Deffα∞
μd

, α∞ < pμd/4,

p/4, α∞ > pμd/4.
(15)

In this limit, the environment is viscous and therefore
the effects of excluded volume become negligible.
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LD

HD

MC
β/p

α∞ αp/ ∞/p

J/p

(b)(a)

Fig. 2 a Phase diagram for the RTD model for three values of the parameter μd/Deff . b Protein synthesis rate J/p in the
RTD model as a function of the ratio α∞/p for a large exit rate β > p/2

Note that the results of Fig. 2 do not consider the
effects of finite resources. Therefore, it is implicitly
assumed that the number of ribosomes is very large
compared to the average number of ribosomes on the
mRNA. In the case of finite resources, the phase dia-
gram displays an extended shock phase, as shown in
Refs. [27,34].

So far, much of the interesting physics has been hid-
den in the dimensionless constant μd that depends on
the geometry of the problem. In the next subsection,
we will explicitly solve the diffusion equation coupled
to directed transport on the filament to obtain explicit
expressions for μd.

3.3 Influence of geometry on the protein synthesis
rate

In order to obtain an expression for μd, and thus com-
plete the theoretical treatment for ribosomes with finite
mobility, we solve the diffusion equation in the reservoir
coupled with active transport on the filament. We con-
sider the case where |rβ − rα| > 2r so that the reaction
volumes at the source and the sink do not overlap.

The concentration c(r, t) of unbound ribosomes at
the spatial coordinate r ∈ R

d and at the time t is
described by the diffusion equation:

∂c(r, t)
∂t

= −�∇ · �Jd(r, t) − Π(r, t), (16)

where

�Jd(r, t) = −D�∇c(r, t) (17)

is the diffusive current, and

Π(r) =

⎧
⎨

⎩

J
V |r − rα| ≤ r,

− J
V |r − rβ | ≤ r,

0 |r − rα| > r and |r − rβ | > r,
(18)

is proportional to the rate J at which particles exit and
enter the filament. We have used that |rβ − rα| > 2r.

The stationary concentration c(r) of unbound ribo-
somes solves the Poisson equation

D Δc(r) = Π(r), (19)

where Δ is the Laplacian with respect the radius r.
The Poisson equation admits the solution

c(r) = c∞ +
∫

Rd

ddr′ Gd(r, r′)Π(r′), (20)

where Gd(r, r′) is the Green function that solves

DΔGd(r, r′) = δ(r − r′). (21)

The entry rate 〈α〉 is related to the stationary concen-
tration in the reaction volume through

〈α〉 = α̃

∫

|r−rα|≤r

c(r)dr. (22)

Note that the latter equation is consistent with Eq. (3)
because at the stationary state 〈Nr(t)〉 =

∫

|r−rα|≤r
c(r)

dr.
The explicit form of the Green’s function and thus

〈α〉 depend on the geometry of the reservoir. We provide
below a couple of examples.

3.3.1 RTD in two-dimensional infinite box (R2)

In two dimensions, the Green function takes the form
[35,36]

G2(r, r′) = − 1
2π

ln |r − r′|. (23)

Substituting the Green function in Eq. (20), we obtain
an explicit expression for c(r), see Appendix A. Sub-
sequently, substituting the explicit solution for c(r) in
Eq. (22) we obtain the formula Eq. (8) with

μ2 =
log dαβ + 1

2
, (24)
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p/Jp/J

dαβ dαβ

(a) (b)

Fig. 3 Protein synthesis rate J/p as a function of the fil-
ament end-to-end distance dαβ for parameters α∞/p = 0.4,
β/p = 1 for Deff = 1 (a) and Deff = 0.1 (b). Theoretical
result Eq. (12) for filaments in R

2 (d = 2, red solid lines) and
R

3 (d = 3, black dashed lines) is compared with simulations
results for filaments consisting of � = 100 monomers (mark-

ers). The theoretical result Eq. (12) applies for dαβ > 2 and
J/p = 0.24 for dαβ = 0. Therefore, we have added dotted
lines connecting J/p = 0.24 for dαβ = 0 with J/p at dαβ = 2.
The remaining parameters that specify the simulations can
be found in Sect. 4

where

dαβ =
|rβ − rα|

r
(25)

is the effective distance between the initiation site and
the termination site on the filament. Substitution of μd

into Eqs. (10–12) provides us with an explicit expression
for the current J as a function of dαβ .

In Fig. 3, we plot the current J as a function of
the separation dαβ between the two end-points of the
mRNA for two values of the effective diffusion constant
Deff . Although the part for dαβ < 2 is not covered by
our calculations, we know that J = α∞(1 − α∞/p) for
dαβ = 0, which in Fig. 3 corresponds to J = 0.24p.
We observe that the current decreases monotonically
as function of dαβ and approaches zero for dαβ large
enough. The decay towards zero is logarithmically slow
after a fast initial decay in the regime dαβ < 2 where
initiation and termination sites overlap.

3.3.2 RTD in three-dimensional infinite box (R3)

In three dimensions, the Green function is given by

G3(r, r′) =
1
4π

1
|r − r′| . (26)

Using this expression for the Green function in Eq. (20),
we obtain an explicit expression for c(r), see Appendix A,
which we substitute in Eqs. (20) and (22) to obtain for-
mula Eq. (8) with now

μ3 =
2
5

− 1
3dαβ

. (27)

Comparing Eqs. (24) and (27), we see that there is a
difference between two and three dimensions: in three
dimensions μ3 converges to a finite value for dαβ → ∞
whereas in two dimensions μ2 diverges for dαβ → ∞.

This implies that in two dimensions J converges to zero
for large distances dαβ between the end-points of the
filament, while it converges to a finite nonzero value in
three dimensions.

The distinction between the dependency of the cur-
rent J in two and three dimensions is illustrated in
Fig. 3. In three dimensions, the current saturates fast
to its asymptotic value after an initial quick decay for
values dαβ < 2. The asymptotic value of J depends
on the diffusion constant Deff and decreases to zero for
Deff → 0. Hence, in three dimensions, the mRNA will
carry a finite current, even when dαβ → ∞, and this
asymptotic current will depend on the diffusion con-
stant.

In Fig. 4, we plot the asymptotic current J as a func-
tion of the effective diffusion constant Deff . We observe

J/p

Deff

Fig. 4 Protein synthesis rate J/p as a function of the effec-
tive diffusion constant Deff for filaments in R

2 (d = 2)
and R

3 (d = 3). Analytical results from mean-field theory
[lines depicting Eq. (12) with μd as in Eqs. (24) or (27)] are
compared with simulation results (markers). The parame-
ters used to compute the theoretical curves are dαβ = 20,
α∞/p = 0.4, and β/p > 1/2 (and therefore limDeff→∞ J/p =
0.24). The remaining parameters that specify the simula-
tions can be found in Sect. 4
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from Fig. 4 that at finite Deff the protein synthesis rate
in d = 2 dimensions is smaller than the synthesis rate in
d = 3 dimensions. This is because diffusive currents are
smaller in lower dimensions and hence ribosomes are
more depleted at the filament entrance. For small val-
ues of Deff , the current is proportional to Deff , namely

J =
α∞
μd

Deff + O(D2
eff), (28)

where the proportionality constant is the ratio between
the entry rate α∞ for circularized mRNA and the con-
stant μd that depends on the geometry of the problem.

3.3.3 Two-dimensional rectangular box

Since the volume of a cell is finite, it is relevant to under-
stand how the confinement of the mRNA in the cell
affects the protein synthesis rate. We first consider the
case of a filament immersed into a medium that has the
shape of a two-dimensional rectangular box. This can
represents a confined region of the endoplasmic retic-
ulum membrane where translation occurs. We assume
that the box is centred at the origin r = 0 and that the
sides of the box have lengths Lx and Ly.

We derive an explicit expression for the Green func-
tion in a two-dimensional rectangular box with the
method of images [37]. The Green function of a point
source in a two-dimensional rectangular box is identi-
cal to a series of Green functions in R

2 associated with
images of the point source, namely, it holds that

GLx,Ly
(r, r′) = G2(r, r′) +

∑

j∈N
G2(r, r(j)), (29)

where r(j) are the coordinates for the images of the
point source located at r′, see Fig. 5 for an example,
and G2 is the Green function in Eq. (23).

Substituting the Green function given by Eq. (29) in
Eq. (22), we obtain the expression Eq. (8), with now

μ2(Lx, Ly) =
1 + log dαβ + ILx,Ly

2
, (30)

and where ILx,Ly
is the series

ILx,Ly
=

∑

j∈Nβ

log |rα − r(j)
β | −

∑

j∈Nα

log |rα − r(j)
α |.

(31)

The sums in Eq. (31) run over the images of the initia-
tion and termination sites of the filament, which define
the set Nα and Nβ . The specific locations of r(j)

α and
r(j)

β are detailed in Fig. 5. As shown in Ref. [27], the
series Eq. (31) converges rapidly since the influence of
the copies r(j)

α and r(j)
β on the concentration of ribo-

somes in the original system decreases fast enough with
the distance.

Note that the method of images also works for a tri-
angular or hexagonal shaped cell as two-dimensional
Euclidean space can be tiled with triangles and hexagons,
see [27] and references therein.

3.3.4 Three-dimensional cuboid

Since a cell is three dimensional, we consider now the
case of a three-dimensional cuboid with linear dimen-
sions Lx, Ly and Lz. An analytical expression for the
protein synthesis rate can also be derived in the case of
a cuboid. We obtain formula Eq. (8) with

μ3(Lx, Ly, Lz) =
2
5

− 1
3

(
1

dαβ
+ ILx,Ly,Lz

)

(32)

where ILx,Ly,Lz
is the series

ILx,Ly,Lz
=

∑

j∈Nβ

r

|rα − r(j)
β |

−
∑

j∈Nα

r

|rα − r(j)
α |

.

(33)

The sums run over the images of the initiation and ter-
mination sites of the filament in R

3.
In Fig. 6, we plot the protein synthesis rate J as a

function of the height of the cuboid Lz while keeping
α∞ fixed. We observe that confinement reduces the cur-
rent on the filament: the filament current in a confined
volume with finite Lz is smaller than one would expect
for Lz = ∞. In addition, we observe that the effect
of confinement is negligible when Lz > 20r with r the
radius of the reaction volume at the first site of the
filament.

It will be interesting to extend the analysis to the
case of a spheroid or cylinder [38–42]. Since the main
effect of confinement is a volume reduction, one can use
the results for a three-dimensional cuboid to estimate
the overall influence of confinement on protein synthesis
rates, even for cells with a spheroid or cylindrical shape.

3.4 Summary of the theoretical results

Using a mean-field approximation, we have derived the
formula (12) for the current J in the RTD model, which
describes the protein translation rate for one mRNA in
a diffusive reservoir that contains a large number of
ribosomes. The formula Eq. (12) expresses the protein
translation rate in terms of five parameters: the elon-
gation rate p; the ratio β/p between the termination
rate β and p; the ratio α∞/p between the initiation
rate α∞ in a homogeneous reservoir, i.e. with an infi-
nite diffusion constant D, and p; an effective diffusion
constant Deff ; and a dimensionless parameter μd that
quantifies the effect of the geometry of the setup on J .
For small values of the parameter ζ, given by Eq. (11),
we obtained the simpler expression (13), which is inde-
pendent of the exit rate β and the hopping rate p.

Interestingly, all the geometrical details of the prob-
lem, such as the shape of the reservoir, the position
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Fig. 5 Illustration of the method of images: diffusion of
ribosomes in a confined rectangular box is equivalent to dif-
fusion of ribosomes in a two-dimensional Euclidean space
that contains an infinite number of images of the original
source (denoted by red) and sink (denoted by green) located
in the rectangular box (located in the centre and coloured
in blue)

of the filament in the reservoir, and the filament end-
to-end distance, are captured by the parameter μd. In
order to understand the effect of dimensionality on μd,
we have determined μd for the Euclidean spaces R2 and
R

3. Surprisingly, the functional dependency of μd on
the end-to-end distance dαβ is qualitatively different
in two than in three dimensions. In two dimensions,
we find that μ2 diverges for large dαβ , while in three
dimensions μ3 converges to a finite value for large dαβ .
This implies that in two dimensions long mRNA fil-
aments will have a vanishing protein translation rate,
while in three dimensions the protein translation rate
will be finite for long mRNA filaments. In addition, in
order to understand the effect of confinement on μd,
we have determined μd for a rectangle and a cuboid.
Explicit computations for the cuboid show that con-
finement effects disappear rapidly for linear dimensions
larger than 10r, with r the size of the reaction volume.

So far, all results are based on mean-field theory. In
the next section, we validate mean-field theory predic-
tions with simulations results for the RTD model.

4 Comparing mean-field theory with
simulations

We have performed numerical simulations of the RTD
to verify the accuracy of the mean field theory given
by Eq. (5). First, we detail the specifics of the Monte
Carlo simulations. In a second subsection, we discuss
the parameters used in the simulations. In a final sub-
section, we compare predictions from mean-field theory
with simulation results.

J/p

Lz/r

Fig. 6 Protein synthesis rate J/p as a function of Lz for
filaments in a three-dimensional cuboid with Lx = ∞ and
Ly = ∞. The filament is located in the x, y-plane and Lz

is thus an orthogonal direction. Lines are analytical results
from mean-field theory for a given value of Deff . The param-
eters used to compute the theoretical curves are the same
as in Fig. 4, namely dαβ = 20, α∞/p = 0.4, and β/p > 1/2.
The dotted lines denote the asymptotics for Lz = ∞ and
are the same as in Fig. 4

4.1 Monte Carlo simulations of the RTD

Both components of the RTD, i.e. diffusion of particles
and the active transport on the filament, can be sim-
ulated independently, using a continuous-time Monte
Carlo simulation on the TASEP [43,44] and a Brownian
motion in the reservoir. However, in order to simulate
the RTD model, we need to couple the dynamics of the
two processes.

In this subsection, we describe the algorithm used
to simulate the dynamics of ribosomes in the reservoir,
ribosomes on the filament, and how these two dynam-
ics are coupled at the first and last site of the filament,
where the ribosomes, respectively, enter on and exit
from the filament.

First, we detail the simulations of the unbound
ribosomes diffusing in the reservoir. We consider that
unbound ribosomes do not interact with each other and
their positions �r evolve according to a Brownian equa-
tion of motion

d�r

dt
= �ξ(t), (34)

where �ξ is a white noise with

〈ξa(t)〉 = 0, (35)
〈ξa(t) · ξb(t′)〉 = 2Dδ(t − t′)δa,b, (36)

where the indices a and b stand for the spatial coor-
dinates of the ribosomes, i.e. x and y for a two-
dimensional reservoir; and x, y and z for three-
dimensional reservoir. We numerically integrate these
equations by discretizing time into intervals of length
Δt = t − t′, namely
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�r(t + Δt) − �r(t)
Δt

= �ξ(t) . (37)

The δ(t − t′) in the amplitude of the white noise is
replaced by 1/Δt, leading to the following update rule
for each spatial coordinate,

ra(t + Δt) = ra(t) +
√

2DΔt ξa . (38)

The reflecting boundary conditions are implemented as
follows: if the update of a Brownian particle leads to a
position outside of the box, the move is rejected.

Second, we detail the simulations of ribosomes bound
to a filament located inside the reservoir. The filament
contains � sites and each site has the length a = r
of a ribosome. The filament has thus a total length
L = �r. The dynamics on the TASEP is performed
with a continuous-time Monte Carlo algorithm [43,44],
sometimes called Gillespie algorithm [45,46]. A config-
uration of ribosomes on the filament allows only for
a finite number of moves given by the TASEP rules
described above. For illustration, in the particular case
of Fig. 1, the first site is empty; thus, a ribosome can
enter at a rate α = α̃N(t); three ribosomes on the fil-
ament are free to move at a rate p as there is no ribo-
some blocking passage in front of them; and finally a
ribosome occupies the exit site of the filament, so it can
leave at the rate β the filament and return to the reser-
voir to resume a Brownian motion. It is useful to define
the sum Sr of the possible transition rates; in the case
of Fig. 1, Sr = α + β + 3p. A particular move is chosen
with a probability linearly related to its rate, and the
filament is forced to perform this move. For instance,
the probability Pβ to move the ribosome from the exit
site to the reservoir is Pβ = β/Sr. The continuous-
time Monte Carlo algorithm thus avoids rejection of
ribosome moves, which saves us a considerable amount
of computational time when densities of ribosomes are
large. The time between two consecutive moves is a
random variable τ taken from an exponential distribu-
tion with mean value like S−1

r . The explicit definition
of τ is important as it allows us to couple dynamics of
ribosomes on the filament with the dynamics of ribo-
somes diffusing in the reservoir. Note that, intuitively,
the sum of rates Sr, and thus the time τ spent by the
filament during a move, depend on the configuration of
ribosomes. If Sr is small (large), i.e. if a transition is
unlikely (resp. likely) to happen, then the time evolu-
tion of the filament will be large (resp. small).

Third, we discuss how the dynamics in the reservoir
is coupled to transport on the filament. First we draw
a time τ from the continuous-time Monte Carlo algo-
rithm, then we update the reservoir configuration over
this time interval by integrating the Brownian equa-
tions for each particle in the reservoir over the time τ ,
and then we draw another time τ and so on. Hence, in
this approach, we assume that in the time τ the reser-
voir does not change significantly. The internal dynam-
ics of ribosome hopping is by definition not coupled to
the reservoir as, in the RTD the ribosomes can neither
attach nor detach in the bulk of the filament. The cou-

pling between reservoir and filament takes place at the
first and last site of the filament. Therefore, it is suffi-
cient to define the positions rα and rβ of the first and
the last sites, respectively. Note that the end-to-end
distance dαβ = |rβ − rα| can take any value between 0
and L depending on the conformation of the filament.
Among the possible moves accounted in the simula-
tion is the attachment of a ribosome at the entrance:
we define a spherical reaction volume Vα = 4/3πr3 of
radius r centred at the first site of the TASEP. If an
unbound ribosome is present in the reaction volume
Vα, then it can attach at a rate α̃ to the filament, with
α̃ defined in Eq. (1). In the same way, a spherical vol-
ume Vβ of radius r is centred at the exit site of the
filament. If a ribosome exits the filament at a rate β,
then it is released at a random position inside Vβ , after
which it resumes a Brownian motion in the reservoir.
Note that we have used the same numerical technique
in Ref. [20] to couple the TASEP-LK with Brownian
particles inside a reservoir.

4.2 Parameters of the simulations

We describe in this paragraph the parameters chosen in
the simulations. We first discuss the geometrical param-
eters. The filament has a length L = � r with � = 100,
which for a TASEP model is large enough to keep finite
size effects of the order of a few percents [47,48]. In
the simulations, the filament is located in the middle
of the reservoir to ensure isotropy of the particle con-
centration and limiting boundary effects. The reservoir
is chosen large enough with respect to dα,β and r. In
three dimensions, we choose the dimensions orthogonal
direction to the filament equal to Lx = Ly = 100 r,
whereas the longitudinal direction parallel to dα,β is
taken to be larger, i.e. Lz = 200 r. In two dimensions,
we set Lx = 400 r in the longitudinal direction and
Ly = 200 r in the orthogonal direction. Note that the
gradient of ribosomes in the reservoir induced by the
transport on the filament is expected to be larger along
the longitudinal direction to dα,β . This is why the longi-
tudinal dimension is chosen larger than the orthogonal
directions. With these reservoir dimensions, boundary
effects are small as the system is large with respect to
the gradient of particles. Indeed, from Fig. 6 we can
conclude that for linear dimensions larger than 20r the
effects of confinement are negligible and the reservoir
can be considered infinitely large.

We now discuss the remaining parameters of the sys-
tem linked to the concentration of ribosomes, attach-
ment rate at the entry site of the filament, and the
diffusion coefficient of the Brownian motion. In three
dimensions, the system contains 105 ribosomes, lead-
ing to a density of ribosomes c∞ = 0.05 r−3, whereas
in two dimensions, we set the total number of ribo-
somes equal to 5 × 105, leading to a density 6.25 r−2.
In two and three dimensions, we used the same param-
eters. We chose α̃ = 0.4/c∞ so that α∞ = α̃ c∞ = 0.4.
We chose D = 0.1α̃r2 and D = α̃r2 in Fig. 3a,b, so
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that Deff = D/(α̃r2) = 0.1 and Deff = 1, respectively.
Finally, we chose β = p = 1.

In this paragraph, we discuss the values of the cor-
relation and equilibration times, which are important
quantities to improve the sampling during Monte Carlo
simulations. The correlation time can be approximated
by the time needed to replace all the ribosomes on
the TASEP. During one MC iteration, the time spent
during the update is τ ∼ 1/Sr ∼ 1/(ρ�p) where ρ is
the global density of ribosomes on the filament, i.e.
ρ = Nr/� where Nr is the total number of ribosomes
on the filament. Note that, in the last approximation
of τ , the sum of the rates Sr is obtained assuming that
it is dominated by the hopping rates in the bulk of the
TASEP, which contains ≈ ρ� particles. The last ribo-
some that entered the TASEP will need at least to be
chosen � times amongst ρ� possibilities of moves. There-
fore, the correlation time becomes τc ≈ ρ�2τ = �/p. As
p = 1 and � = 100 in our simulations (both two and
three dimensions), we use τc = 100. Starting with an
empty initial configuration, we ensure the steady state
by performing 100τc = 104 iterations described above
(continuous time on the filament and integration of the
Brownian motion in the reservoir). Subsequently, 2×104

samplings are performed in three dimensions and 105

samplings in two dimensions, each spaced by τc = 100
iterations to decorrelate the configurations. This leads
to errors bars smaller than symbols.

4.3 Results

In Figs. 3 and 4, we compare mean-field theory with
results from numerical simulations. Theory and sim-
ulations are in very good correspondence, despite the
fact that theory neglects correlations between parti-
cles, finite size effects on the filament due to bound-
ary layers, and confinement effects due to the finite
volume of the reservoir. The very good correspondence
between numerical experiments and theory shows that
the expression for the current J given by Eqs. (10–12)
describes well the effect of finite mobility on the pro-
tein synthesis rate J . In Figs. 3 and 4, we observe a
small mismatch between theory and simulations regard-
ing the protein synthesis rate at small and intermediate
values of Deff . We expect that these deviations are due
to correlation between particles inside the reaction vol-
ume and on the filament.

5 Biological relevance of diffusion in
ribosomal recycling

To determine the biological relevance of finite mobil-
ity for ribosomal recycling, we use experimentally mea-
sured values for the parameters that appear in the theo-
retical expression for the protein synthesis rate derived
in Sect. 3. We focus on two organisms for which the
required microscopic parameters have been measured
experimentally, namely the bacterium Escherichia coli

and the budding yeast Saccharomyces cerevisiae. More-
over, we focus on the three-dimensional case corre-
sponding to cytoplasmic translation.

Since for physiological parameters the initiation of
translation is the rate limiting step, we use the expres-
sion for the protein synthesis rate given by Eq. (13).
Equation (13) implies that if

μd � Deff (39)

then diffusion has no meaningful influence on the pro-
tein synthesis rate. On the other hand, when

μd � Deff (40)

then the influence of finite diffusion on protein synthesis
rate is sizeable. Hence, in what follows we estimate the
parameters μd and Deff .

5.1 Estimate of µ3

First, we estimate the geometric parameter μ3 cor-
responding to cytoplasmic translation. Formula (27)
implies for a three dimensional and infinitely large
reservoir that

μ3 ≤ 2
5
, (41)

where the equality is achieved in the limit dαβ → ∞.

5.2 Estimate for Deff in Escherichia coli

In order to estimate Deff , it is useful to rewrite the
expression Eq. (9) in terms of 〈α〉, which gives

Deff =
D〈Nr〉
〈α〉r2

(42)

where 〈Nr〉 is the number of ribosomes in the reaction
volume. According to Eq. (A2), 〈Nr〉 is lower bounded
by

〈Nr〉 >
4π

3
r3cu − Jr2

2D
(43)

where cu denotes the concentration of unbound ribo-
somes. The second term in Eq. (43) is a correction due
to depletion of ribosomes around the entry site. Sub-
stituting Eq. (43) in Eq. (42) and using J = 〈α〉, we
obtain

Deff >
4π

3
Dcur

〈α〉 − 1
2
. (44)

The quantity 〈α〉 is hard to estimate since it can vary
in several orders of magnitude from one mRNA tran-
script to another, see for instance Ref. [5]. However,
since initiation is the rate limiting step, it holds that

〈α〉 <
p

2
, (45)
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with the elongation rate p being fairly independent of
the mRNA transcript and the biological organism under
study. Combining Eqs. (42) and (45), we obtain the
lower bound

Deff >
8π

3
Dcur

p
− 1

2
. (46)

We are left to estimate the parameters D, cu, r and
p. We first consider the case of the bacteria Escherichia
coli.

Empirical values for the diffusion of ribosomes in E.
coli show that D ≈ 0.04µm2/s, see Table 4-1 in Ref.
[49]. However, the diffusion coefficient of the subunits
of unbound ribosomes (i.e. those not bound to mRNA)
is one order of magnitude larger and given by D ≈
0.2μm2/s, as shown in Ref. [50].

For the radius of the reaction volume r, we use that
the reaction volume cannot be smaller than the radius
of a ribosome (or one of its subunits), and thus, r >
10nm, see Figure 1–40 in Ref. [49].

For E. coli, the elongation rate p has been measured
in several experiments, see Refs. [51–53], leading to a
value p of about 10 − 20 codons per second. Since a
ribosome occupies three codons, we take for p ≈ 7s−1.

Lastly, we need an estimate for the concentration

cu =
Nu

V
. (47)

The volume of E. coli is V ≈ 1µm3 and its total number
of ribosomes is about Ntot = 20,000 [49]. The fraction
of unbound (or free) ribosomes is about 15% [50,54] of
the total value, leading to

cu ≈ 2 × 0.15 × 104 µm−3 ≈ 3 × 103 µm−3. (48)

Combining all parameter values into the right hand
side of the bound Eq. (46) for Deff , we obtain that

Deff >
8π

3
0.2 × 10 × 3 × 103

7
nm
µm

≈ 7.2, (49)

and therefore

μ3

Deff
< 0.06. (50)

We can conclude that diffusion has no sizeable effect
on protein synthesis rates. This is in particular true
since we have been very generous with all the biological
parameters. For example, taking 〈α〉 < p/20 instead of
p/2, as in Ref. [55], would provide an even smaller upper
bound μ3

Deff
< 0.006.

5.3 Estimate for Deff in Saccharomyces cerevisiae

As a second example, we consider the case of budding
yeast. We consider again Eq. (46) to bound Deff . All

empirical values are known for this organism, see, for
instance, table S1 in Ref. [5].

Empirical values for the diffusion coefficient of the
60S subunit of ribosomes in the dense nucleoplasm of
budding yeast show that D ≈ 0.3(µm)2/s [56]. We may
expect that ribosomes diffuse faster in the cytoplasm,
where translation takes place.

For the radius of the reaction volume r, we use again
that the reaction volume cannot be smaller than the
radius of the ribosome, and thus, r > 10nm.

The elongation rate of ribosomes in budding yeast
has been measured to be p ∼ 10 codons per second
and therefore p ≈ 3s−1 since a ribosome occupies three
codons [5,57].

Finally, we come to the estimate of cu, given by
Eq. (47). The volume of a budding yeast cell is about
V ≈ 42μm3 [5,58] and the number of ribosomes is
2 × 105 [5,59,60]. Using again that a fraction 15% of
ribosomes are unbound, see Figure 3 in [5], we obtain

cu ≈ 2 × 0.15 × 105

42
μm−3 ≈ 7 × 103 µm−3, (51)

which is in fact close to the concentration of unbound
ribosomes in E. coli, see Eq. (48).

Combining all parameters in the bound given by
Eq. (46), we obtain that

Deff >
8π

3
0.3 × 10 × 7 × 103

3
nm
µm

≈ 59 (52)

and

μ3

Deff
< 0.007. (53)

We should again bear in mind that the bound in
Eq. (53) is a generous upper bound based on the bound
on the initiation rates given by Eq. (45), and it is thus
likely a loose bound and a significant overestimate for
μ3/Deff .

5.4 Protein synthesis rates for E. coli

We end this section by presenting Fig. 7 that shows sim-
ulation results for the protein synthesis rate J/p in the
parameter regime that is relevant for mRNA translation
in E. coli. We compare these results from simulations
with J∞/p, the standard TASEP result for Deff = ∞.
We see that both are indistinguishable, which confirms
that finite diffusion is not a limiting factor in mRNA
translation.

6 Discussion

We have made a study of a totally asymmetric sim-
ple exclusion process immersed in a diffusive reservoir
[11,29], which we have called the RTD model. The RTD
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J/p

α̃/p

Fig. 7 We plot J/p versus α̃/p for biological parameters
for E. coli: D = 2µm2 s−1, Lx = Ly = 0.7µm and Lz =
2µm so that V ≈ 1µm3, p = β = 7 s−1, the radius of the
reaction volume is r = 10 nm, the length of the mRNA is
� = 300 sites corresponding to codons, dα,β = 300 nm and
we took 20.000 ribosomes in the reservoir (corresponding
to the total number of ribosomes in E. coli). Results from
simulations are given by symbols and compared to J∞/p =
α∞/p(1−α∞/p) corresponding to infinite diffusion constant

Table 1 Impact of finite mobilities on ribosomal recycling
in two organisms

E. coli S. cerevisiae

μ3/Deff < 0.06 μ3/Deff < 0.007

is a model for translation based on directed transport
of ribosomes along mRNA and recycling of ribosomes
through diffusion in the cytoplasm. We have used this
model to determine whether under physiological con-
ditions diffusion is a limiting factor for ribosome recy-
cling.

We have derived an analytical expression for the cur-
rent J at which mRNA is translated into proteins,
which is corroborated by numerical simulation results.
These results show that finite diffusion leads to a reduc-
tion in the translation rate J because the concentration
of ribosomes at the mRNA initiation site is depleted.
In addition, we find that the ratio between a geometric
parameter μd and an effective diffusion coefficient Deff

determines whether diffusion has an impact on the pro-
tein synthesis rate: if μd � Deff , then the concentration
of ribosomes at the 5’ end of the mRNA is not affected
by finite diffusion; on the other hand, if μd � Deff , then
depletion of ribosomes at the mRNA initiation site is
significant.

Using a broad range of physical parameters, we find
that it is unlikely that finite diffusion is a limiting fac-
tor under physiological conditions in ribosome recy-
cling. Indeed, in Table 1, we present generous upper
bounds for the parameter μd/Deff for two organisms,
namely the bacterium E. coli and the yeast S. cere-
visiae. In both cases, we obtain that μd/Deff is sub-
stantially smaller than 1.

The outcome of our analysis, namely that the finite
mobility of ribosomes does not play a role in translation
control, is not a complete surprise given that ribosomes
diffuse at large enough rates. For example, it takes 0.1s
for a protein to diffuse across an E. coli cell and 10 s
for a protein to diffuse across a yeast cell [61], while the
time to translate a protein is about 2 min [61]. Hence,
as much as concerns the translation of mRNA into pro-
teins, the diffusion rate of ribosomes can be considered
very large and therefore of negligible effect on the whole
translation process. Also, since ribosomes biogenesis is
one of the most resource expensive processes for cells
[59,62], it is reasonable to assume that the molecular
conditions are optimized by evolutionary constraints
in order to render translation efficient, which in the
present context implies that translation is not limited
by ribosome mobilities.

From a biological point of view, these results imply
that the purpose of mRNA circularisation [1,9] is not
the optimization of ribosome recycling by reducing the
limiting factor of diffusion in the cytoplasm. Instead,
the circularisation of mRNA may regulate the efficiency
of translation initiation by altering the binding strength
of initiation factors to the mRNA [9,10]. Hence, we
come to a different conclusion than Ref. [7], which
argues that three-dimensional diffusion of ribosomes in
the cytoplasm plays an important role for mRNA trans-
lation control. Note that the question of the effect of the
finite mobility of ribosomes on the current on mRNA
remains open in two dimensions, as the diffusion coef-
ficient of ribosomes constrained to a two-dimensional
diffusion on the endoplasmic reticulum is not known to
our knowledge.

Although finite diffusion is not rate limiting for ribo-
some recycling under physiological conditions, the RTD
model may be relevant to explain the reduction in pro-
tein production when cells are in a dormant state. The
mobility of cytoplasmic particles in dormant yeast cells
is much lower than their mobility in yeast cells under
normal conditions [63,64]. The reduction in mobility of
cytoplasmic particles is due to a transition between a
fluid-like phase and a solid-like phase of the cytoplasm,
which is triggered by the acidification of the cytosol [64].
The formula J ∼ D indicates that the protein synthesis
rate scales proportional to the particle mobility at low
values of D.

The RTD model is also interesting as a model for
the coupling between active transport and passive dif-
fusion. Remarkably, the rate J admits a universal form
that depends on five parameters only: the elongation
rate p, the ratio β/p between the rate β of termina-
tion and p, the ratio α∞/p between the initiation rate
α∞ for a homogeneous reservoir (i.e. the limit of an
infinitively fast diffusion) and p, an effective diffusion
constant Deff , and a dimensionless parameter μd that
quantifies the effect of the geometry of the reservoir and
the filament on the current J . We have also found an
interesting qualitative distinction between finite diffu-
sion in two and three dimensions. In two dimensions, it
holds that the current J vanishes in the large distance
limit between the filament end-points, while in three
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dimensions this limit gives a finite current J . However,
the decay towards zero of J in two dimensions, which
may be relevant for the endoplasmic reticulum transla-
tion, is logarithmically slow.

We end the paper by discussing the assumptions
made by the RTD model and interesting future exten-
sions of the present paper. First, we have ignored the
fact that ribosomes disassemble into two subunits in the
cytoplasm [1]. Hence, in principle we should consider a
reservoir with two types of particles. However, if the
mRNA binding rate one of these subunits is rate lim-
iting, then the predictions of our model would remain
valid. Interestingly, experimental data indicate that in
prokaryotes the binding of the 40S ribosomal subunit
is the rate-limiting step of initiation [4]. Second, we
have assumed that mRNA has zero mobility and we
have also assumed that the end-points of the mRNA
are immobile. Nevertheless, including diffusion of the
mRNA in the model would not alter the main conclu-
sions of this paper, since it would only reduce the effects
of finite diffusion on the protein synthesis rate. Third,
it is known that cytoplasmic particles diffuse anoma-
lously within living cells [65–67] and therefore a model
based on fractional Brownian motion is more appropri-
ate [67]. However, the exponent of the anomalous diffu-
sion is close to 1 (0.88 for nanosilica particles of various
sizes in yeast cells [64]), and therefore we expect it not
to have a major impact on short length scales. It would
nevertheless be interesting to analyse the dependence
of J on dαβ in this case.
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Appendix A: Concentration of ribosomes in
the box

We solve Eqs. (19)–(18) in various geometries when |rβ −
rα| > 2r.

In R
2, we obtain that

c(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c∞ + Jr2

4DV − J
4DV |r − rβ |2

+ Jr2

2DV ln
( |r−rα|

r

)
, |r − rβ | < r,

c∞ − Jr2

4DV + J
4DV |r − rα|2

− Jr2

2DV ln
( |r−rβ |

r

)
, |r − rα| < r,

c∞ − Jr2

2DV ln
( |r−rβ |

|r−rα|
)

, |r − rα| > r,

and |r − rβ | > r,

(A1)

while in R
3 it holds that

c(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c∞ + Jr2

2DV − J
6DV |r − rβ |2

− Jr3

3DV
1

|r−rα| , |r − rβ | < r,

c∞ − Jr2

2DV + J
6DV |r − rα|2

+ Jr3

3DV
1

|r−rβ | , |r − rα| < r,

c∞ + Jr3

3DV
(

1
|r−rβ | − 1

|r−rα|
)

, |r − rα| > r,

and |r − rβ | > r.

(A2)

For a rectangular box of dimensions Lx × Ly, we obtain

c(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c∞ + Jr2

4DV − J
4DV |r − rβ |2

+ Jr2

2DV ln
( |r−rα|

r

)
+ cI(r), |r − rβ | < r,

c∞ − Jr2

4DV + J
4DV |r − rα|2

− Jr2

2DV ln
( |r−rβ |

r

)
+ cI(r), |r − rα| < r,

c∞ − Jr2

2DV ln
( |r−rβ |

|r−rα|
)

+ cI(r), |r − rα| > r,

and |r − rβ | > r.

(A3)

where

cI(r) =
Jr2

2DV
∑

j∈Nα

ln(|r − r(j)
α |) − Jr2

2DV
∑

j∈Nβ

ln(|r − r
(j)
β |),

(A4)

and where the r
(j)
α denote the coordinates of the images

of the filament initiation site located at rα, and where the

r
(j)
β denote the coordinates of the images of the filament

termination site located at rβ , as illustrated in Fig. 5.
Analogously, for a cuboid of dimensions Lx ×Ly ×Lz, we

obtain

c(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c∞ + Jr2

2DV − J
6DV |r − rβ |2

− Jr3

3DV
1

|r−rα| + cI(r), |r − rβ | < r,

c∞ − Jr2

2DV + J
6DV |r − rα|2

+ Jr3

3DV
1

|r−rβ | + cI(r), |r − rα| < r,

c∞ + Jr3

3DV
(

1
|r−rβ | − 1

|r−rα|
)

+cI(r), |r − rα| > r,

and |r − rβ | > r,

(A5)
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where

cI(r) = − Jr3

3DV
∑

j∈Nα

1

|r − r
(j)
α |

+
Jr3

3DV
∑

j∈Nβ

1

|r − r
(j)
β |

.

(A6)
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Straley, Phase diagram of one-dimensional driven lattice
gases with open boundaries. J. Phys. A: Math. Gen. 31,
6911–6919 (1998)

49. R. Milo, R. Phillips, Cell Biology by the Numbers (Gar-
land Science, 2016)

50. A. Sanamrad et al., Single-particle tracking reveals
that free ribosomal subunits are not excluded from the
Escherichia coli nucleoid. Proc. Nat. Acad. Sci. 111,
11413–11418 (2014)

51. R. Young, H. Bremer, Polypeptide-chain-elongation rate
in Escherichia coli B/r as a function of growth rate.
Biochem. J. 160, 185–194 (1976)

52. N. Bilgin, F. Claesens, H. Pahverk, M. Ehrenberg,
Kinetic properties of Escherichia coli ribosomes with
altered forms of S12. J. Mol. Biol. 224, 1011–1027 (1992)

53. S. Proshkin, A.R. Rahmouni, A. Mironov, E. Nudler,
Cooperation between translating ribosomes and RNA
polymerase in transcription elongation. Science 328,
504–508 (2010)

54. J. Forchhammer, L. Lindahl, Growth rate of polypeptide
chains as a function of the cell growth rate in a mutant
of Escherichia coli. J. Mol. Biol. 55, 563–568 (1971)

55. L. Ciandrini, I. Stansfield, M.C. Romano, Ribosome
traffic on mRNAs maps to gene ontology: genome-
wide quantification of translation initiation rates and
polysome size regulation. PLoS Comput. Biol. 9, 1
(2013)

56. J.C. Ritland Politz, R.A. Tuft, T. Pederson, Diffusion-
based transport of nascent ribosomes in the nucleus.
Molecular biology of the cell 14, 4805–4812 (2003)

57. Y. Arava, Y. Wang, J.D. Storey, C.L. Liu, P.O. Brown,
D. Herschlag, Genome-wide analysis of mRNA transla-
tion profiles in Saccharomyces. Proc. Natl. Acad. Sci.
USA 100, 3889–3894 (2003)

58. M. Siwiak, P. Zielenkiewicz, A comprehensive, quantita-
tive, and genome-wide model of translation. PLoS Com-
put. Biol. 6, e1000865 (2010)

59. J.R. Warner, The economics of ribosome biosynthesis in
yeast. Trends Biochem. Sci. 24, 437–440 (1999)

60. T. von der Haar, A quantitative estimation of the global
translational activity in logarithmically growing yeast
cells. BMC Syst. Biol. 2, 87 (2008)

61. U. Alon, An Introduction to Systems Biology:
Design Principles of Biological Circuits (Chapman
& Hall/CRC, 2007)

62. J.L. Woolford, S.J. Baserga, Ribosome biogenesis in the
yeast Saccharomyces cerevisiae. Genetics 195, 643–681
(2013)

63. R.P. Joyner et al., A glucose-starvation response reg-
ulates the diffusion of macromolecules. Elife 5, e09376
(2016)

64. M.C. Munder et al., A pH-driven transition of the cyto-
plasm from a fluid-to a solid-like state promotes entry
into dormancy. Elife 5, e09347 (2016)

65. J. Jeon et al., In vivo anomalous diffusion and weak
ergodicity breaking of lipid granules. Phys. Rev. Lett.
106, 048103 (2011)

66. V. Tejedor et al., Quantitative analysis of single particle
trajectories: mean maximal excursion method. Biophys.
J. 98, 1364–1372 (2010)
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