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Abstract. In the study of microscopic flows, self-propulsion has been particularly topical in recent years,
with the rise of miniature artificial swimmers as a new tool for flow control, low Reynolds number mixing,
micromanipulation or even drug delivery. It is possible to take advantage of interfacial physics to propel
these microrobots, as demonstrated by recent experiments using the proximity of an interface, or the in-
terface itself, to generate propulsion at low Reynolds number. This paper discusses how a nearby interface
can provide the symmetry breaking necessary for propulsion. An overview of recent experiments illustrates
how forces at the interface can be used to generate locomotion. Surface swimmers ranging from the micro-
scopic scale to typically the capillary length are covered. Two systems are then discussed in greater detail.
The first is composed of floating ferromagnetic spheres that assemble through capillarity into swimming
structures. Two previously studied configurations, triangular and collinear, are discussed and contrasted.
A new interpretation for the triangular swimmer is presented. Then, the non-monotonic influence of sur-
face tension and viscosity is evidenced in the collinear case. Finally, a new system is introduced. It is a
magnetically powered, centimeter-sized piece that swims similarly to water striders.

1 Introduction

An interface, the frontier between two media, is often a re-
gion of interest for scientists. In particular, surface physics
becomes more relevant the smaller the scale, as volume
forces get weaker and weaker compared to surface forces.
In a fluid, another effect of a smaller scale is that the
relative importance of inertia over viscosity decreases [1].
With this in mind, one could wonder what role interfaces
can play in viscosity-dominated microscopic flows, and in
particular how surface forces affect the locomotion of mi-
croorganisms and the swimming microrobots that mimic
them. This paper will first present the generalities of mi-
croscopic locomotion in a fluid, and what becomes of these
principles when the presence of an interface is taken into
account. Then, several experiments from the literature will
be discussed that use surface effects for locomotion. Lastly,
we will describe in more details two experiments of surface
swimmers powered by external magnetic fields. This last
section will contain original experimental and theoretical
results.
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2 Scallops, interfaces and symmetry

2.1 Swimming in the bulk

We generally have a good enough intuition about what it
means to swim in a fluid at our scale. Water is pushed
away in a given direction, and motion ensues in the oppo-
site direction by conservation of momentum [2]. Sustain
the motion by repeating this periodically and we obtain a
working swimming strategy. However, as is often the case
in nature, the physics of swimming is highly influenced
by the relevant length and time scales [2–4]. Consider the
general case of a body that is able to actively deform,
moving in an infinite fluid volume. The conservation of
momentum at each point in the fluid is described by the
Navier-Stokes equation [5,6] which, for an incompressible
fluid, submitted to gravity, of density ρ and kinematic vis-
cosity ν, reads

∂u
∂t

+ u · ∇u = −1
ρ
∇p + ν∇2u + g. (1)

This equation must be completed with the continuity
equation ∇ · u = 0 and with the appropriate boundary
conditions, taking into account the position at all times of
the surface of the deformable body. For example, no-slip
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boundary conditions stipulate that ufluid = ubody at each
point on the surface of the body.

It is often appropriate to compare the magnitude of the
various terms in eq. (1), in order to identify the relevant
effects and provide some simplification. Let L and U be a
typical length and a typical speed of the flow, respectively.
For example, this could be the body length and speed of
the swimmer, although it is sometimes more useful to look
at the dimensions associated with what is producing the
flow, like a beating fin or a rotating flagellum. The left
member of eq. (1) represents inertial forces and contains
the unsteady term ∂u/∂t and the advection term u · ∇u.
Both terms have the units of U2/L. The viscous forces
per unit mass ν∇2u scale like νU/L2. Therefore, the ratio
of inertial and viscous forces in the flow is given by the
Reynolds number Re = UL/ν [7, 8]. This means that, for
a given liquid, viscous forces tend to dominate over inertia
at small scales. Water has a kinematic viscosity of about
ν = 10−6 m2/s, so that for a swimmer moving at one body
length per second, i.e. L/U = 1 s, we would have Re < 1
for L < 1 cm.

For Reynolds numbers close to zero, the left member of
eq. (1) can be neglected. This leads to the Stokes equation

−1
ρ
∇p + ν∇2u + g = 0 (2)

which is linear and independent of time. This has some
serious consequences on the swimming mechanisms of mi-
croorganisms [3,4]. The fact that time does not intervene
in the Stokes equation means that flows are typically re-
versible and rate independent. Let a body be composed
of two segments linked by a hinge, as shown in fig. 1(i).
The opening angle between the segments is the only de-
gree of freedom. At high Reynolds number, this simple
structure can swim by rapidly closing, expelling water,
and then reopening slowly. This is a swimming strategy
similar to what some scallops do, with valves in place of
the segments, except that the water is expelled through
small openings on either side of the hinge. However, the
rate of closing and opening does not influence the flow
in the Stokes regime, meaning that only the succession
of geometric configurations adopted by the swimmer mat-
ters. With only one degree of freedom, our model scallop
can only go back and forth between the open and close
configurations. Even if water is pushed during the closing
phase, it will always produce the inverse flow by reopen-
ing, so that the center of mass is not displaced over one
period. This leads to what is colloquially known as the
“scallop theorem”, stating that, at Re = 0, if the suc-
cession of configurations adopted by the swimmer is un-
changed by a time-reversal transformation, then it cannot
produce a net motion [3]. Several other swimming strate-
gies that have been proven to work at higher Reynolds
number will fail for the same reasons. For instance, two
spheres of different sizes linked by an oscillating spring, as
shown in fig. 1(ii), would not be able to swim in the Stokes
regime, as there is only one degree of freedom for deforma-
tion. Such a swimmer has been shown to produce virtu-
ally no net motion under a critical value for the Reynolds

(i) (ii) (iii)

(iv) (v) (vi)

(vii)

(viii) (ix) (x)

Fig. 1. On top, reciprocal swimming strategies that do not
work in the bulk at low Reynolds number. This includes (i) a
scallop-like swimmer [3], (ii) two oscillating spheres of differ-
ent sizes [9], and (iii) a body with a rigid beating tail [10].
In the middle, non–time-reversible deformation sequences that
can produce a net motion in the Stokes regime. The three-link
swimmer (iv) has two hinges that move out of phase [3]. The
two arms of the three-linked-spheres swimmer (v) also oscillate
out of phase [11]. A deformable body such as a flexible mag-
netic tail (vi) can also produce a non-reciprocal motion [12].
Another way to propel three spheres is to use a triangular con-
figuration (vii), where the oscillation of one pair is accompanied
by an out-of-phase rotation [13]. Below, swimming srategies
that work in the Stokes regime only with a nearby interface. A
reciprocal swimmer such as the scallop-like one (viii) can move
in all directions when close to a deformable interface [14]. Two
stacked spheres in a precession movement (ix) can move with
an interface nearby [15]. Rotating spheres can also move close
to an interface (x), where they self-assemble into a colloidal
conveyor belt under a combination of rotating and oscillating
fields [16].

number, at around Re ≈ 20 [9]. Similarly, a beating rigid
tail, shown in fig. 1(iii), can produce no net motion if the
Reynolds number is smaller than unity [10]. Depending on
the particular case, the onset of a net motion for a recipro-
cal swimmer, following an increase in the Reynolds num-
ber, can occur either continuously or discontinuously [17].

Another way to discuss the implications of eq. (2) is
to consider that a swimmer, in the Stokes regime, is inca-
pable of exerting a net force, or conversely, a net torque,
on the surrounding fluid [4]. Indeed, considering that iner-
tia is negligible when Re ≈ 0 is equivalent to stating that
the swimmer experiences a resultant force from the fluid
equal to zero at all times, granted that there is no exter-
nal force pushing the swimmer. If the flow field around the
swimmer is expressed as a multipole expansion, the term
decaying like 1/r, which corresponds to a point force and
is called a stokeslet, is therefore zero. The leading term
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in the far-field flow is thus a symmetric force dipole at
best, i.e. the flow generated by two opposite point forces,
which decays like 1/r2. This is called a stresslet and is
a useful tool for describing in general terms the motion
of a microswimmer and its interactions with its environ-
ment [4,14,18]. In general, a swimmer generates a flow that
is a combination of stresslets and higher order terms, such
as the source dipole, whose velocity field decays like 1/r3.

For decades now, researchers have come up with swim-
ming strategies that satisfy the conditions imposed by the
scallop theorem [3, 4, 11–13, 19]. Such strategies already
exist in nature and are used by motile bacteria and sperm
cells. This includes the rotation of one or several helical
flagella [3], the sequential motion of a series of cilia [4]
or the transfer of mass by deformation of the whole cell
membrane [20]. However, it is possible to devise strategies
that are conceptually simpler, more adapted to analyt-
ical calculations or numerical simulations, and/or easier
to implement experimentally with existing technologies.
One early example, proposed by Purcell in 1976 [3], is the
addition of one degree of freedom in the scallop-like sys-
tem from fig. 1(i), which is now composed of two hinges
and three segments, the so-called three-link swimmer, as
shown in fig. 1(iv). This allows to move the external arms
one after the other, leading to a sequence of configura-
tions that is not time-reversible. As shown, the sequence
leads to a net motion to the right. This is easier to un-
derstand when picturing this swimmer as standing on a
sinusoidal wave travelling to the left, where every config-
uration change moves the wave by a quarter wavelength.
Experimental implementations of this swimmer have been
made, though they require macroscopic elements such as
motors.

An arguably simpler, one-dimensional deformation se-
quence has been proposed by Najafi and Golestanian in
2004 [11]. Like the swimmer from fig. 1(ii), it consists of
spheres linked by arms whose length can vary. In order
to beat the scallop theorem, a minimum of three spheres
and two independent arms is required. The sequence as de-
picted in fig. 1(v) leads to a net motion to the right. A lot
of theoretical work has been based on this swimmer, some-
times using oscillating springs instead of arms [21–25].
This can be attributed in part to its one-dimensional na-
ture which greatly facilitates analytical calculations. No-
tably, it can be shown that the speed of this swimmer
over one period is proportional to the area of the cycle
drawn by the swimmer in the plane defined by the two
arms’ lengths [21]. If the arms oscillate harmonically at a
frequency ω, this can be expressed as the product of the
amplitudes of oscillations of each spring with the sine of
their phase difference φ, namely

V = KAaAb ω sin(φ) = KW, (3)

where K is a geometrical prefactor that can be determined
analytically, and we defined swimming efficiency W .

Despite its simplicity, the three-linked-spheres swim-
mer is far from being the first to have been implemented
experimentally. This honour goes to the work by Dreyfus
et al. in 2005, which is often regarded as the first artificial

microswimmer [12]. A magnetic tail, composed of super-
paramagnetic colloids linked by DNA strands, is attached
to a red blood cell. In an oscillating magnetic field, the tail
deforms and aligns itself periodically with the field, follow-
ing a non–time-reversible sequence illustrated in fig. 1(vi).

Another possible deformation sequence uses three
spherical particles forming a regular triangle, as shown
in fig. 1(vii) [13, 26]. It only requires one pair of spheres
to oscillate, while the other two arms can remain rigid. In
this case, the rotation of the ensemble is the key ingredi-
ent to generate a non-reciprocal cycle. Indeed, the center
of rotation is determined by the hydrodynamic interaction
between the spheres. During each contraction of the pair,
it moves away from the center of mass, which is then dis-
placed by the rotation. Once the swimmer goes back to
the equilateral configuration, the center of mass and the
center of rotation are confounded again, so that a net dis-
placement has been produced over one cycle. Compared
to the one-dimensional three-bead-swimmer, the triangu-
lar one can freely move in the plane with two degrees of
freedom.

2.2 Beyond the scallop theorem

While the scallop theorem has been the basis for many
studies, there are several cases where it is not applicable.
For instance, the independence in the rate of deforma-
tion of the body is only valid in a Newtonian fluid. In a
shear thinning or shear thickening fluid, for example, the
change in apparent viscosity can be used to produce a net
displacement with a reciprocal motion [27,28].

The proximity of another body can also be used to
relax the condition imposed by the scallop theorem. For
instance, two out-of-phase reciprocal swimmers can essen-
tially act as one non-reciprocal swimmer [29]. A nearby
interface, which is a common scenario in biological fluids
or microfluidic devices, can also be used to beat the scal-
lop theorem. In their 2008 paper, Trouilloud et al. studied
the flow induced by a reciprocal swimmer near an inter-
face, by looking at the flow in the far field as a super-
position of stresslets and source dipoles [14]. In this case,
while the proximity of a rigid wall can induce an addi-
tional velocity component, it does not allow to overcome
the scallop theorem. However, a reciprocal swimmer can
move when the interface in question is deformable, such
as the interface between two fluids, or between a fluid and
a deformable solid, like a membrane or a gel. Swimming
is possible towards, away and parallel to the interface, de-
pending on the stresslets and source dipoles considered. To
generate a significant motion, the swimmer must be able
to generate an important enough deformation of the in-
terface. The swimmer exerts a typical viscous force ηUL
on the interface, where L represents both the swimmer
size and its distance to the interface, which must be com-
pared to a typical restoring force, such as a capillary force
γL in the case of an interface between two fluids. In this
case, one obtains the capillary number ηU/γ which must
be larger than unity while keeping the Reynolds num-
ber small. This leads to a typical length scale η2/ργ, the
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Ohnesorge length, under which this kind of propulsion is
effective. Note that for simplicity, two fluids of similar vis-
cosity and density were considered.

While a deformable interface is required in the work by
Trouilloud et al., it is possible to generate motion parallel
to a rigid interface with reciprocal motion. In experiments
performed by Tierno et al., a small paramagnetic sphere
is attached to a larger one [15,19,30]. The doublet is then
submitted to a precessing magnetic field, as illustrated in
fig. 1(ix). Motion is induced in a direction perpendicu-
lar to the precession axis and parallel the wall. Here, the
presence of the wall creates a difference in viscous dissi-
pation between each part of the rotation, far and close
to the interface. Indeed, the “return stroke” experiences
a lower viscous dissipation than the “forwards stroke”,
which is closer to the interface. This could be compared
with the previously discussed reciprocal motion in a non-
Newtonian fluid, except that the modulation in viscous
dissipation is due to the proximity of the interface, and
not the fluid itself. This asymmetry explains the appari-
tion of a net motion that would not be observed in the
bulk.

Similarly, a simple rotational motion in a plane per-
pendicular to a nearby interface can lead to propulsion,
as the flows below and above the rotating body differ.
On the other hand, several magnetic colloids rotating in a
plane parallel to the interface can self-assemble into a two-
dimensional colloidal carpet, as the time-averaged dipole-
dipole interaction between the spheres is an attraction.
By combining the two effects, it is possible to generate a
colloidal carpet that moves along the interface [16]. This
is illustrated in fig. 1(ix). The speed of the carpet in-
creases with the number of particles and saturates around
N ≈ 300. This structure can work as a conveyor belt able
to transport a cargo.

3 Swimming at the interface

In the previous section, we discussed how the breaking of
spatial symmetry provided by a nearby interface can allow
to beat the scallop theorem. We will now show that inter-
facial phenomena, such as the Marangoni effect, surface
waves or the so-called Cheerios effect, can also be used to
generate microswimmers.

3.1 Autophoresis

In the scallop-theorem paradigm, it is assumed that the
self-propulsion of the swimmer is achieved through the de-
formations of the body. However, it is also possible for a
rigid body to achieve a force-free self-propulsion through
a self-generated gradient. This is the basic principle be-
hind autophoretic (self-phoretic) swimmers, which induce
flows on their surface through gradients in concentration,
temperature or electrostatic potential [31]. For example,
self-diffusiophoresis can arise when a particle is partially
covered with a catalyst for a chemical reaction that can
occur in the surrounding fluid, locally creating a gradient
in concentration [32,33]. The asymmetry is not necessarily

required, as a symmetry breaking can also spontaneously
occur with isotropic particles [34]. The process is similar
with self-thermophoresis [35] or self-electrophoresis [36].

Recently, it has been proposed to study the mo-
tion of self-diffusiophoretic swimmers trapped at inter-
faces [37–40]. This has the effect to reduce their rota-
tional diffusion and therefore increase their persistence
length [37]. Spherical Janus colloids, composed of SiO2

and partially coated with platinum, are deposited on the
surface of a water and H2O2 mixture. The decomposition
of H2O2 is catalysed on the Pt-coated region, causing the
particles to move, with a speed that depends on the quan-
tity of available “fuel”, i.e. the concentration in H2O2. The
experiment can also be performed at an oil-water interface
with similar results [39,41]. Structures that typically form
on interfaces, such as colloidal crystals, can provide addi-
tional confinement [40]. The presence of a nearby interface
could also cause spherically symmetric particles to move
thanks to a breaking of symmetry [42,43]. In a sense, this
is similar to the mechanisms discussed in fig. 1(viii)–(x),
where the nearby interface allows to overcome the scallop
theorem. Here, the chemical reaction occurring around the
spherical swimmer generates Marangoni flows, causing a
net motion that could, in theory, dominate over classical
autophoresis [43].

3.2 Marangoni effect

The principle of a self-generated gradient is also used
for motion along an interface, in the case of propulsion
by Marangoni effect. The camphor boat, which has been
known for more than a century, is now used as a model
system for low Reynolds locomotion [44, 45]. A piece of
camphor is attached to a floating object. When it dis-
solves in the water, the camphor molecules adsorbed at
the water surface locally lower surface tension, as illus-
trated in fig. 2(i). The resulting surface tension gradient
propels the object forwards. While the camphor boat is
the earliest and most well-known example of propulsion
by Marangoni effect, it is far from being the only one.
For example, a body releasing a solvent in the surround-
ing liquid can generate a gradient in surface tension, as
represented in fig. 2(ii). Examples of bodies placed on a
water bath include a gel disk soaked in oxolane (tetrahy-
drofuran) [46] or ethanol [47], a droplet of aqueous ethanol
coated with colloidal particles, called a liquid marble [48],
and a soap disk at an oil-water interface [49]. This effect
has also been observed with pure water droplets placed on
an oil-surfactant bath [50]. Note that these objects can be
isotropic, as any small anisotropy due to the initial con-
ditions can increase when the object starts to move. A
variation on this principle is to generate a surface tension
gradient by locally heating the fluid, for example by illu-
minating an object with intense light. This is illustrated
in fig. 2(iii), where a light-absorbing element is placed at
the back of an object heated with focused light [51]. Using
a laser as heat source makes it possible to move isotropic
objects such as steel spheres, as it allows light to hit the
surface at a precise point [52]. Finally, stationary heated
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Fig. 2. On top, swimmers that propel using a gradient in sur-
face tension, also known as the Marangoni effect. In the classic
camphor boat (i), surface tension is locally lowered by a piece of
camphor dissolving at the stern [44]. Marangoni-driven propul-
sion can also be obtained by releasing a solvent (ii) contained in
a gel [47] or in a droplet coated with colloids [48]. Note that mo-
tion can arise even with symmetric objects, as a spontaneous
breaking of symmetry can be observed. The gradient in surface
tension can also come from a temperature change (iii), for in-
stance using a light source [51]. In the middle, two systems that
use surface waves for propulsion. A droplet placed on a verti-
cally vibrating bath can be deformed by a Faraday standing
wave (iv), leading to a net motion after a symmetry breaking
in the position of the nodes [53]. Magnetic colloids (v) can also
generate surface waves under a vertical oscillating field [54].
The particles arrange to form an aster (vi), which can swim if
the spatial symmetry is broken [55]. Below, floating magnetic
spheres under a vertical constant field (vii) arrange into struc-
tures (viii) due to a competition between magnetic and cap-
illary forces [26]. These assemblies can move under oscillating
fields (ix), for example by mimicking the deformation sequence
of the three-linked-spheres swimmer from fig. 1(v) [56].

structures on a chip suspended above the surface can gen-
erate many types of behaviours by using point, line, an-
nular or triangular heat sources [57].

3.3 Surface waves

Another type of interfacial phenomenon that can be used
for propulsion is surface waves. For instance, one can use
Faraday waves, i.e. standing waves that appear on a vi-
brating bath, for locomotion. A famous example is the
case of walking droplets, where an oil droplet bouncing
on a vibrating bath, just below the onset of the Fara-
day instability, generates waves that help propel it for-
wards [58]. This does not technically qualify as swimming,
as the droplet is never immersed in the bath. It is possi-
ble, however, to produce a swimmer by using a similar
system [53]. In this case, a water droplet is placed on a vi-
brating bath of silicon oil. The droplet is mostly immersed,
with a small cap peaking above the surface of the bath.
Under a strong enough acceleration of vibration Γ , a Fara-

day standing wave can appear on the surface of the water
droplet, as depicted in fig. 2(iv). This generates a flow in
the surrounding oil that can lead to motion. Depending
on the forcing parameters, several types of motions are
observed, including spinning, rotation on an orbit, zig-zag
and translational motion. This is linked to the number and
positions of the nodes of the standing wave on the droplet.
Indeed, if the nodes are in a straight line, the droplet is
either stationary or spinning. Conversely, for some values
of the forcing parameters, a symmetry breaking in the po-
sition of the nodes can spontaneously appear, leading to
a net motion. The Reynolds number for this system is
typically around 0.1. With a less viscous bath, and thus
a higher Reynolds numbers of around 10, another type
of motion can be observed. In this case, the wave on the
droplet is a travelling wave, leading to locomotion in the
opposite direction. This resembles the squirming model
for microswimmers, where a sphere deforms its surface to
generate a flow, similarly to what is observed with some
bacteria such as ciliates [59].

In a second example, ferromagnetic particles floating
on water can produce waves when submitted to a vertical
oscillating field Bz. Indeed, while the interaction between
vertical dipoles on the surface is repulsive, nearby parti-
cles can form chains with a resulting moment in the plane
of the interface. These chains can deform the interface as
they try to align themselves with the vertical field, which
leads to the formation of self-organized structures, such as
“snakes” [54] and asters [55]. A side view of an aster is de-
picted in fig. 2(v). The colloidal chains stand on the slope
of the standing wave they produce. The addition of a con-
stant horizontal field Bx can break the circular symmetry
of the aster, as shown in fig. 2(vi). The asymmetric aster
generates a net fluid flow, leading to locomotion. Note
that, while the particles have a typical size of 90μm, in-
ertia is not negligible in the flow, as the Reynolds number
is of the order of 10.

3.4 Magnetocapillary swimmers

The last type of surface microswimmer that we will dis-
cuss is the magnetocapillary swimmer [13, 26, 56, 60–63].
Metallic spheres of 500 μm in diameter are placed on a
water surface under a constant vertical magnetic field Bz.
The spheres experience an attractive force due to capil-
larity. Indeed, each particle is surrounded by a meniscus,
as the weight of the particle deforms the surface. This
leads to the apparition of a lateral capillary force, which
is an attraction in the case of similar particles [64]. This
effect is colloquially known as the Cheerios effect, as it
can be observed simply with breakfast cereals in a bowl
of liquid [65]. The vertical field Bz is used to counter this
attraction. While they are made of a ferromagnetic mate-
rial, the spheres have an almost linear magnetization due
to finite size effects [62]. This means that they behave es-
sentially like paramagnets, except for a larger (effective)
susceptibility χeff ≈ 3. However, the beads can reorient
in an external field, an effect which can be attributed to
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Fig. 3. On top, a triangular magnetocapillary swimmer, com-
posed of three 500 μm spheres floating on water submitted to
a vertical field Bz ≈ 3 mT. On bottom, a collinear swimmer
composed of two 400 μm and one 500 μm sphere. In this case
we have a vertical Bz ≈ 5 mT and horizontal Bx ≈ 3mT.

a small residual magnetism of the order of 100A/m. Un-
der a vertical field, the magnetic interaction between the
spheres is a repulsion. The combination of these two forces
can lead to a finite equilibrium distance, as illustrated in
fig. 2(vii). For more than two particles, organized struc-
tures emerge, typically following a triangular lattice [26].
The basic structures observed, up to N = 7, are shown in
fig. 2(viii). A photograph of a triangular magnetocapillary
swimmer is shown in fig. 3.

3.4.1 Collinear swimmer

In order to beat the scallop theorem, a minimum of three
rigid spheres is required [26], which is why the triangular
swimmer was the first one to be studied in depth [13].
However, this triangular swimmer is neither the only,
nor the most simple three-particle swimmer obtainable
with a magnetocapillary system. In fact, under a large
enough constant horizontal field, a collinear configuration
becomes stable [61]. An exemple of such a configuration
is shown in fig. 3. This means that it is possible to mimic
the deformation cycle of the three-link swimmer depicted
in fig. 1(v) [56]. To generate the deformation, a horizontal
field of the form

Bx = Bx,0 + δB sin (2πft) (4)

is used, where δB � Bx,0 in order to maintain the swim-
mer in the collinear state. Identical particles will oscillate
around their equilibrium position in a time-reversible way,
with the magnetocapillary interaction essentially acting as
a non-linear spring that brings the particles back to their
equilibrium position. In order to break time-reversal sym-
metry, one must introduce an asymmetry in the system.

Fig. 4. (a) Interdistances da and db describe a non-reciprocal
cycle in a collinear magnetocapillary swimmer. The experiment
was run for ten oscillations at 3 Hz. (b) An internal angle α and
the orientation of the swimmer θ also describe a non-reciprocal
cycle in a triangular swimmer. Orientation θ is defined as the
average of the orientations of the three particles in the referen-
tial of the center of mass. Ten oscillations at 0.5 Hz are shown.

This is simply done by changing the size of one of the
external particles, as shown in fig. 2(ix) as well as fig. 3.
In this spring analogy, this is equivalent to changing the
spring constant of one of the two springs, which can in-
troduce a phase difference between the oscillations. The
swimmer therefore follows a deformation sequence similar
to the one proposed in [11] and depicted in fig. 1(v). Note
that, while inertia in the flow can be neglected, the oscil-
lations of the springs must not be overdamped in order to
observe the phase shift, which means that the inertia of
the particles themselves must be considered. A typical ex-
perimental deformation cycle is shown in fig. 4(a). This ap-
proximately circular trajectory in the (da, db) plane means
that the two oscillations are in quadrature for f ≈ 3Hz.
Note that the maximum speed is not necessarily reached
at the phase quadrature, as the amplitudes of both oscilla-
tions are also a function of f . The amplitudes reach their
maximum at the radial magnetocapillary resonance fre-
quency described in [62], which happens typically around
2 or 3Hz.

An analytical expression for the swimming speed can
be expressed by combining the equations of motion of the
particles with eq. (3). The particles of the swimmer are
linked together via a magnetocapillary potential which
writes

U =
1
2

∑

i�=j

(
4π

9μ0

a3
i a

3
jχ

2(B2
z − 2B2

x)
r3
ij

− 2πγqiqjK0

(
rij

lc

))
,

(5)
where the first term accounts for the dipole-dipole inter-
action and the second term for the capillary attraction.
If we consider that the particles are linked by a magne-
tocapillary spring, the role of γ is essentially to act as an
extension spring force while the dipole-dipole repulsion
induced by Bz acts as a compression spring force. In this
expression, a measures the respective radii of the beads, χ
their magnetic susceptibility and q their capillary charges.
K0 is the modified Bessel function of first kind and zeroth
order. Linearising this potential for a pair of beads gives
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Fig. 5. (a) Swimming efficiency W of the collinear magneto-
capillary swimmer as a function of viscosity, for various values
of the excitation frequency f . (b) Swimming efficiency W of
the collinear magnetocapillary swimmer as a function of sur-
face tension, for various values of the excitation frequency f .
The contact angle between the spheres and water was kept
constant.

the value of the stiffness of the fictive spring k

k =

(
3μ0(2πγq1q2)

5
2

4πχ2a3
1a

3
2

1
B2

z − 2B2
x

) 2
3

. (6)

Assuming a linear regime and beads submitted to both
inertia and viscous damping, the swimming efficiency W
can be computed [56] and expressed as

W =
3μF 2ω2(kb − ka)

|kakb−((2ka−mω2)+iμω)((2kb−mω2)+iμω)|2 ,

(7)
where F is the magnitude of the oscillatory driving force,
ka and kb are the stiffnesses of the magnetocapillary po-
tential in the linear regime for each pair [62], m the beads
mass, μ = 3πηD the drag coefficient and ω = 2πf the an-
gular forcing frequency. Thanks to the possibility of ana-
lytical developments, the collinear swimmer could be used
as a model system to verify some general principles of mi-
croswimmers [25,56].

For instance, it has been shown that the influence of
the viscosity of the surrounding fluid on a swimmer is not
always trivial and, in particular, that an increase in viscos-
ity can counter-intuitively lead to an increase in speed [25].
This is also expected in the case of the magnetocapillary
swimmer, as shown in fig. 5(a). In this figure, the viscos-
ity η of the liquid medium has been changed in eq. (7)
and the corresponding swimming speed is investigated.
Different external forcing frequencies f have been consid-
ered. There seems to exist an optimal viscous damping in
terms of swimming speed, which is a function of f . This
maximum separates two regimes characterized by two dif-
ferent power laws. Before this maximum, the speed in-
creases linearly with the viscosity. On the contrary, after
this maximum, the speed decreases as V ∝ f−3. Indeed,
for small viscosities, increasing the viscosity has no effect
on the amplitude of oscillation of the beads Aa and Ab

while increasing the phase shift difference φ between the
two deformations. This increase in phase shift φ therefore

causes the increase in speed in eq. (3). On the other hand,
for high viscosities, increasing the viscosity decreases both
the amplitudes of oscillation Aa and Ab and the phase
shift φ, causing a sharp decrease in speed. The magne-
tocapillary collinear swimmer could therefore offer a way
to experimentally validate the results from [25]. Similarly,
there is an optimal surface tension γ for a given excita-
tion frequency, as shown in fig. 5(b), where γ has been
varied while keeping the contact angle constant. Indeed,
since the capillary charges depends linearly on the value
of γ [64]. Using eq. (7), we find that the speed increases as
γ5 for low surface tension, while for high surface tension,
the speed scales as γ−15.

3.4.2 Triangular swimmer

To generate non-reciprocal motion in a triangular swim-
mer, it is submitted to a horizontal oscillating field

Bx = B sin (2πft) (8)

with B < Bz/
√

2 to avoid contact between the parti-
cles [63]. A constant horizontal field Bx,0 can also be
added, which tends to force the swimmer into a particu-
lar swimming mode by further breaking spatial symmetry
in the system [13]. In general, the frequency of the oscil-
lating field is below 1Hz, which leads to a relatively low
Reynolds number for the size of the particles, usually be-
tween 10−3 and 10−1. Higher excitation frequencies tend
to lead to more complex behaviours [60].

One typical deformation sequence observed is similar
to the one depicted in fig. 1(vii). The regular triangle de-
forms into an isosceles as the magnitude of the field in-
creases. A rotation is then observed, which is kick started
by the presence of a small residual magnetism in the
spheres, leading to a torque on the assembly. The center
of mass (CM) moves, as it is distinct from the center of
rotation (CR), which is determined by the hydrodynamic
interactions between the spheres. The swimmer then goes
back to a less deformed state and rotates back to its initial
orientation, leading overall to a net displacement of the
center of mass. Figure 6 illustrates this process, showing a
typical cycle going from equilateral to a pointy isosceles,
which then deforms back into an equilateral and rotates
back to its initial configuration. The pointy isosceles state,
whose apex angle α is below π/3 and which is called lepto,
is shown in more detail. The center of rotation is defined
by the hydrodynamic coupling between the spheres. In-
deed, assuming each sphere rotates individually due to
the magnetic field, the induced flow field leads to a force
on the neighbouring particles. The resulting forces define
a rotation center that is aligned with CM and CR. In the
lepto case, CM is closer to the apex than CR. In the case
of a flat isosceles, whose apex angle α is above π/3 and
which is called platy, CM would be further away from the
apex than CR. The lepto and platy configurations were ob-
served in both experiments and quasi-static simulations,
though with a different particle at the apex [13]. Their ef-
fect in the cycle is complementary, as they rotate in oppo-
site directions. For the sake of simplicity though, the cycle
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CR

CM

Fig. 6. The magnetocapillary triangle swims thanks to a com-
bination of deformation and rotation. The rotation-translation
hydrodynamic coupling (dotted lines), caused by the individ-
ual rotation of the spheres, defines a rotation center CR (red
circle) that, in an isosceles of apex angle α, is distinct from the
center of mass CM (red dot). Therefore, the rotation leads to
a displacement of CM that is preserved if the return rotation
happens when the triangle is equilateral. CR moves closer or
further away from the apex depending if α > π/3 (platy) or
α < π/3 (lepto), respectively. In the experiment, the swimmer
tends to deform into a flat isosceles during the return rota-
tion [13], which further increases the effect.

from fig. 6 only goes back and forth between a regular and
a lepto configuration, as the platy state is less pronounced
and not essential to explain the non-reciprocal cycle. An
experimental deformation cycle is shown in fig. 4(b). The
two degrees of freedom shown are the internal angle α,
corresponding to the apex of the lepto triangle, and the
orientation of the triangle θ, defined as the average ori-
entation of the spheres in the referential of the center of
mass.

Because the particles are further away from each other
on average and due to the restrictions on the amplitude
δB, the collinear swimmer is usually about ten times
slower than the triangular one, whose typical speed is
around one particle radius per period of the oscillating
field. This is why the triangular swimmer, despite being
more complex, is more appropriate in the study of po-
tential applications of microswimmers. Indeed, it is possi-
ble to control rather precisely its trajectory in the plane
of the interface [13]. The possibility of capturing, trans-
porting and releasing a floating cargo has been demon-
strated experimentally, as well as the mixing of fluids at
low Reynolds number [63].

3.5 Surface effects at larger scales

While the systems described in this paper mainly belong
to the realm of low-Reynolds-number flows, it should be
noted that interfacial effects are typically relevant up to

Fig. 7. Exemples of centimeter scale surface locomotion. The
larva of the waterlily leaf beetle (i) can move upwards a menis-
cus by deforming to generate a Cheerios effect. Water strid-
ers (ii) float and propel vortices thanks to their hydrophobic
legs [66]. A simple surface swimmer (iii) composed of two arms
and an asymmetric body can swim by expelling vortices. There
is a net motion to the right thanks to the asymmetry in momen-
tum transfer to the fluid. Experimentally (iv), the oscillation
of the piece is achieved thanks to embedded magnets in the
arms and an external oscillating field.

the centimeter scale. In fact, the capillary length lc =√
γ/ρg, below which surface tension dominates over grav-

ity, is around 2.7mm in water. This explains why some
insects and other invertebrates rely on surface forces for
propulsion. For instance, some small animals can use the
Cheerios effect to ascend a meniscus [67]. Water treaders,
a semiaquatic insect, achieve this by pulling the interface
upwards with their legs. Alternatively, some terrestrial in-
sects such as beetle larvae can bend their whole body to
generate the same effect, allowing them to reach land af-
ter an unintended fall onto water. Figure 7(i) depicts a
beetle larva climbing a meniscus. Millimeter-long nema-
todes, also called roundworms, have been shown to not
only climb a meniscus, but aggregate and remain grouped
together thanks to the Cheerios effect [68].

Other invertebrates, such as water striders [66] and
fisher spiders [69], float on water thanks to surface ten-
sion. They use their hydrophobic legs to transfer momen-
tum to the liquid by generating U-shaped vortex rings
attached to the interface, as represented in fig. 7(ii). This
type of locomotion relies on a higher Reynolds number,
typically around 100 or more [66]. To achieve this, water
striders possess three pairs of legs that secrete a hydropho-
bic wax. They are covered with microscopic needles, called
setae, which themselves are marked with a multitude of
nanogrooves [70]. Only the middle pair of legs is used for
propulsion. This motion resembles rowing, as the return
stroke happens outside of water. In addition, some aquatic
insects such as riffle bugs, smaller relatives of the water
striders, can secrete surfactants to move by Marangoni
effect [71]. This is based on the same principle that was
depicted in fig. 2(ii). It generates a fast motion that is
used as an escape mechanism.

It is possible to design artificial surface swimmers
based on similar mechanisms. For instance, artificial water
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striders have been built using an elastic thread [66], piezo-
electric actuators [72] or small dc motors [73] to power the
legs. A larger number of supporting legs can allow such
robots to support heavier loads [72,73]. Using 3D-printing
technology, we designed a very simple structure that cap-
tures the basics of this swimming strategy, i.e. floating on
water and transferring momentum to the fluid by produc-
ing vortices. This swimmer is composed of a body that has
the shape of a disk, with a pair of arms attached, as shown
in fig. 7(iii). Thanks to the interface, the oscillation of the
piece is constrained in a plane. Without the interface, the
piece would most likely flip around the principal axis with
the smallest moment of inertia, which is along the length
of the arms. To generate propulsion, the fore-aft symmetry
of the piece must be broken. Therefore, the central disk
has a small radius on one side (fore) and a larger radius
on the other (aft). In the example shown in fig. 7(iv), the
arm reach of the piece is 2 cm and the radii of the body are
0.35 (fore) and 0.50 cm (aft). When this object oscillates,
it can generate vortex half-rings on each side. Thanks to
the geometric asymmetry of the piece, the expulsion of
vortices itself is asymmetric. This leads to a net motion of
about 1.8 cm per period of oscillation. Figure 7(iv) shows
the trail left by such a swimmer in coloured water. One
can see the rather large vortices on the side with the larger
radius (aft).

In practice, a permanent magnets is embedded in each
arm, oriented perpendicular to it. The oscillation of the
piece is powered by an oscillating magnetic field which
creates a time-dependent torque. The field is sinusoidal,
of amplitude 2.8mT and frequency 0.5Hz and oscillates
perpendicular to the swimming direction. A small offset of
0.28mT is added perpendicular to the oscillation, which
prevents the piece to perform a full turn. Figure 7(iv) also
shows the trajectory of the arms’ ends over one period of
oscillation. One can see that the piece swings back and
forth between −π and π radians.

The Reynolds number of this system is typically of
a few hundreds. Another useful dimensionless number to
describe vortex shedding is the Strouhal number, often
written St = Af/U where A is the stroke amplitude, f
its frequency and U is the swimming speed [1, 74]. In the
case of undulatory propulsion of fish, the optimal Strouhal
number has been theoretically predicted, and ranges be-
tween 0.15 for large animals like cetaceans up to 0.8 for
small animals such as tadpoles [75]. An oscillating piece
like the one in fig. 7(iv) has a Strouhal number of about
0.55, suggesting that vortex shedding is the relevant swim-
ming mechanism. Further studies could aim to optimize
the efficiency of the swimming piece by varying the geo-
metrical parameters as well as the applied field. This could
provide a model structure to study the laws that govern
biolocomotion, as well as a basic element to construct un-
tethered swimming robots.

4 Conclusion

It certainly makes sense, from a theoretical standpoint, to
study microswimmers in an unbounded volume of fluid.

However, in real-world systems such as microfluidic de-
vices or the human body, microswimmers are highly likely
to encounter obstacles, interfaces or membranes. Here, we
discussed the necessary conditions for swimming imposed
by the so-called scallop theorem, which stipulates that a
deforming body must adopt a non–time-reversible series of
shapes in order to produce a net motion at low Reynolds
number. This condition can be relaxed in the vicinity of
an interface, which can for example add an extra degree of
freedom in the system. Not only can an interface help pro-
duce the breaking of symmetry necessary for propulsion,
but interfacial phenomena can also play a role in generat-
ing motion. This includes the Marangoni effect, where a
gradient in surface tension leads to a net motion; surface
waves, which can generate flows in the surrounding fluid;
and the Cheerios effect, where particles self-assemble into
a swimmer thanks to a lateral capillary force. The lat-
ter swimmer was studied in more depth in this paper.
Two distinct swimming mechanisms were evidenced and
discussed both experimentally and numerically. Interfa-
cial forces can also play a role in systems with a larger
Reynolds number, as seen in some insects and other inver-
tebrates. This was illustrated experimentally by designing
an asymmetric oscillator that swims by vortex shedding.
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