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Abstract. Mixing remains an important problem for the development of successful microfluidic and lab-
on-a-chip devices, where simple and predictable systems are particularly interesting. One is magnetic
micro-convection, an instability happening on the interface of miscible magnetic and non-magnetic fluids
in a Hele-Shaw cell under applied field. Previous work proved that the Brinkman model quantitatively
explains the experiments. However, a gravity-caused convective motion complicated the tests. Here we
first improve the experimental system to exclude the parasitic convection. Afterwards, we experimentally
observe the magnetic micro-convection, by finding and quantifying how gravity and laminar flow stabilizes
the perturbations that create it. Accordingly, we improve our theoretical model for a zero-flow condition and
perform a linear analysis. Two dimensionless quantities —magnetic and gravitational Rayleigh numbers—
are used to compare the experimental observations and theoretical predictions for the critical field of
instability and the characteristic size of the emerging pattern. Finally, we discuss the conditions at which
gravity plays an important role in microfluidic systems.

1 Introduction

Microfluidics and lab-on-a-chip devices [1] have been an
active research topic for the last years. Although many mi-
crofluidics fabrication routines and possible applications
have been demonstrated, one of the key challenges re-
mains the same, i.e. the physical limitations for mixing.
As microfluidics deals with manipulation of liquids in nar-
row channels, small Reynolds numbers and laminar flows
are typical, where mixing happens only due to the slow
diffusion process. To speed up the process, passive and
active micromixers can be used [2]. A part of active mix-
ers are based on magnetic materials and fields, which has
opened a sub-field called micro-magnetofluidics [3]. Many
different ways for mixing with magnetic elements have
been proposed [4]. One of them is to use magnetic micro-
convection [5]. In contrast to many others, this method has
been studied extensively from the physical point of view
and has a well-developed theoretical model [6–8]. Here we
extend this study by considering gravity effects.
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The magnetic micro-convection is caused by a pon-
deromotive force, which acts on the magnetic fluid in a
homogeneous applied field. The ponderomotive force is
proportional to two factors. The concentration of the mag-
netic particles and the local gradient of the magnetic field,
which arises from the self-magnetic field of the magnetic
liquid. Moreover, the force is potential only when the con-
centration gradient is collinear to the magnetic field gra-
dient. A flow is therefore created by any concentration
perturbation that destroys this collinearity. It is impor-
tant to note that this happens only if the magnetic field
is higher than a critical value.

Several characteristics of the magnetic micro-
convection were found by a linear stability analysis, also
showing the importance of the initial smearing of the in-
terface [9]. Also a basic experimental characterization of
the critical field and characteristic wavelength has been
done [10]. The instability has been also studied on a cir-
cular interface [11] and recently extended to characterizing
secondary waves [12] and a rotating system [13].

In comparison, in our previous work [8] we showed a
quantitative agreement between the experiments and the
Brinkman model of the magnetic micro-convection. How-
ever, we had to introduce an effective diffusion coefficient
to take into account the extraordinary quick smearing of
the interface without any magnetic field. The experiment
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used a microfluidics cell that was placed horizontally, with
magnetic field and gravity pointing perpendicular to the
cell. It was later proved that the smearing was actually
a convective motion within the cell, that arises from the
small density difference between the magnetic and non-
magnetic fluids. This difference forces the slightly denser
magnetic fluid to flow under the non-magnetic one; this,
when viewed in a 2D microscope from above, resembles
a diffusive process [14]. Here we eliminate this convec-
tive flow by turning the system sideways and putting the
slightly denser fluid below.

The rest of the paper is organized in the follow-
ing way. Section 2 introduces the modified experimental
setup, describes a verification measurement with magnetic
nanoparticle diffusion, as well as provides the information
on experimental measurements that have lead to the un-
derstanding and characterization of the gravitational ef-
fects in magnetic micro-convection. It also includes exper-
imental measurements of the critical field and character-
istic wavelength, which are approximated for a zero-flow
case. In sect. 3 the theoretical model is updated to take
into account a gravitational component and do a linear
stability analysis, which gives information on the condi-
tions for instability formation and its characteristics. The
comparison of experimental and theoretical results, as well
a discussion, is done in sect. 4, followed by the main con-
clusions in sect. 5.

2 Experimental system and observations

2.1 Experimental setup

The experimental setup mainly consists of four parts: an
optical microscope (Zeis Stemi 2000-C) with a panel LED
(Visional�, 4W, 400 lm, 3000K) as a light source, a sy-
ringe pump (Harvard Aparatus PHD Ultra) and a camera
(Lumenera Lu165c, 15Hz) connected to a computer and
an electromagnet around the microfluidics chip itself. The
microscope is put horizontally, to observe the vertically
placed microfluidics chip. A 3D printed holder (Mass Por-
tal Pharaoh XD 20) fixes the chip in place within the
electromagnet, that is made from two identical coils (for
a simple illustration, see fig. 1).

The microfluidics chip is made of two microscope glass
slides and a Parafilm M� spacer. Three holes are drilled
in the top glass slide. Then a metal tube from a cut sy-
ringe tip is glued in each of these holes. This provides con-
nections for tubing —2 inlets (from syringe pump) and 1
outlet. A Y shape is cut in the Parafilm M� spacer, which
is h = 0.13mm thick, with a paper knife. Afterwards the
spacer is welded between the two glass slides on a hot
plate (Biosan MSH-300) at 75 ◦C, maintaining the origi-
nal thickness.

In experiments we use two fluids —water-based mag-
netic fluid, as described further, and distilled water as
a non-magnetic miscible fluid. The original magnetic
fluid is made by a co-precipitation method [15], forming
maghemite nanoparticles which are stabilized with citrate

Fig. 1. (Color online) An illustration of the microfluidics chip
within an electromagnet. The chip has a Y shaped channel
with two inlets and one outlet. The lower inlet is for the denser
magnetic fluid, while the upper inlet is for water. Coils provide
a homogeneous magnetic field H, perpendicular to the chip.
The region of interest (ROI) indicates the field of view of the
camera.

Fig. 2. An image of the region of interest (ROI) of the mi-
crofluicis chip, where magnetic micro-convection is observed.
The dotted rectangle is the area used in further analysis.

ions and have a volume fraction Φ = 2.8%. Nanopar-
ticles have an average diameter d = 7.0 nm, saturation
magnetization Msat = 8.4G and magnetic susceptibility
χm = 0.016, as determined by a vibrating sample magne-
tometer (Lake Shore 7404).

For liquid handling we use two 1ml syringes that are
connected to the chip with FEP tubing (inner diameter
0.76mm, outer diameter 1.59mm, IDEX). To keep the
fluid interface stable in the microfluidics channel, shown
in fig. 2, the denser magnetic fluid tubing is connected
to the lower inlet, while water is connected to the up-
per inlet. Once a sufficient magnetic field is applied, mag-
netic micro-convection emerges. Coils are powered with
a power supply (TENMA 72-2930) in a constant current
mode and can create a homogeneous magnetic field up to
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Fig. 3. Snapshopts of magnetic particle diffusion across the
microchannel with a stopped flow. Channel width 1.4 mm.

H = 200Oe in the direction perpendicular to the plane of
the chip.

To vary the density difference between the two flu-
ids, we dilute the magnetic fluid with distilled water. The
density is calculated from a weight measurement with an-
alytical balance (KERN) for a known volume, taken with
a pipette (Gilson).

2.2 Verification of the system

As noted in the introduction, a parasitic convective motion
even with no magnetic field present was influencing mea-
surements in the previous experimental system. It was due
to the small density difference of the magnetic and non-
magnetic fluids [8,14]. To eliminate it, the system has been
redesigned and turned sideways, which allows the denser
magnetic fluid to remain below water. In order to verify
it, a test measurement is performed, where only nanopar-
ticle diffusion is expected. For this, the flow of both fluids
is suddenly stopped, obtaining a still system with a sharp
initial interface. The mixing process can be seen in the
snapshots displayed in fig. 3. A slow process is visible and
the smearing gradually increases.

Recorded image series of the magnetic particle diffu-
sion is analyzed for a manually selected area. The im-
ages are converted to concentration plots via Lambert-
Beer law and normalized to initial concentration c0 = 1,
as described previously in [5]. Then each image is averaged
along the y-axis, obtaining the average concentration pro-
file. Several concentration profiles are shown in fig. 4(a).
Each average concentration profile c(x) is fitted with the
diffusion curve, according to Fick’s law solution:

c(x) =
1
2

(
1 − erf

(x − x0)
δ

)
, (1)

where erf is the error function and x0 is the coordinate of
the symmetry center and gives a degree of freedom for the
fit. δ is the diffusion length, defined as

δ = 2
√

Dt, (2)

where D is the diffusion coefficient and t is the time dif-
fusion is happening. Equation (2) can be rewritten in
the form δ2/4 = Dt, which is more suitable for visu-
alization and fitting, as the Diffusion coefficient agrees
with the slope. That is done with experimental data, as
shown in fig. 4(b). Data follow a rather linear increase,
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Fig. 4. (Color online) Analysis of nanoparticle diffusion test.
Average concentration profiles at several time moments (15 s
(red triangles), 60 s (blue circles), 250 s (green diamonds) and
600 s (cyan crosses)) are shown in (a). The magnetic particle
diffusion coefficient is determined with a fit (red line) of the
diffusion length data (blue circles), as shown in (b).

which can be quantified, leading to a diffusion coefficient
D = 5.7 · 10−7 cm2/s. For comparison, an estimated value
can be calculated by the Stokes-Einstein equation:

D =
kT

3πηd
, (3)

where k is the Boltzmann constant, T = 293K is the
fluid temperature, η = 0.01P is the water viscosity and
d = 7.0 nm is the magnetic nanoparticle diameter, as given
before. The resulting D = 6.1·10−7 cm2/s agrees well with
the experimentally determined value, verifying the exper-
imental setup and allowing to proceed with the micro-
convection experiments.

2.3 Experimental observations

We started the micro-convection experiments in the same
manner as the previously described diffusion experiment.
First, the fluids are pumped through the chip and at some
point the flow is stopped and magnetic field is turned on.
Unfortunately, the instability development gets distorted
by microscopic flows in the y-axis direction, probably, due
to small pressure differences in the channels or other ef-
fects arising from the application of the magnetic field.
Without further improvements to the system, we were un-
able to fix this, therefore we proceeded with under flow
experiments.

For each magnetic fluid we did experiments for dif-
ferent flow rates, selected on the syringe pump, and dif-
ferent magnetic fields, selected on the power supply. An
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 0.0 s  0.7 s  1.3 s  2.0 s  2.6 s

 3.3 s  4.6 s  6.3 s  7.9 s  9.9 s

Fig. 5. An example of magnetic micro-convection dynamics in a continuous microfluidics system. At t = 0.0 s magnetic field is
turned on. First, the instability is formed along the interface. Then, it is slowly smeared with the flow, going from left to right.
Finally, after ≈ 10 s a dynamic equilibrium state is reached, with an instability continuously forming on the fresh interface on
the left side and quickly smearing on the way to the right side. Flow rate is Q = 1 μl/min, magnetic field is H = 75 Oe, volume
fraction Φ1 = 1.9%. Each image is 1.0 × 2.0 mm large.
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Fig. 6. Dynamic equilibrium state images of magnetic micro-convection for various flow rates and magnetic fields. Magnetic
fluid volume fraction: Φ1 = 1.9%. Each image is 1.0 × 2.0 mm large.

example of the dynamics registered is shown in fig. 5 for
a magnetic fluid with volume fraction Φ1 = 1.9% at a
flow rate Q = 1μm/min and magnetic field H = 75Oe.
First, the flow rate is set and both fluids are let to flow.
Then the recording is started and the magnetic field is
turned on (t = 0.0 s in fig. 5). At first, an initial instabil-
ity with a development of clear and distinct fingers can
be seen (t = 0.7–3.3 s in fig. 5). Then the flow distorts
the growing finger pattern (t = 4.6–6.3 s in fig. 5) and
eventually reaches a situation that can be described as a
dynamic equilibrium state (t = 7.9–9.9 s in fig. 5), where
new micro-convection instability forms at the tip of the
Y-type channel, where magnetic and non-magnetic fluids
meet and make a fresh interface (on the left side of im-
ages) and it continues to develop and becomes smeared,
while being carried along the channel to the right side. The
process is recorded for 10–20 seconds, depending on the

flowrate, so that a sufficient amount of data are recorded
also for the dynamic equilibrium state.

After recording, the magnetic field is then turned off
and a sufficient time is waited for the fluids to form the
initial no-field situation, before proceeding with the next
field.

Figure 6 gives an example of a dynamic equilibrium
state images of magnetic micro-convection for a magnetic
fluid with volume fraction (Φ = 1.9%). Each row repre-
sents a different flow rate, increasing from top to down,
while each column has a different magnetic field, increas-
ing from left to right. One can observe that the magnetic
micro-convection is noticeable only in a part of the im-
ages. From previous works it is known that there is a crit-
ical field, below which the instability does not happen.
However, two conclusions can be made. First, the critical
field depends on the flow rate. Second, the critical field in
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 45.0 Oe  47.5 Oe  50.0 Oe  52.5 Oe  55.0 Oe

Fig. 7. Visual detection of the critical magnetic field for a magnetic fluid with volume fraction Φ1 = 1.9% and a flow rate
Q = 1 μl/min. The critical field is H = 47.5 Oe, as small interface perturbations can be seen. Each image is 1.0× 2.0 mm large.

these conditions is ≈ 10 times larger than is expected by
the current Brinkman model [8].

The first effect of the flow rate influence can be at-
tributed to the laminar flow in the channel, that stabilizes
the interface perturbations. We can exclude it by gradu-
ally decreasing the flow rate and estimating the critical
field at zero flow rate. But the second effect must come
from the gravitational influence, which tries to keep the
denser magnetic fluid below the less dense water and also
stabilizes the interface. Since we cannot exclude this effect,
an improvement to our theoretical model is necessary.

The theoretical considerations are further developed
in sect. 3. They are based on a similar approach as was
used for describing convective interface smearing in our
previous paper [7].

To provide comparable experimental data, we extend
the experimental study to have four different dilutions
of the original magnetic fluid: original volume fraction
Φ0 = 2.8%, slightly diluted Φ1 = 1.9%, half-diluted
Φ2 = 1.4% and more diluted Φ3 = 0.9%. We do not go
for smaller dilutions, as we approach both the limit of
our electromagnet and the end of the linear magnetization
regime for our magnetic fluid. For each of the dilutions,
we visually look for the tiny interface perturbations to de-
tect the critical magnetic field. This is repeated for every
flow rate. Diluting the magnetic fluid leads to a reduced
density difference, but also to a reduced susceptibility.

An example on the visual determination for magnetic
fluid with volume fraction Φ1 = 1.9% in a flow rate
Q = 1μl/min is shown in fig. 7. In this case the criti-
cal field is registered as (H ± ΔH) = (47.5 ± 1.3)Oe, as
small interface perturbations can be seen, as compared to
more pronounced perturbations for H = 50.0Oe or no
perturbation for H = 45.0Oe.

The critical fields for the different dilutions of the mag-
netic fluid for different flow rates are summarized in fig. 8.
Red crosses mark data points of the initial fluid (Φ0 =
2.8%), blue diamonds mark slightly diluted magnetic fluid
(Φ1 = 1.9%), green circles are the half-diluted fluid (Φ2 =
1.4%) and cyan triangles correspond to the more dilute
magnetic fluid (Φ3 = 0.9%) It seems that the critical field
depends linearly on the flow rate. But, as several hand-
made microfluidic channels have been used in experiments
and with the current method it is impossible to repro-
duce perfectly the channel shapes, this question is left for
a following paper. However, by fitting these curves and
finding their intercept with vertical axis, using the least-
squares method, we can find the expected critical mag-
netic fields and their errors for each of the fluids at zero
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Fig. 8. (Color online) Critical magnetic fields for various
flowrates and different dilutions of magnetic fluid. Lines cor-
respond to linear fits that are used to extrapolate the critical
magnetic field values at Q = 0 μl/min.

flow. For Φ0 = 2.8% it is (Hcrit ±ΔHcrit)0 = (35± 2)Oe,
for Φ1 = 1.9% it is (Hcrit ± ΔHcrit)1 = (44 ± 1)Oe, for
Φ2 = 1.4% it is (Hcrit ± ΔHcrit)2 = (50 ± 2)Oe and for
Φ3 = 0.9% it is (Hcrit ± ΔHcrit)3 = (69 ± 2)Oe. These
values will be further used for comparison in sect. 4.

We also investigate the characteristic size of the in-
stability. For that, the images of the initial instability
are utilized, as characteristic fingers can be clearly dis-
tinguished. They are recorded right after the magnetic
field is turned on. An example can be seen in fig. 9, where
the image from fig. 5 (t = 2.0 s), is processed. First, the
average intensity Ix̄(y) is found by averaging along the
x-axis. Then this curve is normalized by subtracting a lin-
ear fit of the data in order to remove intensity bias in
the original image. The normalized curve keeps the in-
stability characteristics without additional biases, as can
be seen in fig. 9(a). Afterwards, the finger frequency is
obtained by applying a Fourier transform to the normal-
ized curve. Finding the peak in the resulting amplitude
spectrum gives the characteristic frequency (see fig. 9(b)),
in this case fc = 5.2mm−1, which gives a characteristic
wavelength λc = 0.19mm.

It is worth to note that the instability formation hap-
pens continuously at the initial contact point of the two
fluids, which is at the tip of the Y channel junction, and
can be called a dynamic equilibrium state. These condi-
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Fig. 9. An example of image analysis (fig. 5, t = 2.0 s) to
determine the characteristic wavelength of the initial instabil-
ity. (a) Average normalized x intensity. (b) Spectrum of the
average intensity. The peak is 5.2 mm−1.
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Fig. 10. (Color online) Characteristic wavelength of the ini-
tial instability at different magnetic fields measured for various
flowrates. Φ0 = 2.8%. The measurement error is larger than the
differences measured (σ = 0.03 mm).

tions are rather different from the theoretical model used
later on, where instability develops at once across a long
interface. For these reasons we chose to find the charac-
teristic size from the instability that develops across the
flowing interface when the magnetic field is turned on, as
shown in fig. 5.

We use this characterization method for all samples
and find a characteristic width λ for all four fluid pairs at
the various flow rates and magnetic fields, which are above
the critical fields and have a sufficient fingering pattern. It
turns out that the wavelength of the initial instability is
close to constant and has no clear dependence on the flow
rate. For example, as can be seen in fig. 10, for the water
and magnetic fluid the Φ0 = 2.8% pair for 5 different mag-
netic fields and 4 different flow rates has a characteristic
width (λ±Δλ) ≈ (0.15±0.05)mm. At least the measure-
ment precision is insufficient to notice any dependence on
the flow.

Fig. 11. (Color online) The sketch of a Hele-Shaw cell as con-
sidered in the model.

Therefore we calculate an average value λ̄ for each
magnetic field and use it as an estimate for the zero-flow
(Q = 0) case to compare it with theoretical results in
sect. 4.

3 Theoretical model

3.1 Mathematical formulation

We consider two miscible fluids confined in a Hele-Shaw
cell where the first fluid is a ferromagnetic fluid and the
second is a non-ferromagnetic fluid. The Hele-Shaw cell is
located vertically and the magnetic field is applied per-
pendicularly to the cell, as shown in the sketch in fig. 11.
The viscosities of the two fluids are considered equal. Due
to the ponderomotive forces of the non-homogeneous self-
magnetic field on the interface between fluids the fingering
instability arises. The evolution of the fingering instabil-
ity is described by a set of equations, which includes the
Brinkman equation, the continuity and convection diffu-
sion equation [9, 16] and reads

−∇p − 12η

h2
v − 2M(c)

h
∇ψm(c) + ηΔv + Δρcg = 0,

∇ · v = 0, (4)
∂c

∂t
+ (v · ∇)c = D∇2c.

where v = (vx, vy) is the depth averaged velocity, p is
pressure, η is the viscosity of the fluid, h is the thick-
ness of the Hele-Shaw cell, c is the concentration of the
magnetic fluid normalized by its value far from the in-
terface, D is the isotropic constant diffusion coefficient
and Δρ = ρ1 − ρ2 is the density difference between
the fluids. The magnetization M(c) is taken to be pro-
portional to the concentration of the magnetic fluid c
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(M = M0c) and the value of the magnetostatic poten-
tial ψm on the boundary of the Hele-Shaw cell is given
by [17, 18] ψm(r, t) = M0

∫
c(r′, t)K(r − r′, h)dS′ where

the integration is performed over the boundary of the
Hele-Shaw cell, K(r, h) = 1/|r| − 1/

√
|r|2 + h2.

The boundary conditions for the velocity components
and the concentration of the fluids and the conditions of
the periodicity across, which require that the fluid is mo-
tionless at both ends of the Hele-Shaw cell, are as follows:

vx(0, y) = vy(0, y) = 0, c(0, y) = 1,
vx(Lx, y) = vy(Lx, y) = 0, c(Lx, y) = 0, (5)
v(x, 0, t) = v(x,Ly, t), c(x, 0, t) = c(x,Ly, t).

The equations are put in dimensionless form by intro-
ducing the following scales: length h, time h2/D, velocity
D/h, magnetostatic potential M0h. As a result, the set of
dimensionless equations reads

−∇p − v − 2Ramc∇ψm +
Δv

12
− Ragcex = 0,

∇ · v = 0, (6)
∂c

∂t
+ (v · ∇)c = ∇2c.

Here Ram is the magnetic Rayleigh number and Rag is the
gravitational Rayleigh number. We have previously shown
that Ram is governing the magnetic micro-convection pro-
cess [8]. It is determined by the ratio of the characteris-
tic time of the diffusion τD = h2/D and the characteris-
tic time of motion due to non-homogeneous self-magnetic
field of the fluid τM = 12η/M2

0 , expressed as

Ram = M2
0 h2/12ηD. (7)

The gravitational Rayleigh number is defined as the ratio
of the characteristic time of the diffusion τD = h2/D and
the characteristic time of motion due to the gravitational
field τG = 12η/Δρgh:

Rag = Δρgh3/12ηD, (8)

where Δρ = ρ1 − ρ2 is the density difference between the
denser fluid below and less dense fluid above and g is the
standard gravity.

3.2 The linear stability analysis

The linear stability analysis on the boundary of two flu-
ids is performed. An analytical solution may be found
in the limit for the smearing parameter t0 = 0, that
is, when the concentration distribution on the boundary
between the two fluids is step-like. The quasi-stationary
approximation for the development of small perturba-
tions is considered. The linear perturbation of a quies-
cent base state is represented by {c, ϕm, vx, vy}(x, y, t) =
{c0, ϕm0, 0, 0}(x) + {c′, ϕ′

m, v′
x, v′

y}(x)eiky+λt. The disper-
sion relation reads

sk + Ram

(
k

[
g(k(s + m),∞)

m
− g(k(s + 1),∞)

]

+2
m − 1

m
J(s, k) − Rag

2

[
1

m(s + m)
− 1

s + 1

] )
= 0 (9)
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Fig. 12. (Color online) Neutral curves λ = 0 of magnetic
micro-convection at a vertical Hele-Shaw cell for the Brinkman
model as obtained by the linear stability analysis at different
values of the gravitational Rayleigh number. Here Rag = 500
(blue line), Rag = 1000 (red dashed line), Rag = 4000 (green
dotted line).
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Fig. 13. (Color online) Neutral curves λ = 0 of magnetic
micro-convection at a vertical Hele-Shaw cell for the Brinkman
model as obtained by the linear stability analysis at different
values of the magnetic Rayleigh number. Here Ram = 500
(green dotted line), Ram = 1000 (red dashed line), Ram =
2000 (blue line).

here the parameters s and m are s =
√

1 + λ/k2, m =√
1 + 12/k2 and the functions J(p, q) and g(a, z) are de-

fined by the integrals

J(p, q) =
∫ ∞

0

e−pz
(
K0(z) − K0

(√
z2 + q2

))
dz, (10)

g(a, z) =
∫ z

0

e−aζ ln(1 + ζ−2)dζ. (11)

Here K0 is the modified Bessel function of the second
kind. The details of the solution in the limit t0 → 0 are
described in appendix A.

Solving the transcendental dispersion eq. (9) numeri-
cally at λ = 0 gives the neutral curves of the magnetic
micro-convection for the Brinkman model. For example,
in fig. 12 the magnetic Rayleigh number is shown as a
function of the wavenumber k for different values of the
gravitational Rayleigh number, Rag = 500, 1000 and 4000.
In fig. 13 the gravitational Rayleigh number is displayed
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Fig. 14. (Color online) Growth increments of the instabil-
ity at the interface of two miscible fluids as a function of the
wavenumber for different magnetic Rayleigh numbers. Here
Ram = 2000 (solid blue line), Ram = 1500 (dashed red line),
Ram = 850 (dotted green line) and gravitational Rayleigh
number Ram = 4000.

as a function of the wavenumber k for different values
of the magnetic Rayleigh number, Ram = 500, 1000 and
2000. The critical values of magnetic and gravitational
Rayleigh numbers are found at maxima of neutral curves
in fig. 12 and fig. 13. An analysis of these curves show
that the region above the maxima of the curves is unsta-
ble for developing micro-convection on the miscible inter-
face. The instability can only be developed if the corre-
sponding Rayleigh numbers are below the critical mag-
netic or gravitational Rayleigh numbers. The correspond-
ing dependence for Ram and Rag is used for comparison
between the experimental and our theoretical model in
fig. 18 in sect. 4.

Solving eq. (9) gives the growth increment as a func-
tion of the wavenumber k. Figure 14 shows them for a
fixed gravitational Rayleigh number Rag = 4000 with dif-
ferent values of the magnetic Rayleigh number, Ram =
500, 1000, 2000. Figure 15 shows them for a fixed magnetic
Rayleigh number Ram = 1000 and different gravitational
Rayleigh numbers, Rag = 500, 2000, 4000.

At the initial time moment t = 0 the mixing pat-
tern between two miscible interfaces is determined by the
fastest growing mode. The maximal growth increments for
tested values of the magnetic Rayleigh numbers in fig. 14
and fig. 15 give us the approximate wavenumbers. These
are k ≈ 6–8 and depend on both magnetic and gravita-
tional Rayleigh numbers Ram and Rag.

On one side, the increase of the magnetic field inten-
sity in the vertical Hele-Shaw cell destabilizes the miscible
interface and the intensity of finger growth increases. On
the other side, the increase of the role of the gravitational
force decreases the intensity of the finger growth. From
fig. 15 we can see that indeed our model confirms that the
gravitational force stabilizes the instability.

Numerically solving the dispersion relation eq. (9) in
the case when the magnetic and gravitational fields are ap-
plied may lead to a double-humped curve in the solution
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Fig. 15. (Color online) Growth increments of the instabil-
ity at the interface of two miscible fluids as a function of the
wavenumber for different gravitational Rayleigh numbers. Here
Rag = 4000 (violet dotted line), Rag = 2000 (dashed green
line), Rag = 500 (solid blue line) and magnetic Rayleigh num-
ber Ram = 1000. The dashed area is shown in detail in fig. 16.
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Fig. 16. (Color online) Magnification area of growth incre-
ments of the instability as a function of the wavenumber
at two different values of the gravitational Rayleigh num-
ber Rag = 2000 (green), Rag = 4000 (violet) and magnetic
Rayleigh number Ram = 1000. 1 and 3 (solid line) are the pair
of real increments; 2 and 4 (dashed line) are the real part of
two complex-conjugate increments.

for growth increment, as can be better seen in fig. 16. The
presence of two preferred wavelengths may result in an in-
teresting mode competition and interaction. The solution
of the transcendental dispersion eq. (9) for the growth
increment as a function of the wavenumber k show that
there exists an area of the wavenumbers values where the
growth increment is complex and can be in fig. 16. That
means that the instability of the interface between two
miscible phases can have an oscillating character. The lin-
ear stability analysis is made for a condition (λ ≥ −k2)
and for this condition the solution of the ordinary differen-
tial equation (ODE) is stable. For the differential eq. (A.2)
the point where k2 = −λ gives a special point k0 (indi-
cated in fig. 16). In these points the corresponding ODE
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Fig. 17. (Color online) The wavenumber k = k0 dependence
on the magnetic Rayleigh number Ram at different values of
the gravitational Rayleigh number Rag = 0 (black dotted line),
Rag = 1000 (blue line), Rag = 4000 (green dashed line).

solution does not satisfy the boundary conditions for the
perturbation of concentration at infinity and therefore will
be unstable. The dependence of the special point k = k0

on the magnetic Rayleigh number Ram is calculated and
shown in fig. 17. In the limit Rag → 0, the special point
goes to k0 → 0.62 and does not depend on the magnetic
field intensity.

4 Results and discussion

To compare experimental and theoretical results, we have
to convert experimental values to dimensionless quan-
tities. For both magnetic Rayleigh and gravitational
Rayleigh numbers, given by eqs. (7) and (8), we take chan-
nel thickness h = 0.013 cm, viscosity η = 1P and diffusion
coefficient as previously measured D = 5.7 · 10−7 cm2/s.
Additionally, for the magnetic Rayleigh number Ram we
use magnetization Mc = χ · Hc, where Hc is the criti-
cal field for zero flow determined in sect. 2, susceptibility
χ can be calculated from the dilution factor χx = χ0·Φx

Φ0

and Φ0 = 2.8% is the volume concentration of the origi-
nal magnetic fluid. For the gravitational Rayleigh number
Rag we need the density difference for fluid pairs. This
is measured with an analytical balance and a pipette,
as described in sect. 2. We find Δρ0 = 0.148 g/cm3 for
a magnetic fluid with Φ0 = 2.8%, Δρ1 = 0.096 g/cm3

for Φ1 = 1.9%, Δρ2 = 0.071 g/cm3 for Φ2 = 1.4% and
Δρ3 = 0.045 g/cm3 for Φ3 = 0.9%. As the critical field
values Hc had a notable uncertainty, we also estimate the
error, by taking 3σ.

From this, we can calculate that the original mag-
netic fluid with Φ0 = 2.8% has Rag,0 = 4657 and
(Ram ± Ram)0 = (775 ± 199), the slightly diluted fluid
with Φ1 = 1.9% has Rag,1 = 3031 and (Ram ± Ram)1 =
(564 ± 77), the half-diluted fluid with Φ2 = 1.4% has
Rag,2 = 2225 and (Ram ± Ram)2 = (395 ± 85), but the
more diluted fluid with Φ3 = 0.9% has Rag,3 = 1412 and
(Ram ±Ram)3 = (323± 68). The experimental points are
compared with pairs of critical Ram and Rag values ob-
tained from the linear stability analysis and are shown in

Rag
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Fig. 18. (Color online) Comparison of the critical Rayleigh
numbers Rag and Ram between experimental and theoretical
results. Data from linear analysis are given by a blue dashed
line, while experimental points by red crosses and errorbars.
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Fig. 19. (Color online) Comparison of the characteristic
wavenumber k between experimental (open symbols and tracer
lines) and theoretical results (only lines) as a function of
the magnetic Rayleigh number Ram for several gravitational
Rayleigh numbers Rag. Red dotted lines correspond to Rag =
4657, green dashed lines to Rag = 3031, blue dash-dotted lines
to Rag = 2225 and cyan lines to Rag = 1412.

fig. 18. Data are in a reasonable agreement, confirming
that the gravitational influence has a strong influence.

We also compare the characteristic wavenumbers k for
the instability, as is shown in fig. 19. Theoretical results
are obtained from the growth increment data, where the
fastest growing mode is chosen, while experimental data
are averaged for each fluid pair over different flow rates,
as described earlier, and over similar magnetic field val-
ues, to improve the quality of the results. In experiments
with diluted fluids the range of accessible Ram values is
limited due to technical limitations of the coil system, sus-
ceptibility and its magnetization linear regime. The values
are of the same order of magnitude, characteristics and
sequence of the data are similar, showing that sizes are
close to constant values. However, differences in the ab-
solute values and trends can be noted and need a further
investigation. It is worth to mention that all results in our
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theoretical model are given in the limit of the smearing
parameter t0 = 0. Studies of a similar system of magnetic
micro-convection in a Hele-Shaw cell by Brinkmann ap-
proximation have given analytical results for t0 > 0 of
the smearing parameter [9], showing that the wavenum-
ber k decreases if the initial smearing parameter t0 was in-
creased. It is exactly what we see with our data and might
be among the main reasons for the notable differences.
Of course, an improved theoretical model or experimen-
tal data at a zero-flow condition would help in explaining
them.

The difference in the experimental system is that the
smearing time should be different along the interface, as
during the time after Y junction in the microfluidics chan-
nel the diffusion takes place. Hence, we can use the res-
idence time in the field of view of the channel as an
estimation of the smearing time. For the slowest flow
rate Q = 1μl/min, the metric velocity in y-direction is
vy ≈ 0.13mm/s and to cross the Δy = 2.0mm field of
view t̃0,max = Δy/vy = 15 s. In dimensionless units it
is t0,max = t̃0,max · D/h2 = 0.05 and the smearing time
ranges from 0 to this value. These are small smearing times
t0 and are similar to previous experiments [8,14]. We plan
to investigate this in a higher detail in a future study that
will include both numerical simulations and experiments
for various t0 values.

It is important to highlight that the gravitational Ray-
leigh numbers in this situation are large. Here it comes
from a combination of medium-sized microfluidic chan-
nels and magnetic colloids. As formula shows, the gravi-
tation effects can be almost excluded, if the thickness of
the cell is 10 times smaller, because the thickness has a
cube dependence, resulting in a reduction of the Rag by
1000 times. In addition, typical magnetic colloids have a
notable 5–15% density difference with the carrying liquid
while particles have a large enough diffusion coefficient not
to sediment that quickly. Although magnetic colloids are
quite specific field, these conditions will be important both
in the perspective industrial applications of magnetic flu-
ids in thermoelectricity [19], as well as for high throughput
microfluidics systems in biotechnology. Therefore, when-
ever similar conditions are met, the scientists must take
the gravitational aspect into account.

To estimate the importance of a convective motion, one
usually calculates the Péclet number Pe = L ·u/D, where
L is a characteristic scale, u is convective velocity and D is
the diffusion coefficient. In our case velocity due to gravity
can be estimated as u = h/τG, where τG = 12η/(Δρgh) is
the characteristic time of motion due to the gravitational
field and h is the thickness of the cell. If we take L = h
and put it in the equation for Péclet number, we get

Pe =
Δρgh3

12ηD
= Rag (12)

that shows that the Péclet number and the gravitational
Rayleigh number can be considered the same in our sys-
tem. If a different characteristic scale is taken, for example,
the width of the channel w, then the link between both
dimensionless quantities is a scale factor Pe = Rag ·w/h.

Finally, the magnetic micro-convection is an effective
and simple active mixer, as can be seen in the obtained
images and has been justified by previous results [5]. How-
ever, a better quantification and predictability in condi-
tions where gravity plays an important role is needed,
what will be continued in a future study.

5 Conclusions

In this study we have shown how gravitational effects
can be important even for microscopic systems with small
density differences. First, we have experimentally demon-
strated how gravity and fluid flow stabilize the instabil-
ities formed by magnetic micro-convection in a vertical
channel. Second, we have improved the theoretical model
of magnetic micro-convection, based on the Brinkman
equation, to describe the system at a zero-flow condition.
Third, we have used the critical field and characteristic
width to compare the experimental and theoretical results,
which show a reasonable agreement.

These results provide a basis for further research on
various stability conditions, efficiency of the magnetic
micro-mixer and theoretical concepts connecting them, as
well as their applications.
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Appendix A.

By taking into account the function ∂ψm0(x, 0)/∂x =
− ln(1 + x−2) in the limit t0 → 0 the equations for the
velocity perturbations result as

(
∂2

∂x2
− k2

)2

v′
x − 12

(
∂2

∂x2
− k2

)
v′

x

−24k2Ram ln(1 + x−2)c′ − 12k2Ragc
′ = 0 (A.1)
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and, for concentration perturbations as

(λ + k2)c′ + v′
x

∂c0

∂x
− ∂2c′

∂x2
= 0. (A.2)

The boundary conditions at the discontinuity of the
concentration c0 are given by the continuity of the concen-
tration perturbation, tangential and normal to the front
velocity components and their derivatives:

c′(0+) − c′(0−) = 0,

v′
x(0+) − v′

x(0−) = 0,
(A.3)

dv′x
dx

(0+) − dv′x
dz

(0−) = 0,

d2v′
x

dx2
(0+) − d2v′

x

dx2
(0−) = 0,

The two lacking boundary conditions at the disconti-
nuity are obtained by integration

∫ δ

−δ
(. . .)dx of eqs. (A.1)–

(A.2) across the diffusion layer and taking the limit δ → 0
which gives

dc′

dx
(0+) − dc′

dx
(0−) = −c0u

′
x(0),

(A.4)
d3u′

x

dx3
(0+) − d3u′

x

dx3
(0−) = −24k2Ramψ′

m(0).

From eq. (A.2) and boundary condition eq. (A.3) for the
concentration c′ and taking into account the condition at
infinity c′(∞) = 0, c′(−∞) = 0 it follows that c′|x<0 =
Qe

√
λ+k2x and c′|x>0 = Qe−

√
λ+k2x. The general solution

of eqs. (A.1) reads

u′
x = Ã1(x)ekx + B̃1(x)e−kx

+C̃1(x)e
√

k2+12x + D̃1(x)e−
√

k2+12x.

where the functions Ã1, B̃1, C̃1, D̃1 are given by the so-
lution of the set of linear differential equations and as a
result the solution for velocity reads

v′x|x<0 = A1e
kx + B1e

−kx + C1e
kmx + D1e

−kmx

−kQw(−k(s−1), x)ekx+kQw(−k(s+1), x)e−kx

+
k

m
Qw(−k(s−m), x)ekmx− k

m
Qw(−k(s+m), x)e−kmx,

v′
x|x>0 = A2e

kx + B2e
−kx + C2e

kmx + D2e
−kmx

−kQw(k(s+1), x)ekx+kQw(k(s−1), x), x)e−kx

+
k

m
Qw(k(s + m), x)ekmx− k

m
Qw(k(s − m), x)e−kmx,

where
w(a, z) = Ramg(a, z) +

Rag

2
f(a, z).

Boundary conditions, eq. (A.3), and the conditions of
vanishing perturbation at infinity give the set of linear al-
gebraic equations, whose condition of solubility gives the
dispersion equation for the growth increment of perturba-
tions, eq. (9).
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