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Abstract. The transient behavior of a leaky dielectric liquid drop under a uniform AC electric field of small
strength is investigated, using a closed form analytical solution. The drop settles to a quasi-steady state in
a relaxation time that is set by the viscosities of the drop and the ambient fluid and the surface tension, and
oscillates around a mean deformation with a frequency that is twice the electric field frequency. The mode
of instantaneous deformation remains the same (oblate or prolate) or switches between oblate and prolate,
depending on the relative importance of the time-periodic component of the deformation compared to
that of the time-exponential. The structure of the flow field and its evolution is studied for representative
fluid systems at a high and a low electric field frequency. The individual contribution of the net tangential
and normal electric stresses, which are the driving forces of the problem, on the flow structure and drop
deformation is characterized. On the basis of the mean (time-independent) and time-periodic components
of the driving forces, the flow field is represented as the superposition of three different flow patterns. It
is shown that the interplay of these flow patterns leads to formation and destruction of toroidal vortices,
and that the residence time of these vortices correlates inversely with the field frequency.

1 Introduction

Interactions of electric field with liquid drops have been
a problem of long-standing interest and is currently the
focus of increased attention because of its relevance in a
broad range of technologically advanced processes. Exam-
ples include break up of droplets in high electric fields for
surface coating and spraying [1], enhancement of coales-
cence of droplets for de-emulsification purposes [2], and
manipulation of droplets by electrowetting for digital mi-
crofluidic circuits [3], to name a few. The electric field
modulates the phase boundary through interfacial elec-
tric stresses that arise due to mismatch of the dielectric
properties of the fluids across the drop, leading to the drop
deformation and fluid flow formation in and around it.

The theoretical foundation of the phenomenon was laid
out by Taylor and Melcher [4–6] in a framework that later
on became known as “Taylor-Melcher leaky dielectric the-
ory” [7]. The essence of the model is to assume droplet
fluid and the host fluid have finite electric conductivi-
ties and that the time scale of charge relaxation due to
conduction from the fluid bulk to the drop surface to be
much shorter than any process time of interest. The first
assumption allows for the accumulation of free electric
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charges at the drop surface and, therefore, the possibility
of interfacial electrical shear forces, which results in fluid
flow at the drop surface even when the drop is stationary
and its surface is immobile. The second assumption leads
to substantial simplification of the mathematical formula-
tion as the electric field equations will be decoupled from
the momentum equation and reduce to quasi–steady-state
laws.

The steady behavior of a drop in a DC electric field is
reasonably well understood. Briefly, under a weak electric
field the drop remains spherical or deforms to an ellipsoid
whose major axis is in the direction of or perpendicular
to the field, becoming a prolate or an oblate spheroid, re-
spectively. Furthermore, a recirculatory flow in the form
of toroidal vortices is established in and around the drop,
where the external flow runs from the poles toward the
equator or in the opposite direction. The key parameters
that set the sense of drop deformation and fluid flow cir-
culation are the electric conductivity ratio σ̃ = σi/σo and
the electric permittivity ratio ε̃ = εi/εo (drop fluid/host
fluid). These parameters are asserted in the deformation
characteristic function Φ(σ̃, ε̃, μ̃) (μ̃ = μi/μo being the vis-
cosity ratio), and the interfacial tangential velocity uθi

,
which are used to determine the senses of drop deforma-
tion and fluid flow circulation, respectively [8–10]. The ex-
pected shape of the drop and the flow pattern are typically
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presented by the so-called deformation-circulation map
(see fig. 2), which is constructed by plotting the zero-
deformation curve Φ = 0 and the zero-circulation line
uθi

= 0 together in a ε̃ − σ̃ coordinate.

While DC electric field provides a robust means for
manipulation of the droplets, in many instances the use
of an AC electric field proves to be more advantageous.
For instance, in experimental studies to characterize the
deformation of a stationary solitary drop, the drop will
move toward one of the electrodes because of electrophore-
sis when it acquires a small net electric charge. The elec-
trophoresis, however, can be eliminated in an AC field by
adjusting the frequency [8]. Another advantage of an AC
field is the possibility of changing the behavior of the fluid
systems from leaky dielectric-leaky dielectric (LD-LD) to
perfect dielectric-perfect dielectric (PD-PD) by adjusting
the field frequency.

Despite the proven impact and potential applications
of AC electric fields in manipulation of droplets, the num-
ber of studies in this regard are much more limited than
those of the DC fields. In this paper, our focus is on the an-
alytical solution of the problem. As such, we only refer to
relevant studies in this context. Here the theoretical foun-
dation of the problem was first laid out by Torza et al. [8],
who considered a liquid drop, immersed in the pool of an-
other liquid of infinite extension and exposed to an electric
field strength of the form Eext(t) = E0k̂ cos ωt, k̂ being the
unit vector in the field direction. The authors solved the
axisymmetric creeping flow equations in conjunction with
Laplace equation for the electric potential. In doing so,
they ignored the convective term ρu ·∇u and the local ac-
celeration term ρ∂u/∂t in the momentum equation. Thus,
they were able to find a closed form analytical solution
for the problem. For ω = 0, the mean (time-independent)
drop deformation Dm converged to that of Taylor’s [4]
steady-state solution Dm in a root-mean-square (rms)
sense; i.e., if the strength of the electric field in the DC
field E0 were replaced with Erms = E0/

√
2 of the AC

field. On the other hand, in the limit of ω → ∞, the mean
deformation Dm converged to that of steady-state solu-
tion of Allan and Mason [11] concerning a perfect dielec-
tric liquid drop in a perfect dielectric liquid (PD-PD) in
a DC electric field, in an rms sense. This is conceivable,
since at high frequency the time scale of charge migra-
tion from the fluids bulk to the surface ε/σ is much larger
than the time scale of the change of the polarity of the
electrodes 1/ω, and therefore, the fluid system behaves as
a perfect dielectric. By inspection of the time-independent
component of the interfacial electric shear stress [[τe

rθ]]m,
the authors showed that the sense of the mean flow circu-
lation around the drop is set by the sign of ε̃− σ̃; i.e., for
fluid systems where ε̃ > σ̃, the mean flow will be from the
equator to the poles, and the flow circulation will be in the
opposite direction for fluid systems for which ε̃ < σ̃. The
authors also determined the range of fluid property ra-
tios (σ̃, ε̃, μ̃) and frequencies (ω) for which the mean drop
shape Dm would be oblate, prolate, or spherical, by ex-
amining the sign of the mean deformation characteristic
function Φm = f(σ̃, ε̃, μ̃;ω). Accordingly, with respect to

an AC electric field, they categorized the fluid systems to
three different classes (or regions) on the basis of their
senses of mean flow circulation and mean deformation.

Sozou [12] followed Torza, Cox, and Mason’s study
by improving their solution, accounting for the local ac-
celeration term ρ∂u/∂t in the momentum equation. He
showed that overlooking this term for fluids of low vis-
cosity or fields of high frequency can lead to inaccurate
results, qualitatively and quantitatively. In other words,
the local acceleration term can be safely ignored only if
Reω = ρωa2/μ � 1, where Reω is the Reynolds num-
ber based on the velocity scale us = 2aω, and a is the
drop radius. Unfortunately, not much insight can be dis-
cerned from Sozou’s study since the solution is not in a
closed form and the results are pertained to two fluid sys-
tems only. Not many theoretical studies seem to have been
performed about this problem in the intervening period
between the publication of Sozou’s work and the turn of
the century. In recent years, however, there has been a
resurgence of interest on the subject, driven mostly by its
potential applications in microfluidics and biofluidics; see,
for example, ref. [13], and the references therein.

The goal of this study is to explore the evolution of
the flow field in and around a liquid drop under a uniform
AC electric field of small strength, using a simple-closed
form analytical solution. We are motivated by the fact that
the electrohydrodynamic-driven flow finds relevance in a
host of applications, such as enhancement of mixing by
chaotic advection [14–17] and heat transfer enhancement
by convection [18]. Surprisingly, with the exception of a
recent numerical study by ref. [19] in the context of a two-
dimensional drop, neither the structure of the flow field
nor its evolution under an AC electric field has been stud-
ied so far, and this in turn, has led to some misconception.
Ward and Homsy [14], for instance, in their experimental
and theoretical study of enhancement of chaotic mixing
considered the flow pattern inside the drop in an AC field
to be the same as that in a steady-state DC field, with the
only difference between the two being the strength of the
flow field to be time-periodic in the former. This is, how-
ever, not true, as will be seen later in this study. Indeed,
whereas the steady-state flow pattern in a liquid drop in
a DC electric field comprises of four counter-rotating vor-
tices (in the plane of symmetry), the flow pattern inside
the drop in an AC electric field evolves continuously and
at times comprises open-ended streamlines that cross the
drop. To this end, we build on Torza et al. solution [8]
and solve creeping flow equations, ignoring the convective
and the acceleration terms. However, there are two main
differences between our work and that of those authors.
First, we account for the transient evolution of the flow
field toward the time-periodic state. As will be shown in
the result section, the transient time can be rather long for
some choices of input parameters. Second, these authors
derived the solution as a superposition of the flow driven
by the electric shear stress and that due to the electric
normal stress, and while their overall solution is correct,
this is not the case for the two superimposed solutions.
This issue is rectified here and discussed. We also pro-
vide a formalism for this problem using scaling arguments,
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which show how the simplified equations are related to the
original ones. Torza et al., on the other hand, explored the
validity of their results posteriorly by comparison of the
magnitude of the terms that they ignored at the outset
with those that they retained, using their solution. The
closed form analytical solution presented here, will provide
a theoretical basis for the interpretation of the numerical
and experimental results of the problem.

The organization of the paper is as follows. In sect. 2
we discuss the problem statement, including the governing
equations. In sects. 3, 4 the solution of the electric field and
momentum equations are presented. Sections 5–7 deal,
respectively, with the construction of the deformation-
circulation map, the summary of our solution, and the
difference between our solution and that of Torza et al. [8].
Section 8 contains the results, in which we explore the gen-
eral features of the problem in terms of the deformation
and fluid flow. In sect. 9 we discuss the relevance of the
results to microfluidic applications. Finally in sect. 10 we
conclude with a discussion of the new findings.

2 Problem formulation

The definition sketch of the problem is shown in fig. 1,
depicting a liquid drop of radius a suspended in another
liquid, and exposed to a uniform alternating electric field
far away from the drop

Eext = E0 cos ωt, (1)

where ω = 2πν is the angular field frequency [rad/s], and
ν is the ordinary frequency [Hz]. The fluids are incom-
pressible, immiscible, and Newtonian, and the governing
equations of the problem are mass and momentum con-
servation equations and the electric field equations.

We use Taylor-Melcher leaky dielectric model to ac-
count for the electrohydrodynamic force in the momentum
equation. In this model, the fluids are assumed to have
finite electric conductivity in order to allow for accumula-
tion of free electric charge at the interface. The action of
the electric field on the surface charge leads to interfacial
normal and tangential electric stresses. The formalism of
the leaky dielectric model was introduced by Taylor and
Melcher [5,6,20], but it was brought to perfection by Sav-
ille [7] through the use of electrokinetic equations and scal-
ing arguments. Briefly, using scaling arguments, Saville as-
serted that in the absence of an external magnetic filed the
magnetic effect can be ignored completely at a millimeter
length scale, since the characteristic time of the electro-
static phenomenon τC = ε/σ is much larger than that of
the magnetic phenomenon τM = μσ�2; ε, σ, and μ being,
respectively, the electric permittivity, the electric conduc-
tivity, and the magnetic permeability. Thus, the Faraday’s
law ∂B/∂t + ∇× E = 0 can be simplified to ∇× E = 0,
which suggests E = −∇φ, where φ is the electric poten-
tial. He further showed that at a millimeter length scale
(� = 10−3 m) the fluids are electrically neutral (i.e., no
free electric charge in the bulk) by considering the equa-
tion of conservation of volume charge qv in nondimensional

Fig. 1. The problem setup, depicting a liquid drop in a pool
of another liquid.

form, in terms of the concentration of anions, cations,
and neutral species, and properties of a common liquid
(ρ = 103 kg/m3, μ = 1Pa · s, σ = 10−9 S/m, ε = 4ε0 F/m)
in an electric field strength of E0 = 105 V/m. Assuming
further that the convective effects are weak, the (volume)
charge conservation equation is simplified to ∇ · σE = 0,
or in terms of electric potential ∇ · σ∇φ = 0, where for
uniform electric conductivity this equation can be written
as

∇2φi,o(r, θ, t) = 0 (2)

for the fluids inside and outside,

∇2 =
1
r2

∂

∂r

(

r2 ∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

being the Laplacian in spherical coordinates.
Equation (2) should be supplemented by the conser-

vation of surface charge qs equation. Torza et al. [8] used
the following equation:

∂qs

∂t
−

[[

σ
∂φ

∂n

]]

= 0 (3)

at the outset and then evaluated the range of its appli-
cability posteriorly by evaluation of the terms that they
eliminated from the original equation, using their solu-
tion. Here the double bracket denotes jump in the quan-
tity inside the bracket across the interface (outside minus
inside). To explore the conditions under which the surface
charge conservation equation can be simplified, we start
with the most general form of this equation [21]

∂qs

∂t
+un∇·(qsn)+∇s ·(σfEs + usqs)−

[[

σ
∂φ

∂n

]]

= 0, (4)

where un and us are the normal and the tangential com-
ponents of the velocity field at the drop surface, Es is the
electric field strength at the drop surface, ∇s = ∇−nn ·∇
is the surface divergence, σf is the surface conductance,
and ∂/∂n = n · ∇. Here n is a unit vector normal to the
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drop surface. Nondimensionalization of eq. (4), using the
following scales:

lsc = a, usc =
εoE

2
0a

μo
≡ uh, (5a)

tsc = τP , qsc = εoE0, φsc = E0a, σsc = σo, σfsc
, (5b)

as the scales of length, velocity, time, surface charge, elec-
tric potential, conductivity, and surface conductance, re-
spectively, leads to

τC

τP

∂q∗s
∂t∗

+
τC

τF
[u∗

n∇∗ · (q∗sn) + ∇∗
s · (u∗

sq
∗
s )]

+
σfsc

σoa
∇∗

s · (σ∗
fs

E∗
s) −

[

∂φ∗
o

∂n∗ − σ∗ ∂φ∗
i

∂n∗

]

= 0. (6)

In eq. (6), σ∗ = σi/σo is the conductivity ratio, τC = εo/σo

is the time scale of charge relaxation from the bulk to
the fluid interface, τF = a/uh is the time scale of charge
convection, and τP is the process time of the interest.
τP can be considered as the time scale of electric field
oscillation τP = 1/ω or the time scale of drop defor-
mation τP = μoa/γ, in which the drop relaxes to its
mean (time-independent) deformation. Thus, τC/τP =
{Π = εoω/σo, Sa = εoγ/σoμoa}, Π and Sa being the
Pi and Saville numbers, respectively. The first choice,
τC/τP = Π, is relevant for evaluation of eq. (6) in the
quasi-steady state (time-periodic stage), while the second
choice, τC/τP = Sa is relevant for the transient stage,
which precedes the time-periodic stage. As can be inferred
from eq. (6), the last bracket should be always accounted
for. The contribution of the first term should be taken
into account if τC/τP ≡ {Π,Sa} is not too large or too
small. If Π � 1 or Sa � 1, the first term can be ig-
nored. On the other hand, if Π � 1 or Sa � 1, only the
first term will survive, suggesting that the fluid system
behaves as a perfect dielectric system. The first bracket
couples the electric field equation to the fluid flow equa-
tion. For creeping flows, this term can be easily ignored,
since τC/τF � 1 represents the ratio of the time scale
of charge relaxation to the time scale of charge convec-
tion. This ratio is called the electric Reynolds number,
Reel = εouh/σoa. The fourth term does not lead to a cou-
pling of the electric field and fluid flow equations. How-
ever, it can make the analytical derivations more tedious.
Furthermore, not much information seems to be available
regarding the magnitude of the surface conductance σf .
This term can be ignored if σfsc

/σoa � 1. In summary,
assuming

τC

τP
=

εoω

σo
≡ Π = O(1),

τC

τP
=

εoγ

μoaσo
≡ Sa = O(1),

τC

τF
=

εouh

σoa
≡ Reel � 1,

σfsc

σoa
� 1, (7)

leads to eq. (3).
In passing it is worth mentioning that Torza et al. in

their posteriori analysis of the effect of the surface con-
ductance (which appears in eq. (4)) pointed out that ac-
counting for this term would lead to an increase of the

algebraic value of the (surface) charges facing the nega-
tive electrode and a decrease of those facing the positive
electrode. Hence, it would lead to an increase in the mean
deformation Dm. Accordingly, they concluded that the ef-
fect of the surface conductance was analogous to that of
increasing the conductivity of the drop. The authors did
not comment on the effect of the charge convection on the
results. However, Feng [22], who studied this effect in the
context of DC electric fields, showed that the main effect
of charge convection is to reduce the interfacial velocity,
leading to oblate drops to deform less but prolate drops to
deform more. We believe a similar comment can be made
regarding the mean deformation of a drop in AC fields.

The momentum equation for both fluids is

ρ

(

∂u
∂t

+ u · ∇u
)

= −∇p + μ∇2 u, (8)

where the electrohydrodynamic (EHD) force does not ap-
pear in this equation because it is confined to the inter-
face. Nondimensionalization of eq. (8), considering ls = a,
ts = τP , us = uh, ps = εoE

2
0 as scales of the length, time,

velocity, and pressure, leads to

τdiff

τP
ρ∗

∂u∗

∂t∗
+ Refu∗ · ∇∗u∗ = −∇∗p∗ + μ∗∇∗2 u∗. (9)

Here ρ∗ = ρi/ρo, μ∗ = μi/μo in the inside and ρ∗ = 1,
μ∗ = 1 in the outside. τdiff = a2/νo is the time scale
of momentum diffusion, where νo = μo/ρo, and Ref =
ρoauh/μo is the fluid Reynolds number. Again, considering
the process time of interest to be the time scale of electric
field oscillation τP = 1/ω or the time scale of drop defor-
mation τP = μoa/γ leads to τdiff/τP ≡ Reω = a2ω/νo

or τdiff/τP ≡ Oh−2 = ρoγa/μ2
o, respectively, where Reω

is the Reynolds number based on the electric field ve-
locity scale and Oh is the Ohnesorge number. Assuming
τdiff/τP � 1, the first term can be ignored, provided
ρi/ρo = O(1). For creeping flows, Ref = ρousa/μo � 1,
and thus, the second term can be also ignored, leading to

−∇p + μ∇2 u = 0, (10)

provided μi/μo = O(1). Equation (10), in conjunction
with the mass conservation equation (∇ · u = 0), yields

D4ψi,o = 0, (11)

where ψ in the streamfunction, which is related to the
velocity field by

ur =
1

r2 sin θ

∂ψ

∂θ
, uθ = − 1

r sin θ

∂ψ

∂r
,

D4 = D2(D2), where

D2 =
∂2

∂r2
+

sin θ

r2

∂

∂θ

(

1
sin θ

∂

∂θ

)

resembles the Laplacian.
In addition to the nondimensional numbers considered

so far, the capillary numbers based on the electrohydro-
dynamic velocity scale Caf = μouh/γ and the oscillatory
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hydrodynamic stress Caω = μouω/γ, where uω = aω,
also come to the picture. For the problem at hand, where
we assume that the interface remains nearly spherical,
the fluid flow-based capillary number should be small,
Caf � 1. However, no restriction needs to be imposed
on the electric-based capillary number Caω. In summary,
the governing nondimensional parameters of the problem,
without any restrictions, are

Caω =
μoωa

γ
, Π =

εoω

σo
, σ̃ =

σi

σo
, ε̃ =

εi

εo
, (12)

while

Caf =
μouh

γ
� 1, Ref =

ρoauh

μo
� 1, Reel =

εouh

σoa
� 1,

(13a)

Oh2 =
μ2

o

ρoaγ
� 1, Reω =

a2ω

νo
� 1, (13b)

σfsc

σoa
� 1, μ̃ =

μi

μo
= O(1), ρ̃ =

ρi

ρo
= O(1) (13c)

are the nondimensional numbers that have some restric-
tions. Notice that Π is considered without a restriction
since in the limit of Π � 1 the solution converges to that
corresponding to a steady-state DC field, while for Π � 1
the fluid system behaves as perfect dielectric.

3 Solution of the electric potential equation

To find the electric potential fields inside and outside of
the drop, eq. (2) should be solved subject to the following
boundary and jump conditions:

i) The electric field strength far away from the drop con-
verges to the unperturbed external field Eext. This
translates to φo(∞, θ, t) ∼ E0r cos θ cos ωt, in terms
of φ.

ii) The electric potential inside the drop should remain
finite; φi(0, θ, t) should be bounded.

iii) The jump in the normal (radial) component of the
electric displacement Dr = εEr at the drop surface is
equal to the surface charge density; qs = εoEro

−εiEri
,

or in terms of φ, qs = εi∂φi/∂r − εo∂φo/∂r.
iv) Continuity of the electric potential at the drop surface,

φi(a, θ, t) = φo(a, θ, t).
v) Conservation of the surface charge, eq. (3).

Since eq. (2) and its boundary and jump condi-
tions are linear, we use “the method of complex vari-
ables”, by seeking the solution of ∇2φ′ = 0, where
φ′(r, θ, t) = φ∗(r, θ)eiωt is a complex potential whose
real part φ = Re(φ′) constitutes the solution, φ∗ be-
ing the time-independent complex potential. Similarly, we
consider Eexe = Re(E′

exe), where E′
exe = E0e

iωt, and
qs = Re(q′s), where q′s(r, θ, t) = q∗s (r, θ)eiωt. Accordingly,
eq. (2) will be converted to ∇2φ∗

i,o = 0, and the bound-
ary and jump conditions will be in terms of the complex
potentials, φ∗

i and φ∗
o. Once the solutions of φ∗

i and φ∗
o

are found, the electric potentials inside and outside are
determined to be

φi = 3E0r cos θ Re(A∗eiωt), (14a)

φo = E0r cos θ Re
{[

1 + (3A∗ − 1)
(a

r

)3
]

eiωt

}

, (14b)

where
A∗ =

1 + iΠ

(σ̃ + 2) + iΠ(ε̃ + 2)
. (15)

The electric field can be readily found from E = −∇φ,
leading to

Ei = 3E0

√

a2
i + b2

i

Λ
cos(ωt − αEi

), (16a)

ai = (σ̃ + 2) + Π2(ε̃ + 2), bi = Π(ε̃ − σ̃),

αEi
= tan−1

(

bi

ai

)

, (16b)

Λ = (σ̃ + 2)2 + Π2(ε̃ + 2)2, (16c)

and

Eo = Eext −
√

a2
o + b2

o

Λ

[

E0

(a

r

)3

− 3(E0 · r)ra3

r5

]

× cos(ωt − αEo
), (17a)

ao = (σ̃2 + σ̃ − 2) − Π2(ε̃2 + ε̃ − 2),

bo = 3Π(σ̃ − ε̃), αEo
= tan−1

(

bo

ao

)

. (17b)

The electric field inside the drop Ei is uniform and has
a phase lag of αEi

with respect to the imposed electric
field Eext. Equation (17) suggests that the electric field
in the ambient Eo comprises of the imposed electric field
Eext and an electric dipole at the center of the drop whose
dipole moment will be colinear with or anti-parallel to the
external field, depending on the interplay of the conductiv-
ity and permittivity ratios and the instantaneous direction
of Eext.

3.1 Free electric charge at the interface

The free surface charge at the interface is found from qs =
(εi∂φi/∂r − εo∂φo/∂r)|r=a, using eq. (14). This yields

qs =
3εoE0(ε̃ − σ̃)√

Λ
cos θ cos(ωt − αq), (18a)

αq = tan−1

(

Π(ε̃ + 2)
σ̃ + 2

)

; 0 ≤ αq ≤ π/2, (18b)

Equation (18) suggests that the distribution of the free
charge on the interface depends on the amplitude of the
unperturbed electric field E0 and the relative magnitude
of σ̃ and ε̃. Furthermore, the net free surface charge at a
given time is zero,

∫

qsdA = 0, A being the surface of the
drop. Compared to the applied external field, the charge
has a time lag. For ω(Π) = 0, eq. (18) converges to that for
a uniform DC electric field [23]. For ω(Π) → ∞, qs = 0,
since the fluid system behaves as a perfect dielectric.
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3.2 The net interfacial electric stresses

The interfacial tangential and normal electric stresses are
the drivers behind the fluid flow circulation and interface
deformation, respectively. To calculate these terms, the
electric stresses must be evaluated first using the Maxwell
stress tensor, τM = εEE − (1/2)εE · EI. Accordingly, the
jump in the normal and tangential electric stresses are

[[τe
rr]] =

1
2
εo

[

E2
ro

− ε̃E2
ri
− (1 − ε̃)E2

θ

]

, (19a)

[[τe
rθ]] = εoEθ (Ero

− ε̃Eri
) , (19b)

where Eθi
= Eθo

≡ Eθ, and for a physical parameter such
as Q, the jump is defined as

[[Q]] = Qo − Qi. (20)

The net interfacial electric stresses will comprise a mean
(time-independent) and a time-periodic component

[[τe
rr]] = [[τe

rr]]m + [[τe
rr]]tp, (21a)

[[τe
rθ]] = [[τe

rθ]]m + [[τe
rθ]]tp. (21b)

Identification of these components will facilitate the anal-
ysis of the problem. To proceed, we use eq. (14) and
Ei,o = −∇φi,o to evaluate the electric field at the inter-
face, leading to

Eri
= −3E0 cos θ Re(A∗eiωt), (22a)

Eθi
= Eθo

≡ Eθ = 3E0 sin θ Re(A∗eiωt), (22b)

Ero
= 3E0 cos θ Re[(2A∗ − 1)eiωt]. (22c)

Substitution for Er and Eθ from eq. (22) in eq. (19) re-
sults in the net normal electric stress (it is also called the
electric pressure)

[[τe
rr]]m =

9εoE
2
0

4Λ

{[

(σ̃2 − 2ε̃ + 1) + Π2(ε̃ − 1)2
]

cos2 θ

+
[

(ε̃ − 1)(Π2 + 1)
]}

, (23a)

[[τe
rr]]tp =

9εoE
2
0

4
Re(F ∗

r e2iωt) cos2 θ +
9εoE

2
0

8
(ε̃ − 1)

×
[

A∗2e2iωt + Ā∗2
e−2iωt

]

, (23b)

and the net tangential electric stress

[[τe
rθ]]m =

9εoE
2
0(ε̃ − σ̃)
4Λ

sin 2θ, (24a)

[[τe
rθ]]tp =

9εoE
2
0(ε̃ − σ̃)
4

Re(F ∗
θ e2iωt) sin 2θ, (24b)

where

F ∗
r = A∗2(5 − 2ε̃) − 4A∗ + 1, (25a)

F ∗
θ =

1 + iΠ

[(σ̃ + 2) + iΠ(ε̃ + 2)]2
. (25b)

In passing, it is to be noted that Torza et al. [8] reported
F ∗

r = A∗2(5− 2ε̃)− 2A∗ +1, due to a typographical error.

4 Solution of the momentum equation

Since the net normal and tangential electric stresses, which
are the driving forces of this problem, comprises mean and
time-periodic components, the streamfunction ψ(r, θ, t)
will have a time-exponential ψte (see ref. [24]) and a
time-periodic ψtp component, respectively. To facilitate
the analysis of the results, it will be beneficial to decom-
pose the solution based on these components. The time-
periodic solution, however, can be further decomposed
in terms of the tangential and normal electric stresses;
ψtp = ψtp

T + ψtp
N . Accordingly, we consider a solution of

the form

ψi = ψte
i + ψtp

iT
+ ψtp

iN
, (26a)

ψo = ψte
o + ψtp

oT
+ ψtp

oN
, (26b)

for the streamfunction, and of the form

ui = ute
i + utp

iT
+ utp

iN
, (27a)

uo = ute
o + utp

oT
+ utp

oN
, (27b)

for the velocity field. Similarly, the jumps in the hydrody-
namic stresses and pressure, which come into the picture
in the momentum jump conditions, are written as

[[S]] = [[S]]te + [[S]]Ttp + [[S]]Ntp, (28)

where S = {τh
rr, τ

h
rθ, p}. Note that [[S]]te is due to the mean

net electric stresses, [[τe
rr]]m and [[τe

rθ]]m, while [[S]]Ttp and
[[S]]Ntp are due to time-periodic net shear and normal elec-
tric stresses, [[τe

rθ]]tp and [[τe
rr]]tp, respectively.

The formal solution of the streamfunction ψ, account-
ing for the fact that the velocity field inside the drop
should be finite and that it will diminish far away from
the drop, reads

ψi = (Air
3 + Bir

5) sin2 θ cos θ, (29a)
ψo = (Aor

−2 + Bo) sin2 θ cos θ, (29b)

where Ai,o(t) and Bi,o(t) are four unknown coefficients
that are determined by the interfacial jump condition. In
the course of the solution, we also need to account for the
drop deformation. For slightly deformed drops, the defor-
mation is typically defined as D = (zmax − rmax)/(zmax +
rmax), where zmax and rmax are the end-to-end length of
the drop in the direction of electric field and the maxi-
mum breadth in the transverse direction, respectively. In
a manner similar to the decomposition of the streamfunc-
tion, the total deformation is written as

D = Dte + DT
tp + DN

tp, (30)

where Dte is the time-exponential component of the de-
formation, which is due to [[τe

rr]]m and [[τe
rθ]]m, DT

tp is due
to [[τe

rθ]]tp, and Dtp
N is due to [[τe

rr]]tp.
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4.1 Fluid flow and drop deformation due to the mean
net normal and tangential electric stresses, [[τ e

rr]]m and
[[τ e

rθ]]m

The detail of the solution is given in appendix A. Here the
streamfunction is

ψte
i =

{

a2Um

[

( r

a

)3

−
( r

a

)5
]

+ a2Ute

[

(16μ̃ + 19)
( r

a

)3

−3(2μ̃ + 3)
( r

a

)5
]}

sin2 θ cos θ, (31a)

ψte
o =

{

a2Um

[

(a

r

)2

− 1
]

+ a2Ute

[

− 3(3μ̃ + 2)
(a

r

)2

+(19μ̃ + 16)
]}

sin2 θ cos θ, (31b)

where

Um =
9uh(ε̃ − σ̃)
20(μ̃ + 1)Λ

(32)

is the maximum velocity in the mean flow (i.e., t → ∞),
uh = εoE

2
0a/μo being the electrohydrodynamic velocity

scale, and

Ute =
3
4

uh

(19μ̃ + 16)(2μ̃ + 3)
Φm exp

(

− t

τ

)

(33)

is the maximum time-exponential velocity. As is evident,
eq. (31) consists of two parts; a mean (time-independent)
part (the first bracket), and a transient time-exponentially
decaying part (the second bracket). For ω = 0 and t → ∞,
eq. (31) converges to that of Taylor’s solution for a drop
in a DC electric field.

The time-exponential drop deformation is

Dte = Dm [1 − exp(−t/τ)] , (34)

where

Dm =
9
32

CafΦm, (35a)

Φm = 1 − 15(μ̃ + 1) + σ̃(11μ̃ + 14)
5(μ̃ + 1)Λ

− ε̃(19μ̃ + 16) + 15Π2(μ̃ + 1)(2ε̃ + 1)
5(μ̃ + 1)Λ

, (35b)

τ =
aμo

γ

(19μ̃ + 16)(2μ̃ + 3)
40(μ̃ + 1)

. (35c)

In eq. (35), Dm is the mean (time-independent) deforma-
tion (i.e., t → ∞), Φm is the associated deformation char-
acteristic function, and τ is the relaxation time toward the
mean deformation. Φm determines the sense of mean drop
deformation; for Φm > 0 the drop elongate in the direction
of the field, becoming a prolate, for Φm < 0 it elongates
in the direction perpendicular to the field, becoming an
oblate, and for Φm = 0 it remains spherical. We note that
the relaxation time τ here is the same as that for a drop
in a DC electric field under Oh2 � 1 and Caf � 1, per
ref. [24].

For comparison, we also report the drop deformation
in a steady-state DC electric field for a leaky dielectric
fluid system

D0 =
9
16

CafΦ0, (36a)

Φ0 =
1

(σ̃ + 2)2

(

σ̃2 + 1 − 2ε̃ +
3
5

3μ̃ + 2
μ̃ + 1

(σ̃ − ε̃)
)

, (36b)

and a perfect dielectric (PD) fluid system

D0P D
=

9
16

CafΦ0P D
, (37a)

Φ0P D
=

(

ε̃ − 2
ε̃ + 2

)2

. (37b)

For ω = 0, Φm = Φ0 and the mean deformation Dm will
be the same as the deformation in the DC electric field D0

for leaky dielectric fluid systems, provided Erms = E0/
√

2
is used in lieu of E0 in calculation of Caf = εoE

2
0a/γ in

the DC electric field. Similarly, for ω → ∞, Φm = Φ0P D

and the mean deformation Dm will be the same as the
deformation in the DC electric field D0P D

for a perfect
dielectric system, provided Erms = E0/

√
2 is used in lieu

of E0 in calculation of Caf = εoE
2
0a/γ in the DC electric

field.

4.2 Fluid flow and drop deformation due to the
time-periodic net tangential electric stress, [[τ e

rθ]]tp
We refer to the drop deformation and the velocity field
due to [[τe

rθ]]tp as the shear stress-driven deformation and
flow, respectively. The detail of the solution is given in
appendix B. Here the streamfunction is

ψtp
iT

=
{

a2U tp
T1

[

( r

a

)3

−
( r

a

)5
]

+a2U tp
T2

[

(16μ̃+19)
( r

a

)3

−3(2μ̃ + 3)
( r

a

)5
]}

sin2 θ cos θ, (38a)

ψtp
oT

=
{

a2U tp
T1

[

(a

r

)2

− 1
]

+ a2U tp
T2

[

− 3(3μ̃ + 2)
(a

r

)2

+(19μ̃ + 16)
]}

sin2 θ cos θ, (38b)

where

U tp
T1

=Um

√

Π2 + 1 cos (2ωt − αT1) , 0 ≤ αT1 ≤ π/2,

(39a)

sinαT1 =
Π√

Π2 + 1
(σ̃ + 2)(2ε̃ − σ̃ + 2) + Π2(ε̃ + 2)2

Λ
,

(39b)

cos αT1 =
1√

Π2 + 1
(σ̃ + 2)2 + Π2(ε̃ + 2)(2σ̃ − ε̃ + 2)

Λ
,

(39c)

U tp
T2

=− 3aωCaf

80(μ̃ + 1)
|d∗

T | sin (2ωt + αT2) , (39d)

sinαT2 =
dTI

|d∗T |
, (39e)

cos αT2 =
dTR

|d∗T |
, (39f)
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and the expressions for |d∗
T |, dTI

, and dTR
are given in

appendix B.
Here, the velocity field comprises two components. The

first component (the first bracket) is the flow driven by the
net hydrodynamic shear stress [[τh

rθ]]
T

tp, which does not lead
to the drop deformation, while the second component is
the flow driven by the net hydrodynamic normal stress
[[τh

rr]]
T

tp − [[p]]Ttp ≡ [[σh
rr]]

T

tp, which leads to the deformation.
The drop deformation is found from Dtp

T =
Re(Dtp

T

∗
e2iωt), where Dtp

T

∗
= (9/32)Cafd∗T . This yields

Dtp
T =

9
32

CafΦtp
T , (40a)

Φtp
T = |d∗T | cos (2ωt + αT2) , (40b)

where Φtp
T is the characteristic function that determines

the instantaneous sense of the drop deformation due to
the time-periodic net electric shear stress [[τe

rθ]]tp. It is to
be noted that

|U tp
T2
| ∼

∣

∣

∣

∣

∣

∂Dtp
T

∂t

∣

∣

∣

∣

∣

.

Thus, when the rate of the deformation is zero (at the
minimum and maximum points of the Dtp

T -t curve), the
second bracket in eq. (38) is zero.

4.3 Fluid flow and drop deformation due to the
time-periodic net normal electric stress, [[τ e

rr]]tp

We refer to the drop deformation and the velocity field
due to [[τe

rr]]tp as the normal stress-driven deformation and
flow, respectively. The detail of the solution is given in
appendix C. Here the streamfunction is

ψtp
iN

= a2U tp
N

[

(16μ̃ + 19)
( r

a

)3

− 3(2μ̃ + 3)
( r

a

)5
]

× sin2 θ cos θ, (41a)

ψtp
oN

= a2U tp
N

[

−3(3μ̃ + 2)
(a

r

)2

+ (19μ̃ + 16)
]

× sin2 θ cos θ, (41b)

U tp
N = − 3aωCaf

80(μ̃ + 1)
|d∗

N | sin (2ωt + αN ) , (41c)

sin αN =
dNI

|d∗N | , (41d)

cos αN =
dNR

|d∗N | , (41e)

and the expressions for |d∗N |, dNI
, and dNR

are given in
appendix C.

The drop deformation is found using Dtp
N =

Re(Dtp
N

∗
e2iωt), where Dtp

N

∗
= (9/32)Cafd∗N . This yields

Dtp
N =

9
32

CafΦtp
N , (42a)

Φtp
N = |d∗N | cos (2ωt + αN ) , (42b)

where Φtp
N is the characteristic function, which determines

the instantaneous sense of the drop deformation due to
the time-periodic net normal electric stress [[τe

rr]]tp. It is
to be noted that

|U tp
N | ∼

∣

∣

∣

∣

∣

∂Dtp
N

∂t

∣

∣

∣

∣

∣

.

Thus, when the rate of the deformation is zero, ψtp
N = 0.

5 The deformation-circulation map

The mean (time-independent) deformation Dm is char-
acterized by the EHD capillary number Caf and the
deformation characteristic function Φm. The parameters
that control the latter are σ̃ = σi/σo, ε̃ = εi/εo, and
Π = εoω/σo. The sign of Φm determines the sense of the
mean deformation. For Φm > 0 the drop becomes prolate,
for Φm < 0 it becomes oblate, and for Φm = 0 it remains
spherical. When Φm = 0, the mean drop shape is spherical
regardless of the field. In that case, the drop will oscillate
about a spherical shape. Setting Φm = 0 in eq. (35b) leads
to a critical frequency

ωcr =
σo

εo

√

ε̃(19μ̃+16)−5(μ̃+1)−3σ̃(3μ̃+2)−5σ̃2(μ̃ + 1)
|ε̃ − 1|σ̃

√

5(μ̃ + 1)
(43)

at which the drop remains spherical. The existence of the
critical frequency implies that the sense of mean defor-
mation (oblate vs. prolate) will switch at this frequency.
The critical frequency, however, exists for a certain class of
fluid systems only; the one for which the expression under
the square root in the numerator of eq. (43) is positive;
i.e.,

ε̃ ≥ σ̃ +
5(μ̃ + 1)(σ̃ − 1)2

19μ̃ + 16
. (44)

It is insightful to recast eq. (43) in the following form:

ωcr =
σo

εo

√

−(σ̃ + 2)2Φ0

|ε̃ − 1|σ̃
√

5(μ̃ + 1)
, (45)

which suggests that in fluid systems in which the drop de-
forms to an oblate (Φ0 < 0) under a uniform DC electric
field (ω = 0), the drop may deform to an oblate (Φm < 0)
or a prolate (Φm > 0) in a uniform AC field, depending on
the field frequency ω. It can also be inferred that Φ0 = 0,
results in Φm = 0. Examination of eq. (35) shows that for
σ̃ > ε̃, ∂Φm/∂ω < 0, while the opposite holds for σ̃ < ε̃.
Since Dm and Φm have the same sign, the same can be
said regarding the sign of ∂Dm/∂ω. From eq. (32) it is seen
that when ε̃ = σ̃, then Um = 0, and therefore, the mean
flow will be null. In this context, the ε̃ = σ̃ line is called
the zero-circulation line. In a ε̃− σ̃ coordinate, the Φ0 = 0
curve and the ε̃ = σ̃ line are tangent to each other and
divide the plane into three regions, each characterizing a
class of fluid systems with common sense of mean defor-
mation and mean fluid flow circulation. This is illustrated
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Fig. 2. The deformation-circulation map along with the schematics of the modes of mean (time-independent) deformation and
mean flow pattern. The coordinates of the fluid systems A–C are, respectively, eε = 0.44, eσ = 0.033 (triangle), eε = 0.2, eσ = 0.1
(square), and eε = 2.2727, eσ = 30 (circle).

in fig. 2 and summarized below:

region I: ε̃ ≥ σ̃ +
5(μ̃ + 1)(σ̃ − 1)2

19μ̃ + 16
, ∂Dm/∂ω > 0,

{

Dm ≤ 0, if ω ≤ ωcr,

Dm > 0, if ω > ωcr;
(46a)

region II: σ̃ < ε̃ < σ̃ +
5(μ̃ + 1)(σ̃ − 1)2

19μ̃ + 16
,

∂Dm/∂ω > 0, Dm > 0; (46b)
region III: σ̃ ≥ ε̃, ∂Dm/∂ω ≤ 0, Dm ≥ 0. (46c)

6 Summary of the solution

The overall streamfunction is found from substitution
of the time-exponential and the time-periodic shear
stress- and normal stress-driven streamfunctions, using
eqs. (31), (38), and (41), in eq. (26).

The overall deformation is found from superposi-
tion of the time-exponential and the time-periodic shear
stress- and normal stress-driven deformations, using
eqs. (34), (40), (42), leading to

D = Dte + Dtp =
9
32

CafΦ, (47a)

Dtp = Dtp
T + Dtp

N =
9
32

CafΦtp, (47b)

Φ = Φm[1 − exp(−t/τ)] + Φtp, (47c)

where

Φtp = Φtp
T + Φtp

N = |d∗| cos (2ωt + αTN ) , (48a)

d∗ = dR + idI , |d∗| =
√

d2
R + d2

I , (48b)

cos αTN =
dR

|d∗| , sin αTN =
dI

|d∗| , (48c)

dR =
dNR1

+dNR2
+dNR3

−dNR4
+dTR1

−dTR2

Λ2(1 + Ca2
ωλ2

2)
, (48d)

dI =−
dNI1

+ dNI2
+ dNI3

+ dNI4
+ dTI1

+ dTI2

Λ2(1 + Ca2
ωλ2

2)
, (48e)

and the expressions for the terms comprising dR and dI

are given in appendices B and C.

7 Torza et al. [8] solution

Torza et al. did not account for the transient period. As
such, their solution is valid for times that are sufficiently
larger than the deformation relaxation time. Their decom-
position of the solution based on the drivers of the problem
was exactly the same as that outlined here. Their solution
for the mean component is the same as ours (the first
bracket of eq. (31)), as their jump conditions were the
same as those used in appendix A in the limit of t → ∞.
However, their solutions for the other components differ
from ours. Briefly, for the solution due to [[τe

rθ]]tp, they
used jump conditions I and III in appendix B, while they
used uT

ri
= uT

ro
= 0 in lieu of jump condition II. Thus,

they did not need to find the time-periodic deformation
Dtp

T and could determine the velocity field without using
jump condition IV. Their solution led to the first bracket
in eq. (38). For the solution due to [[τe

rr]]tp, they used jump
conditions I-III in appendix C, but in lieu of jump condi-
tion IV, they used the following jump condition:

[[τe
rr]]tp + [[τh

rr]]
N

tp − [[p]]Ntp + [[τh
rr]]

T

tp − [[p]]Ttp = γκtp.
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This equation accounts for the contribution of the net nor-
mal hydrodynamic stresses (the fourth and fifth terms)
due to the net electric shear stress [[τe

rθ]]tp in the defor-
mation. This led to an equation for the streamfunction
that was formally the same as ours (eq. (41)), except that
|d∗

N | in their version of eq. (41) was replaced with |d∗|
from eq. (48). The time-periodic deformation Dtp

N was also
found as part of this solution. In summary, their stream-
function and deformation, respectively, can be perceived
as

ψ = ψm
︸︷︷︸

First bracket of eq. (31)

+ ψtp
T

︸︷︷︸

First bracket of eq. (38)

+ ψtp
N

︸︷︷︸

Second bracket of eq. (38) plus eq. (41)

, (49a)

D = Dm
︸︷︷︸

eq. (35a)

+ Dtp
T

︸︷︷︸

0

+ Dtp
N

︸︷︷︸

eq. (47b)

. (49b)

The distribution of the electric potential at the drop
surface is of interest as it provides insight on the interfa-
cial electric stresses, which are the driver behind the fluid
flow circulation and interface deformation. As is evident
from eqs. (14)–(17), the ratios of electric conductivities
σ̃ = σi/σo and permittivities ε̃ = εi/εo, and the nondi-
mensional frequency Π = εoω/σo are the key parameters
that affect the structure of φ (E) in the fluids and at the
interface. For ω = 0 and ω → ∞, φ (E) will be only
function of σ̃ and ε̃, respectively [25]. Here we examine
the evolution of φ and E for fluid systems A and C (ta-
ble 1), where fluid system C is the phase-reversed of fluid
system A. These two systems represent fluid systems for
which (σ̃ � 1, ε̃ � O(1)) and (σ̃ � 1, ε̃ � O(1)), respec-
tively. We consider ω = 2 rad/s, resulting in Π = 0.116
for fluid system A, and Π = 0.116 for fluid system C. To
put the results in perspective, the distribution of φ and E
for a DC electric field are shown in fig. 3. For system A,
the external contours in the proximity of the drop bend as
they approach the drop surface before crossing the surface.
The contours inside the drop are horizontal and their con-
centration is higher than that in the rest of the domain,
since σi � σo. For the same reason, the electric field vec-
tors near the drop do not cross the drop; instead, they
turn around it. For system C, the electric potential inside
the drop vanishes and the drop surface becomes a surface
of equipotential. As such, the contourlines near the drop
conform to its shape. Because the net electric stresses are
determined by the field strength across the interface, per
eq. (19), a drop in fluid system A is subjected to a rela-
tively weak electric stress and therefore is deformed less
than the one in fluid system C. Since the net tangential
electric stress, which set the fluid into motion, is deter-
mined by the product of the tangential electric field and
free surface charge, significant EHD-driven flows are ex-
pected to occur in fluid system A in which the more con-
ductive fluid is the continuous phase, compared to fluid
system C.

(a)

(b)

Fig. 3. Contours of electric potential φ and vectors of electric
field strength E for fluid systems A (frame (a)) and C (frame
(b)) in a DC (ω = 0) electric field. The fluid properties are
listed in table 1. Note that fluid system C is the phase-reversed
of fluid system A.

Table 1. Relevant information about the representative fluid
systems used to study the evolution of the electric field and the
velocity field in the three regions of the deformation-circulation
map. System A corresponds to silicon oil (inside) surrounded
by oxidized castor oil (outside), and system C is the phase-
reversed of system A. The properties for systems A and C are
adopted from Torza et al. [8], while system B is conceptual.

Fluid system Region eσ eε eρ eμ

A I 0.033 0.44 1 1.8462

B II 0.1 0.2 1 1

C III 30 2.2727 1 0.5417

8 Results

Figure 4 shows the results for the fluid system A at se-
lected nondimensional (˜t = ωt) times. The structure of φ
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Contours of electric potential φ and vectors of electric field strength E for fluid systems A (table 1) during a half cycle,
ωt = π. The nondimensional times et = ωt are 0, αEi = 0.022, π/2, π/2 + αEi , 0.52π, and π, where αEi is the phase lag of Ei

with respect to Eext, per eq. (16).

and E for frame (a), ˜t = 0, is quite similar to the corre-
sponding ones for the DC electric field (fig. 3(a)). This is
because for the range of the parameters used here, A∗ in
eq. (15), which determines the structure of φ in AC field,
is approximately the same as 1/(σ̃ +2), which determines
the structure of φ in a DC field. Frame (b) corresponds to
˜t = αEi

, where the strength of the internal electric field

|Ei| is maximum, per eq. (16). Here αEi
= 0.022 rad and

the results are essentially the same as those for frame (a),
since the phase lag is very small. We note that if vector
plot of the electric current density J = σE is used in-
stead of E, the contrast between the vectors in the drop
for the two frames will be more pronounced. Frame (c)
corresponds to ˜t = π/2 where the imposed electric field
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Contours of electric potential φ and vectors of electric field strength E for fluid systems C (table 1) during a half cycle,
ωt = π. The nondimensional times et = ωt are 0, π/2 + αEi , π/2, 0.54π, π + αEi , and π, where αEi = −0.78 is the phase
difference between Ei and Eext, per eq. (16).

strength is zero, |Eext| = 0. Here while φ and E are
weak, they are not zero because of their phase lag with
respect to Eext. The direction of electric potential gradi-
ent in the drop is the opposite of those in the ambient
fluid right above and below the drop, in contrast to the
previous frames. As a result, the vectors of electric field
emanate from the northern hemisphere and cross into the

southern hemisphere along circular paths. However, they
do not lead to “closed” counter-rotating vortices. Frame
(d) corresponds to ˜t = αEi

+ π/2 where the strength of
the internal electric field is zero, |Ei| = 0, per eq. (16).
Here since the electric field vanishes in the drop, the drop
surface becomes a surface of equipotential. Thus, the elec-
tric potential contours go around the surface of the drop.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Velocity streamlines at et = 1.0714 for fluid system A under a field of frequency ω = 1 rad/s (Π = 0.0558), using
the present solution. Frames (a) and (b) show the mean and the time-exponentially decaying flows, corresponding to the first
and the second brackets in eq. (31), respectively. Frames (c) and (d) show the shear stress- and normal stress-driven flows,
corresponding to eqs. (38) and (41), respectively. Frame (e) shows the overall flow pattern, excluding the time-exponentially
decaying part, resulting from superposition of frames (a), (c), and (d), and frame (f) shows the overall flow pattern, resulting
from superposition of frames (a)–(d).
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Frame (e) corresponds to ˜t ≈ 0.52π, which is slightly after
the time of frame (d), and for which the strength of the
induced electric dipole is weak, per eq. (17). Here the con-
tour lines are nearly horizontal and the structures of φ and
E resemble the corresponding ones for a uniform electric
field in the absence of the drop. Frame (f) corresponds to
˜t = π = T/2, T being the period of the imposed electric
field Eext. Here the results are similar to those for frames
(a) and (b), except for the fact that the polarities of the
electrodes are now the opposite.

Figure 5 shows the results for the phase-reversed case.
The structures of φ and E for frame (a), ˜t = 0, are
similar to the corresponding ones in fig. 3(b). As before,
this is because here A∗ in eq. (15), which determines the
structure of φ in AC field, is approximately the same as
1/(σ̃ + 2), which determines the structure of φ in a DC
field. Frame (b) corresponds to ˜t = π/2 + αEi

, where
|Ei| = 0, per eq. (16). Here αEi

= −0.78 rad and the
structures of φo and Eo are essentially the same as the cor-
responding ones for frame (a). Frame (c) corresponds to
˜t = π/2, where |Eext| = 0. Again, because of the phase dif-
ference between φ (E) and Eext, the induced electric field
is weak, but not zero. Frame (d) is at ˜t ≈ 0.54π, which is
a time slightly greater than that of the frame (c), and for
which the strength of the induced electric dipole is weak
compared to that of the external electric field, per eq. (17).
Here the structures of φ and E resemble those in the ab-
sence of the drop. Frame (e) corresponds to ˜t = π + αEi

,
where |Ei| is maximum. Here the vectors in the drop are
slightly larger than those in the previous frames, while the
external field is similar to those of the first and the second
frames. Frame (f) corresponds to ˜t = π = T/2, T being
the period of the imposed electric field Eext. Here the re-
sults are similar to those for frames (a) and (b), except
for the fact that the polarities of the electrodes are now
the opposite.

We also explored the effect of ω on the structure of
φ and E by considering frequencies in the range of 100–
1000 rad/s, corresponding to Π = 5.578–55.78 (system A)
and 73.63–736.3 (system C). For both fluid systems, the
structures of φ were similar to their corresponding struc-
tures for ω = 2, with the only difference being that the
external contourlines were less bent. This is typical of
fluid systems where conductivity and permittivity ratio
are both less than or greater than one (which is the case
for fluid systems A and C), since the electric field struc-
ture at both end of the spectra (ω = 0 and ω → ∞) will be
similar. On the other hand, the effect of frequency ω will
be more pronounced for fluid systems for which (σ̃ � 1,
ε̃ � 1) or (σ̃ � 1, ε̃ � 1).

8.1 Fluid flow structure and its evolution

EHD-driven flows in and around a liquid drop find rel-
evance in a host of microfluidic applications, such as
enhancement of fluid mixing and heat transfer by con-
vection [16–18]. As such, a fundamental understanding of
the flow field and its evolution as a function of the key

controlling parameters will be helpful for an optimum de-
sign of the microfluidic devices and their operation. To this
end, we have followed the evolution of the flow field for the
fluid systems listed in table 1 for two different frequencies.
Before attending to those results, however, it will be in-
sightful to examine the structure of the components of the
flow field at a fixed time, using eqs. (31), (38), and (41).
In what follows, we refer to the flow field due to [[τe

rθ]]tp
(eq. (38)) as the shear stress-driven flow, and that due to
[[τe

rr]]tp (eq. (41)) as the normal stress-driven flow.
Figure 6 shows the components of the velocity stream-

lines for fluid system A at ω = 1 rad/s and ˜t = 1.0714.
This fluid system belongs to region I of the deformation-
circulation map. Thus, the external flow associated with
the mean component will run from the poles toward the
equator. The mean drop shape will be oblate (Dm < 0)
since the applied frequency is less than the critical fre-
quency, ωcr = 23.19 rad/s; see eq. (46). Here in analyzing
the results it is helpful to consider fig. 7, which shows
the variations of the components of the deformation, Dte,
Dtp

T , and Dtp
N , with time, and in which we mark the time

(of the analysis) in order to facilitate identification of the
signs of ∂Dte/∂t, ∂Dtp

T /∂t, and ∂Dtp
N /∂t at the same time

as the time of the velocity fields in fig. 6. Frame (a) of
fig. 6 shows the mean flow, which corresponds to the first
bracket in eq. (31). It consists of two toroidal vortices in-
side the drop in the upper and the lower hemispheres,
which are matched by the counterpart vortices in the am-
bient fluid. The cross section of these vortices with the
symmetry plane appears as four counter-rotating circula-
tion regions. No streamline crosses the interface, which is
in accord with the fact that the rate of mean deforma-
tion is null, ∂Dm/∂t = 0. Frame (b) shows the exponen-
tially decaying component, which corresponds to the sec-
ond bracket in eq. (31). Here the streamlines cross into the
drop surface at the poles and exit from the equator, in line
with the sign of ∂|Dte|/∂t > 0, per fig. 7. Frame (c) shows
the shear stress-driven component, which corresponds to
eq. (38). Here the streamlines cross into the drop surface
from the equator and exit from the poles, in line with
the sign of ∂|Dtp

T |/∂t < 0, per fig. 7. Frame (d) shows
the normal stress-driven component, which corresponds
to eq. (41). For this frame, the sense of flow circulation is
the same as that of frame (b) but the opposite of that in
frame (c), since the sign of ∂|Dtp

N |/∂t is the same as the
sign of ∂|Dte|/∂t but the opposite of the sign of ∂|Dtp

T |/∂t.
Frame (e) is the result of superposition of frames (a), (c),
and (d), and frame (f) shows the total velocity field, re-
sulting from the superposition of frames (a)–(d). The over-
all flow comprises closed vortices that cross into the sur-
face, as opposed to open-ended streamlines. Judging by
the sense of circulation of the closed vortices in the overall
velocity field (frame (f)), it can be inferred that the drop
is rebounding at this instant (becoming less oblate), since
the sense of flow circulation favors elongation of the drop
in the direction of the imposed electric field. At this in-
stant, the mean flow (frame (a)), the time-exponentially
decaying flow (frame (b)), and the normal stress-driven
flow (frame (d)) tend to increase the deformation, while
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Fig. 7. Evolution of the components of the deformation versus
nondimensional time ωt for fluid system A and electric field
frequency of ω = 1 rad/s. The vertical line marks the time
that the velocity field is analyzed in figs. 6 and 8.

the shear stress-driven flow (frame (c)) tends to decrease
it. It should be noted that except for the mean and the
transient flows, the sense of circulation of the other com-
ponents will change with time. In summary, the mean
flow (first bracket of eq. (31)) is characterized by closed
vortices inside the drop, and open-ended streamlines in
the ambient that do not cross the drop, while the time-
exponentially decaying (second bracket of eq. (31)) and
the normal stress-driven flows (eq. (41)) are characterized
by open-ended streamlines that cross the drop. On the
other hand, the shear stress-driven flow (eq. (38)) can be
characterized by both the closed vortices (first bracket)
and the open-ended streamlines (second bracket). The
overall flow field will comprise of open-ended streamlines,
closed vortices, or a combination of the two, depending on
the interplay of the components of the velocity field. As
will be shown shortly, the interplay of the four velocity
patterns over the time leads to formation and growth of
closed vortices in the drop and the ambient, or their decay
and destruction.

Figure 8 shows the components of the velocity field
based on Torza et al. solution (eq. (49)). Here we do
not present their mean flow ψm, since it is the same as
ours. Frame (a) shows the shear stress-driven component
ψtp

T . This flow pattern should be contrasted with that of
fig. 6(c), in which the flow consisted of open-ended stream-
lines only. The reason that here the streamlines do not
cross the drop surface is because the rate of deformation
is (implicitly) assumed to be zero in their solution as dis-
cussed in sect. 7. Thus, their shear stress-driven flow pat-
tern is always similar to that of the mean flow. However,
the sense of flow circulation for this component will not be
necessarily the same as that of the mean flow (at a given
time) because of its time-periodic nature. Frame (b) shows
the normal stress-driven component ψtp

N . This flow pattern
should be contrasted with that in fig. 6(d); while the two
flow patterns are quite similar, their senses of circulation
at this time are the opposite. Finally, frame (c) shows the

(a)

(b)

(c)

Fig. 8. Velocity streamlines at et = 1.0714 for fluid system A
under a field of frequency ω = 1 rad/s, using Torza et al. so-
lution. Frames (a) and (b) show the shear stress- and normal
stress-driven flows, corresponding to ψtp

T and ψtp
N of eq. (49a),

respectively. Frame (c) shows the overall flow pattern, corre-
sponding to ψ of the same equation.
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total velocity field, which is the result of the superposition
of the mean flow (fig. 6(a)) and these two components. As
expected, the overall flow pattern and its sense of circu-
lation are exactly the same as those of ours (fig. 6(e)) at
quasi–steady-state (t → ∞).

In passing, we make two comments about fig. 7. First,
as is evident the net electric shear and normal stresses,
[[τe

rθ]]tp and [[τe
rr]]tp, can lead to opposite (instantaneous)

rate of deformations. Second, the order of magnitude of
the deformation due to these stresses, Dtp

T and Dtp
N , are

comparable. Thus, while the common perception might
be that the drop deformation is primarily due to net nor-
mal electric stresses (i.e., Dtp

N � Dtp
T ), this is not true in

general.
To explore the possibility of the formation of closed

vortices in the drop or the ambient, we examine the
possibility of formation of a dividing streamline (i.e., a
ψ = 0 closed curve), since the closed vortices are always
accompanied with and confined within a dividing stream-
line. For the problem at hand, where the deformation is
weak, the dividing streamline (in the plane of symmetry)
will be always a circle. To find the radius of this circle we
set fi,o(r) = 0 in the expression for ψi,o = fi,o sin2 θ cos θ
in eq. (26), where fi,o is the sum of the r-dependent terms
in this equation. This yields

ri

a
=

[

Um + U tp
T1

+ (16μ̃ + 19)(Ute + U tp
T2

+ U tp
N )

Um + U tp
T1

+ 3(2μ̃ + 3)(Ute + U tp
T2

+ U tp
N )

]1/2

(50)
and

ro

a
=

[

Um + U tp
T1

− 3(3μ̃ + 2)(Ute + U tp
T2

+ U tp
N )

Um + U tp
T1

− (19μ̃ + 16)(Ute + U tp
T2

+ U tp
N )

]1/2

,

(51)
as the radius of the dividing streamline in the drop and
the ambient, respectively, provided 0 < ri/a < 1 and 1 <
ro/a. For this unbounded flow, there will be at most one
dividing streamline at a given time. In other words, it is
not possible to have an internal and an external dividing
streamline at the same time.

In what follows, we will perform frame by frame analy-
sis of the flow fields for representative cases. To do so, we
will examine concurrently the evolution of the deforma-
tion D and the (nondimensional) radius of the dividing
streamline (r/a) with time, since these two curves pro-
vide the needed information that might not be possible
to discern from the velocity snapshots. The times of the
velocity snapshots are selected at the outset using the
corresponding deformation-time curve, considering a cycle
during which the drop deformation changes from the min-
imum (starting point) to the maximum (ending point), in
an absolute sense. Furthermore, the cycle is selected in the
quasi-steady region, so that the transient effects are essen-
tially diminished. On the basis of the sign of ∂|D|/∂t being
positive or negative, two stages or half-cycles can be rec-
ognized in the D-t curve; a deformation stage, where the
deformation of the drop increases (in an absolute sense)
from the minimum to the maximum, and a rebound stage,
where the reverse process happens.
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Fig. 9. Evolution of the total deformation D versus nondimen-
sional time ωt for fluid system A and electric field frequency
of ω = 2 rad/s. The markers identify D and Eext at times that
correspond to the velocity snapshots in fig. 10. The horizontal
line represents the mean deformation Dm and the dash-dotted
vertical line marks the nondimensional deformation relaxation
time ωτ , where τ is given by eq. (35c).

8.1.1 Region I (fluid system A)

We start our analysis by considering the evolution of the
flow field for fluid system A, under an electric field of low
frequency (ω = 2 rad/s), corresponding to Π = 0.1116.
Figures 9–11 show the pertinent results. This is the same
fluid system that we just used to examine the struc-
ture of the components of the flow field. Thus, the mean
drop shape will be oblate and the mean external fluid
will run from the poles toward the equator, in line with
the inset of fig. 2. Since the mean drop shape is oblate
(Dm = −0.0488 < 0), the maxima and the minima on
the D-t curve correspond, respectively, to the minimum
and maximum deformations in an absolute sense. Here
the drop remains oblate at all times (fig. 9), however,
if the time-periodic deformation Dtp = DT

tp + DN
tp were

greater than the time-exponential deformation Dte, the
drop would oscillate between an oblate and a prolate
shape. The drop deformation relaxes to its mean over two
oscillation cycles.

Figure 10 shows the flow pattern at the selected times
noted in the caption, where the dividing streamline (when
it exists) is shown by a dashed line. In frame (a), the flow
pattern is quite similar to that for a drop in a DC elec-
tric field, with no streamline crossing the drop surface.
This is because at this time, the rate of the deformation
is zero, ∂D/∂t = 0, since the drop deformation is min-
imum as is evident from fig. 9. When ∂D/∂t = 0, ψtp

N

and the second brackets of ψte and ψtp
T will be zero. Thus,

the flow pattern will be similar to that for a DC electric
field; however, the sense of flow circulation will not be
necessarily the same. Here the dividing streamline resides
on the surface of the drop. As the deformation increases,
the external streamlines gradually move toward the drop
surface and eventually cross the surface (frame (b)), thus,
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 10. Vector plot of the velocity field along with the velocity streamlines and contours of the electric potential φ for fluid
system A and electric field frequency of ω = 2 rad/s, corresponding to Π = 0.1116. The frames correspond to the markers in
fig. 9.
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Fig. 11. Evolution of the dividing streamline, ri/a, ro/a, with
time for fluid system A and electric field frequency of ω =
2 rad/s. The dashed vertical lines mark the times of the velocity
snapshots in fig. 10. The dash-dotted vertical line marks the
nondimensional deformation relaxation time ωτ , where τ is
given by eq. (35c).

pushing the dividing streamline into the drop. In line with
the instantaneous motion of the interface, the flow direc-
tion along the streamlines are from the poles toward the
equator. The penetration of the external streamlines into
the drop does not last long as they start to retreat back
to the ambient fluid shortly (frame (c)). Eventually, the
drop reaches the state of maximum deformation (in an
absolute sense), where the flow pattern at this state (not
shown here) will be quite similar to that of frame (a).
After this stage, the rebound half-cycle starts, and as a
result, the inner vortices gradually move outward (frames
(d) and (e)). Here the poles move away from the drop cen-
ter while the equator moves toward it, reflecting the fact
that the deformation decreases. In line with the motion of
the interface, the streamlines cross into the drop from the
equator and exit from the poles. Further retreatment of
the vortices leads to their disappearance, and as a result,
the flow will consist primarily of open-ended streamlines
(frames (f)–(h)). As the drop surface moves toward the
state of minimum deformation (∂D/∂t = 0), and there-
fore, the deformation-driven flow becomes less dominant,
the open-ended streamlines shown in frame (h) will bend
further and eventually snap. This leads to formation of
closed counter-rotating vortices that cross the drop sur-
face, and are encompassed by a dividing streamline in the
ambient (similar to frame (d)). These vortices gradually
move into the drop until they are fully confined within the
drop, yielding a flow pattern that is exactly the same as
that in frame (a). See fig. 11 regarding the evolution of
the flow after frame (h).

Figure 11 shows the evolution of the dividing stream-
line (ri/a and ro/a) with time. The dividing streamline is
initially incepted inside the drop, close to the center, and
then gradually moves outward until it disappears from
the sight in the ambient fluid. After a while, a new divid-
ing streamline is incepted in the ambient fluid, essentially
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Fig. 12. Evolution of the total deformation D vs. nondimen-
sional time ωt for fluid system A and electric field frequency of
ω = 25 rad/s (frame (a)). The markers identify D and Eext at
times that correspond to the velocity snapshots in fig. 13. The
horizontal line represents the mean deformation Dm and the
dash-dotted vertical line marks the nondimensional deforma-
tion relaxation time ωτ , where τ is given by eq. (35c). Frame
(b) magnifies the part of frame (a) that is our focus.

marking the start of the quasi-steady state. Defining the
residence time of the closed vortices as the fraction of the
time during a cycle where the dividing streamline resides
inside the drop (i.e., ri/a < 1), it can be said that the
flow field is more dominated by the closed vortices than
the open-ended streamlines, since the residence time is
greater than 50%.

We now turn our attention to the evolution of the flow
field under an electric frequency of ω = 25 rad/s, cor-
responding to Π = 1.394. Here the frequency is above
the critical frequency (ωcr = 23.199 rad/s), and thus, the
mean drop shape is a prolate, but the sense of mean
flow circulation remains intact; as before, the mean ex-
ternal flow runs from the poles towards the equator. Fig-
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Fig. 13. Vector plot of the velocity field along with the velocity streamlines and contours of the electric potential φ for fluid
system A and electric field frequency of ω = 25 rad/s, corresponding to Π = 1.116. The frames correspond to the markers in
fig. 12.
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Fig. 14. Evolution of the dividing streamline, ri/a, ro/a,
with time for fluid system A and electric field frequency of
ω = 25 rad/s. The dashed vertical lines mark the times of the
velocity snapshots in fig. 13.

ure 12 shows the deformation-time curve; frame (a) shows
the evolution of the deformation toward the quasi-steady
state, while frame (b) magnifies the part of frame (a) that
is our focus. Here the transient period is substantially
larger than that in the previous case. Furthermore, the
drop oscillates between a prolate (D > 0) and an oblate
(D < 0) shape during this period. Figure 13 shows the evo-
lution of the flow field. Frame (a) corresponds to the time
of minimum deformation (∂D/∂t = 0), and thus, the flow
pattern consists of four counter-rotating vortices that fully
occupy the drop and are matched with the correspond-
ing vortices in the ambient. Furthermore, no streamline
crosses the interface. As soon as the drop moves away from
the state of minimum deformation, the inner vortices dis-
appear and are replaced by open-ended streamlines (frame
(b)), as can be inferred from fig. 14. As the rate of defor-
mation decreases, a dividing streamline is incepted in the
ambient fluid (frame (c)), which gradually moves toward
the drop surface and eventually into the drop (frame (d)).
As time passes, the dividing streamline moves further into
the drop (frames (e)–(g)) until it starts to retreat back
(frame (h)). Subsequently, the dividing streamline crosses
the drop surface and moves into the ambient fluid until it
rapidly disappears (fig. 14). At this point, the process is
repeated.

8.1.2 Region II (fluid system B)

For fluid systems in this region, the mean behavior of the
drop is essentially the same as that of fluid system A with
ω > ωcr. This is due to the fact that according to the
deformation-circulation map, the senses of mean defor-
mation and the structure and the sense of mean flow pat-
tern of the both cases are the same; i.e., the mean shape
is prolate (at all the field frequencies) and the external
streamlines in the mean flow run from the poles toward
the equator. We have explored the evolution of the flow

0 2 4 6 8
0

0.01

0.02

0.03

0.04

-1

-0.5

0

0.5

1

a

b

c

d

e

f

g

h

Fig. 15. Evolution of the total deformation D versus nondi-
mensional time ωt for fluid system B and electric field fre-
quency of ω = 2 rad/s. The markers identify D and Eext at
times that correspond to the velocity snapshots in fig. 16. The
horizontal line represents the mean deformation Dm and the
dash-dotted vertical line marks the nondimensional deforma-
tion relaxation time ωτ , where τ is given by eq. (35c).

field for this fluid system at electric field frequencies of
ω = 2 and ω = 25 rad/s, corresponding to Π = 0.177 and
Π = 2.213, respectively.

We first focus on the ω = 2 rad/s case. Here the drop
settles to a quasi-steady state in a relatively short time,
and the sense of deformation remains intact throughout
the process (fig. 15). Figure 16 shows the evolution of the
flow field. Frame (a) shows the state of the minimum de-
formation, where the flow pattern and its direction are
the same as the corresponding ones for fluid system A
and ω > ωcr (fig. 10(a)). Here the dividing streamline
moves away from the drop surface and into the ambient
until it disappears from the sight in a relatively short time
(fig. 17). Subsequently, the flow field will be dominated
by open-ended streamlines as seen in frame (b). As time
passes, the streamlines are bent until they eventually snap
(not shown here), forming closed vortices that cross the
drop (frame (c)). These vortices are confined within a di-
viding streamline that resides in the ambient. From this
point onward, the dividing streamline moves toward the
drop surface (frame (d)). As time passes it moves into
the drop (frames (e) and (f)) until it rapidly disappears
(frames (g) and (h)). The flow structure after frame (f)
consists of open-ended streamlines only, whose sense of
circulation remain intact and tend to reduce the degree
of he deformation; note that during the time spanned by
frames (e)–(h) the drop is in the rebound half cycle. Over-
all, compared to the corresponding case for fluid system
A (fig. 9), the vortical structure is relatively weak, con-
sidering the short residence time of the dividing stream-
line (fig. 17). This is presumably the result of a stronger
deformation-driven fluid flow for this case compared to the
previous one.

We now turn our attention to the ω = 25 rad/s case.
Figures 18–20 show the results. Here, the transient defor-
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(g) (h)

Fig. 16. Vector plot of the velocity field along with the velocity streamlines and contours of the electric potential φ for fluid
system B and electric field frequency of ω = 2 rad/s, corresponding to Π = 0.177. The frames correspond to the markers in
fig. 15.
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Fig. 17. Evolution of the dividing streamline, ri/a, ro/a, with
time for fluid system B and electric field frequency of ω =
2 rad/s. The dashed vertical lines mark the times of the velocity
snapshots in fig. 16.

mation time is about ωtqs ≈ 20π (fig. 18), which is sub-
stantially larger than that for the previous three cases;
ωtqs ≈ 1.5π (fig. 9), ωtqs ≈ 12π (fig. 12), and ωtqs ≈ 2π
(fig. 15). This is due to the fact that the mean deforma-
tion Dm for this case is larger than that for the previous
cases, and thus, it will take more time for the drop to
settle to its quasi-steady state. Note that tqs is discerned
from the D-t curves by considering the time that the de-
formation settles to its quasi-steady state and is generally
larger than the relaxation time τ (eq. (35c)). Figure 19
shows the evolution of the velocity field. Frames (a)–(c)
and (d)–(h) belong to the deformation and the rebound
half cycle, respectively. The transition from open-ended
streamlines, which cross into the drop at the equator and
exit from the poles and tend to increase the deformation
(i.e., making the drop more prolate), to the open-ended
streamlines that have the opposite sense of circulation and
deformation tendency, takes place rather abruptly shortly
after frame (c). Comparison of the results for this case
with those for the same fluid at a lower electric frequency,
figs. 15–17, suggests that here the residence time of the
dividing streamline in the drop is shorter and the vortical
structure is weaker. We believe this is due to the more
abrupt changes in the senses of flow circulation and drop
deformation, which do not let the flow to transition grad-
ually from the deformation half cycle to the rebound half
cycle.

8.1.3 Region III (fluid system C)

For fluid systems in this region, the mean drop shape is
prolate and the mean (external) flow runs from the equa-
tor toward the poles. As such, the direction of the mean
external flow is the opposite to those in regions I and II.
We explored the evolution of flow field for electric fre-
quency of ω = 2 rad/s, corresponding to Π = 1.472. Here
the flow pattern and its evolution (not shown) were similar
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Fig. 18. Evolution of the total deformation D vs. nondimen-
sional time ωt for fluid system B and electric field frequency of
ω = 25 rad/s (frame (a)). The markers identify D and Eext at
times that correspond to the velocity snapshots in fig. 19. The
horizontal line represents the mean deformation Dm and the
dash-dotted vertical line marks the nondimensional deforma-
tion relaxation time ωτ , where τ is given by eq. (35c). Frame
(b) magnifies the part of frame (a) that is our focus.

to the corresponding ones for fluid system B with ω = 25
(fig. 19); the flow field consisted primarily of open-ended
streamlines that crossed into the drop from the equator
(poles) and exited from the poles (equator). Furthermore,
the residence time of the dividing streamlines in the drop
was short. Figure 21 shows the evolution of the deforma-
tion D and the dividing streamline, ri/a and ro/a for this
case.

Since the formation of closed vortices inversely corre-
lates with ω(Π), to explore the possibility of formation of
these vortices we reduced the electric field frequency to
ω = 0.25 rad/s (Π = 0.184) and followed the evolution of
the flow field. Figures 22–24 show the pertinent results for
this case. Here the transient time is relatively short. Fur-
thermore, the mean deformation is larger than that of all
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 19. Vector plot of the velocity field along with the velocity streamlines and contours of the electric potential φ for fluid
system B and electric field frequency of ω = 25 rad/s, corresponding to Π = 2.2135. The frames correspond to the markers in
fig. 18.
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Fig. 20. Evolution of the dividing streamline, ri/a, ro/a,
with time for fluid system B and electric field frequency of
ω = 25 rad/s. The dashed vertical lines mark the times of the
velocity snapshots in fig. 19.
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Fig. 21. Evolution of the total deformation D (frame (a)) and
the dividing streamline (frame (b)), ri/a, ro/a, vs. nondimen-
sional time ωt for fluid system C at electric field frequency of
ω = 2. The horizontal line represents the mean deformation
Dm and the dash-dotted vertical line marks the nondimen-
sional deformation relaxation time ωτ , where τ is given by
eq. (35c).
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Fig. 22. Evolution of the total deformation D vs. nondimen-
sional time ωt for fluid system C and electric field frequency of
ω = 0.25 rad/s. The markers identify D and Eext at times that
correspond to the velocity snapshots in fig. 23. The horizontal
line represents the mean deformation Dm and the dash-dotted
vertical line marks the nondimensional deformation relaxation
time ωτ , where τ is given by eq. (35c).

the previous cases. The flow field at the state of minimum
deformation (frame (a)) comprises counter-rotating vor-
tices that are confined within the drop, and open-ended
streamlines that run from the equator toward the poles in
the external fluid. Thus, at this stage, the dividing stream-
line resides at the drop surface. As time passes, the divid-
ing streamline moves into the drop and disappears there
rather instantly, as is evident from figs. 23 and 24. The flow
field between the times of frames (a) and (c)− primarily
consists of open-ended streamlines, per fig. 24. Here, the
superscript “−” denotes “shortly before”. Shortly before
the time of frame (c), a dividing streamline is incepted
inside the drop. Frame (c) shows the dividing streamline
shortly after the inception, which moves rather rapidly
outward (frame (d)) and disappears. The fluid flow during
the time period of frames (d)+–(h)+ is mainly dominated
by open-ended streamlines. Here, the superscript “+” de-
notes “shortly after”. Thus, as opposed to fluid systems
in regions I and II, where the dividing streamline was in-
cepted in the external fluid and moved into the drop, here,
the reverse process took place.

9 Relevance of this study to microfluidic
applications

The analytical solution presented here was developed as-
suming small deformation and considering an unbounded
domain. However, in many microfluidic applications the
drop becomes highly deformed and is typically confined
within a microchannel. The question that naturally arises
is how the results of this study will be relevant to those
circumstances. This question is addressed in the following
two paragraphs.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 23. Vector plot of the velocity field along with the velocity streamlines and contours of the electric potential φ for fluid
system C and electric field frequency of ω = 0.25 rad/s, corresponding to Π = 0.1841. The frames correspond to the markers in
fig. 22.
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Fig. 24. Evolution of the dividing streamline, ri/a, ro/a, with
time for fluid system C and electric field frequency of ω =
0.25 rad/s. The vertical lines mark the times of the velocity
snapshots in fig. 23.

As for the deformation, we remind the reader that this
study is concerned with the problems in which the drop
deformation is due to application of an external electric
field only. For these cases, the current analysis can be use-
ful in the following ways. First, for problems in which
the product of the flow capillary number and the char-
acteristic deformation is small, CafΦ � 1, the analy-
sis will be readily applicable, since the drop deformation
will be small (D � 1), per eq. (47). This is achieved in
experimental studies with a proper choice of fluid sys-
tem, noting that Φ is mainly controlled by the ratio of
the electric properties of the two fluids. This fact consti-
tutes the basis of the studies of Homsy and collaborators
(refs. [14,16], and [17]), who investigated analytically and
experimentally transport of heat (or mass) from the drops
and chaotic mixing within them considering negligible de-
formation. Second, the sense of flow circulation is inde-
pendent of the degree of the drop deformation. Thus, the
understanding gained here regarding the flow field and its
evolution will be valid for the circumstances in which the
drop goes through substantial deformation. It is precisely
because of this reason that in DC electric fields the small
deformation theory has been used in interpretation of the
flow field in computational and experimental studies in
which the drop deformation is substantial. See, for exam-
ple, refs. [26–28], and [29]. Third, the current analysis can
be considered a zeroth-order solution in a perturbation
series solution of the problem, Λ = Λ0 + εΛ1 + O(ε2),
where Λ represents one of the dependent variables (veloc-
ity, electric potential, drop deformation, etc.) and ε is a
small perturbation parameter; see, for example, ref. [24].
Thus, the solution provided here (Λ0) can be used to ex-
tend the solution to the first order to gain insight into
problems in which the drop deformation is tangible; just
as Ajayi’s extension [30] of Taylor’s solution [4] provides
us a theoretical basis for instability and break up of drops
in a DC electric fields. See, for example, ref. [29] and [31].

As for the confinement effect, two points should be
taken into considerations. First, for modest confinement
(i.e., manipulation of drops in non-constricted channels),
the behavior of the drop will be the same, but the degree
of the deformation and the strength of the fluid flow will
differ quantitatively from the corresponding ones in an
unbounded domain. The direction of the change can be
conjectured by predicting the directions of the changes in
the tangential and normal electric stresses, as well as the
tangential and normal hydrodynamic stresses. Second, for
a definitive answer, the current solution can be modified
to account for confinement effect by modification of the
boundary conditions far away from the drop (i.e., r → ∞)
to r → b, where b is the radius of a concentric sphere that
encloses the drop; see ref. [32] for a details of the solution
in DC electric fields.

10 Conclusions

The fluid flow in and around a liquid drop, driven by
an AC electric field, finds relevance in a host of appli-
cations aiming to increase the convective effects or fluid
mixing. As such, a fundamental understanding about it
will help optimize the design and operation of these pro-
cesses. Unfortunately, the time-periodic structure of the
flow field has been largely overlooked so far, leading to
some misconceptions about it. To this end, here we ex-
plored the evolution of the electrohydrodynamics-driven
flow field in and around a liquid drop in a uniform AC
electric field (Eext = E0 cos ωt). The governing equa-
tions of the problem were solved analytically in the limit
of small deformation and creeping flow regime. It was
shown that the mismatch in the dielectric properties of
the drop and the ambient fluid leads to the net interfacial
tangential and normal electric stresses, [[τe

rr]] and [[τe
rθ]],

that tend to deform the drop and set the fluid in mo-
tion. These stresses comprise a mean (time-independent)
and a time-periodic component, [[τe

rr]] = [[τe
rr]]m + [[τe

rr]]tp
and [[τe

rθ]] = [[τe
rθ]]m + [[τe

rθ]]tp. The mean stresses result
in a time-exponential fluid flow ψte and deformation Dte,
which settle to their corresponding mean values after a
relaxation period that is controlled by the time scale of
the drop deformation and the viscosities of the fluids. The
time-periodic stresses, on the other hand, result in a time-
periodic flow ψtp and deformation Dtp with a frequency of
2ω, which is twice that of the electric field and is the same
as the frequency of [[τe

rr]]tp and [[τe
rθ]]tp. To explore the in-

dividual contribution of the mean and the time-periodic
stresses, the overall solution was found as the superpo-
sition of the solutions resulting from the mean electric
stresses ([[τe

rr]]m and [[τe
rθ]]m), the time-periodic tangential

electric stress ([[τe
rθ]]tp) and the time-periodic normal elec-

tric stress ([[τe
rr]]tp). It was found that the structure and the

sense of flow circulation for the mean (time-independent)
solution are the same as those in a DC field. However,
the sense of mean deformation Dm is not generally the
same as that in a DC field. This information is asserted in
the deformation-circulation map (fig. 2). Briefly, for fluid
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systems (drop fluid plus ambient fluid) in which the drop
deforms to a prolate in a DC electric field (D0 > 0), the
sense of mean deformation remains the same in the corre-
sponding AC field (Dm > 0). On the other hand, for fluid
systems in which the drop deforms to an oblate in a DC
electric field (D0 < 0), the sense of the mean deformation
may remain the same (Dm < 0) or becomes the opposite
(Dm > 0), depending on the field frequency ω being below
or above a critical frequency ωcr, respectively.

The evolution of the flow field and drop deformation
with time was studied for representative fluid systems at
a low and (essentially) a high frequency. The building
blocks of the flow pattern at a given time is the open-
ended streamlines (open vortices) and the closed vortices.
Depending on the strength of the latter being higher or
lower than that of the former, the flow field may consist of
closed vortices, and hence the “possibility” of a dividing
streamline, or may be devoid of them, respectively. Here,
by open-ended streamlines we mean those that cross the
surface of the drop. At quasi-steady state, the strength of
the closed and open vortices can be measured by consider-
ing the pertinent velocity scales that were developed in the
course of solution; namely, Um, U tp

T1
, U tp

T2
, and U tp

N , corre-
sponding to eqs. (32), (39a), (39d), and (41c), respectively.
For this unbounded domain, the external fluid will “al-
ways” consist of open-ended streamlines. However, when
the rate of the deformation is zero (∂D/∂t = 0), none of
these streamlines will cross the drop surface. This hap-
pens at the extrema of the deformation-time D-t curve.
The closed vortices, on the other hand, are formed as a re-
sult of the net tangential hydrodynamic stresses [[τh

rθ]]. The
mean components of the net electric stresses, [[τe

rr]]m and
[[τe

rθ]]m, lead to formation of both open-ended streamlines
and the closed vortices. However, at sufficiently long time,
where ∂Dte/∂t = 0, the flow pattern due to these stresses
will be devoid of the open-ended streamlines. The time-
periodic net tangential electric stress [[τe

rθ]]tp contributes to
both the open-ended streamlines and the closed vortices,
while the time-periodic net normal electric stress [[τe

rθ]]tp
contributes only to the open-ended streamlines.

In summary, the interplay of the flow patterns gen-
erated by the mean and the time-periodic net electric
stresses leads to formation and destruction of closed
vortices. Judging by the residence time of the dividing
streamlines in the drop, the flow field is more dominated
by closed vortices for fluid systems chosen from region I
of the deformation-circulation curve, compared with those
from regions II and III. For regions I and II, for both
ω = 2 and 25 rad/s, the dividing streamline was incepted
in the ambient fluid, moved into the drop, and retreated
back into the ambient fluid. On the other hand, for re-
gion III, the dividing streamline was incepted inside the
drop and propagated into the ambient fluid. For all the re-
gions, the increase in the frequency led to the destruction
of closed vortices, and hence, a decrease in the residence
time of the dividing streamlines in the drop.

Finally, a comparison of the results of this study with
those of a recent study by ref. [19] will provide an added
insight into the problem. It should be noted, however,

that only a qualitative comparison can be made since
that study was concerned with a two-dimensional drop.
Briefly, these authors solved the governing EHD equa-
tions numerically, using a front tracking/finite difference
scheme. The computational domain was a square box of
size L = 2.5d (d being the drop diameter), periodic in the
horizontal direction and wall-bounded in the vertical di-
rection. This resulted in an area fraction of 0.1256. There,
the drop deformation was appreciable (becoming an el-
lipse) and the convective effect were not negligible, since
Ref = 0.5 and Caf = 0.25, as opposed to Ref � 1 and
Caf � 1 in the analytical solution. Inspection of their
results shows that, for all the fluid systems considered,
the senses of their mean drop deformation and the mean
flow circulation are in line with the theoretical predictions
presented here. This reinforces the fact that the sense of
mean drop deformation and flow circulation is not altered
by the degree of the drop deformation. A major qualita-
tive difference between the two flow fields, however, exists
with respect to the shape of the streamlines that extend
into the external fluid. Whereas in the current study the
flow field very often consisted of the open-ended stream-
lines, which approached the drop along the equator (the
poles) and departed along the poles (equator), in the nu-
merical simulations these streamlines were replaced with
closed curves. This is due to the confinement effect, which
is present in the numerical simulations, but is absent in
the current study. Similarly, the evolution of the flow field
in the numerical study did not show some of the fasci-
nating flow structures that were observed in the present
study, since the growth of the dividing streamline in the
external flow was impeded due to the confinement effects.
It should be noted, however, that if the computational
domain in the numerical simulations had been sufficiently
large (i.e., L � 5d), the numerical flow fields would have
matched the analytical ones more closely.

Appendix A. Solution of momentum
equation for flow driven by [[τ e

rr]]m and [[τ e
rθ]]m

In what follows, subscript m denotes mean (time-
independent) parameters, while subscript or superscript
te is used to denote time-exponential parameters. Here,
eq. (29) is rewritten as

ψi = (Ate
i r3 + Bte

i r5) sin2 θ cos θ, (A.1a)

ψo = (Ate
o r−2 + Bte

o ) sin2 θ cos θ, (A.1b)

to customize it for the present solution. The unknown co-
efficients in eq. (A.1) are determined from the interfacial
jump conditions. The jump conditions are expressed in
terms of the velocity field, considering ute

i = (ute
ri

, ute
θi

)
and ute

o = (ute
ro

, ute
θi

). In the process of application of
the jump conditions, the drop shape function ξte and
the curvature κte are needed. For this zeroth-order so-
lution, the structure of the shape function can be dis-
cerned from the normal stress balance [24], which sug-
gests ξte(t) = a[1 + (2/3)Dte(t)(3 cos2 θ − 1)]. Using the
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suggested shape function, the curvature is found to be
κte = 2/a + (8Dte/3a)(3 cos2 θ − 1). The net hydrody-
namic stresses, [[τh

rθ]]te, [[τh
rr]]te, and the pressure jump,

[[p]]te, are needed and are calculated by integration of
−∇pte + μ∇2ute = 0 (which is the customized form of
eq. (10)), in conjunction with eq. (A.1).

The following jump conditions apply:

I) Continuity of the tangential velocity, ute
θo

= ute
θi

at r =
a.

II) Continuity of the radial (normal) velocity, ute
ro

= ute
ri

=
∂ξte/∂t at r = a. Note that this boundary condition
results in two equations.

III) Tangential force balance, [[τe
rθ]]m + [[τh

rθ]]te = 0.
IV) Normal force balance, [[τe

rr]]m +[[τh
rr]]te − [[p]]te = γκte.

Jump conditions I)–IV) constitute five equations for
the five unknowns, Ate

i , Bte
i , Ate

o , Bte
o , and Dte, leading to

3aAte
i + 5a3Bte

i + 2a−4Ate
o = 0, (A.2a)

Ate
i + a2Bte

i =
2
3

∂Dte

∂t
, (A.2b)

a−4Ate
o + a−2Bte

o =
2
3
a
∂Dte

∂t
, (A.2c)

[̃[τe
rθ]] − μo

(

8a−5Ate
o + 3a−3Bte

o

)

+μi(3Ate
i + 8a2Bte

i ) = 0, (A.2d)

[̃[τe
rr]] − 3μo

(

8a−5Ate
o + 6a−3Bte

o

)

+ 3μi

(

−2Ate
i + a2Bte

i

)

=
8γDte

a
. (A.2e)

Here, [̃[τe
rθ]] and [̃[τe

rθ]] are the coefficients of cos2 θ and sin 2θ
in eq. (23a) and (24a), respectively. Notice that since the
jump conditions should be valid at any point at the drop
surface, only the coefficients of cos2 θ terms in the normal
force balance equation are retained.

Solution of eq. (A.2) yields Ate
i , Bte

i , Ate
o , and Bte

o in
terms of the parameters of the problem and the rate of
deformation ∂Dte/∂t

Ate
i =

1
5(μ̃ + 1)

(

16μ̃ + 19
3

∂Dte

∂t
+

[̃[τe
rθ]]
μo

)

, (A.3a)

Bte
i =

1
5(μ̃ + 1)a2

(

−(2μ̃ + 3)
∂Dte

∂t
− [̃[τe

rθ]]
μo

)

, (A.3b)

Ate
o =

a5

5(μ̃ + 1)

(

−(3μ̃ + 2)
∂Dte

∂t
+

[̃[τe
rθ]]
μo

)

, (A.3c)

Bte
o =

a3

5(μ̃ + 1)

(

19μ̃ + 16
3

∂Dte

∂t
− [̃[τe

rθ]]
μo

)

, (A.3d)

where

τ
∂Dte

∂t
+ Dte =

a

8γ

(

[̃[τe
rr]] −

3
5

3μ̃ + 2
μ̃ + 1

[̃[τe
rθ]]

)

︸ ︷︷ ︸

Dm

(A.4)

determines the deformation Dte. Here τ is the character-
istic time scale that governs the dynamics. Solution of
eq. (A.4) leads to Dte, eq. (34), which suggests that the
drop deformation settles monotonically to its steady-state
value. Notice that the right hand side of eq. (A.4) is the
time-independent deformation Dm as given in eq. (35a).
Once Dte is determined, the unknown coefficients of the
streamfunction are found from eq. (A.3), leading to deter-
mination of streamfunction, per eq. (31).

Appendix B. Solution of momentum
equation for flow driven by [[τ e

rθ]]tp

In what follows, subscript or superscript tp denotes time-
periodic parameters, while subscript or superscript T
stands for tangential, which is used to signify that the net
electric tangential stress [[τe

rθ]]tp is the driver. For time-
periodic flows it is more convenient to use “the method
of complex variables” by considering a complex stream-
function ψtp′(r, θ, t) = ψtp∗(r, θ)e2iωt whose real part
ψtp = Re(ψtp′) constitutes the solution, ψtp∗(r, θ) being
the time-independent complex streamfunction. Accord-
ingly, eq. (29) can be rewritten as

ψtp
iT

∗
=

(

Atp
iT

∗
r3 + Btp

iT

∗
r5

)

sin2 θ cos θ, (B.1a)

ψtp
oT

∗ =
(

Atp
oT

∗
r−2 + Btp

oT

∗
)

sin2 θ cos θ, (B.1b)

in terms of the time-independent complex coefficients.
Here we express the jump conditions in terms of the

velocity field, considering the complex velocities as uT
ri

′ =
uT

ri

∗
e2iωt and uT

θi

′ = uT
θi

∗
e2iωt, where uT

ri
= Re(uT

ri

′) and
uT

θi
= Re(uT

θi

′). Furthermore, using the same argument
as in appendix A the drop shape function and curvature
are found to be ξtp

T (t) = (2/3)aDtp
T (t)(3 cos2 θ − 1) and

κtp
T (t) = (8Dtp

T (t)/3a)(3 cos2 θ − 1). In a manner similar
to the definition of complex streamfunction, we consider
ξtp
T = Re(ξtp

T

′
), where ξtp

T

′
= ξtp

T

∗
e2iωt, κtp

T = Re(κtp
T

′
),

where κtp
T

′
= κtp

∗e2iωt, and [[Q]] = Re([[Q]]′), where [[Q]]′ =
[[Q]]∗e2iωt. Here, the double bracket denotes the jump in
a typical parameter Q (outside minus inside) across the
interface.

The following jump conditions apply:

I) Continuity of the tangential velocity, uT
θo

= uT
θi

at r =
a, which leads to uT

θi

∗ = uT
θo

∗ at r = a.
II) Continuity of the radial (normal) velocity, uT

ri
= uT

ro
=

∂ξtp
T /∂t at r = a, which leads to uT

ri

∗ = uT
ro

∗ = 2iωξtp
T

∗

at r = a. Note that this boundary condition results in
two equations.

III) Tangential force balance, [[τe
rθ]]tp + [[τh

rθ]]
T

tp = 0, which
leads to [[τe

rθ]]
∗
tp + [[τh

rθ]]
T
tp

∗ = 0.

IV) Normal force balance, [[τh
rr]]

T

tp − [[p]]Ttp = γκtp
T , which

leads to [[τh
rr]]

T

tp

∗
− [[p]]Ttp

∗
= γκTtp

∗.
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Jump conditions I)–IV) constitute five equations for
the five unknowns, Atp

iT

∗
, Btp

iT

∗
, Atp

oT

∗, Btp
oT

∗, and D∗
T , lead-

ing to

3aAtp
iT

∗
+ 5a3Btp

iT

∗
+ 2a−4Atp

oT

∗ = 0, (B.2a)

Atp
iT

∗
+ a2Btp

iT

∗
=

4
3
ωiDtp

T

∗
, (B.2b)

a−4Atp
oT

∗ + a−2Btp
oT

∗ =
4
3
aωiDtp

T

∗
, (B.2c)

9εoE
2
0(ε̃ − σ̃)
4

F ∗
θ − μo

(

8a−5Atp
oT

∗ + 3a−3Btp
oT

∗
)

+μi

(

3Atp
iT

∗
+ 8a2Btp

iT

∗)
= 0, (B.2d)

−3μo

(

8a−5Atp
oT

∗ + 6a−3Btp
oT

∗
)

+3μi

(

−2Atp
iT

∗
+ a2Btp

iT

∗)
=

8γDtp
T

∗

a
. (B.2e)

Here we first use jump conditions (B.2a)–(B.2c)
and (B.2e) to determine Atp

iT

∗
, Btp

iT

∗
, Atp

oT

∗, and Btp
oT

∗

in terms of D∗
T and then substitute for these coefficients

in (B.2d) to find D∗
T . This yields

Dtp
T

∗
=

9
32

Cafd∗T , (B.3a)

d∗T =
−λ1(ε̃ − σ̃)F ∗

θ

1 + iCaωλ2
, (B.3b)

λ1 =
3(3μ̃ + 2)
5(μ̃ + 1)

, λ2 =
(19μ̃ + 16)(2μ̃ + 3)

20(μ̃ + 1)
, (B.3c)

and

Atp
iT

∗
= C∗

1T
+ C∗

2T
(16μ̃ + 19), (B.4a)

Btp
iT

∗
= −a−2

[

C∗
1T

+ 3C∗
2T

(2μ̃ + 3)
]

, (B.4b)

Atp
oT

∗ = a5
[

C∗
1T

− 3C∗
2T

(3μ̃ + 2)
]

, (B.4c)

Btp
oT

∗ = −a3
[

C∗
1T

− C∗
2T

(19μ̃ + 16)
]

, (B.4d)

where

C∗
1T

=
9εoE

2
0(ε̃ − σ̃)

20μo(μ̃ + 1)
F ∗

θ , C∗
2T

=
2Dtp

T

∗
ωi

15(μ̃ + 1)
. (B.5)

Subsequently, the streamfunction and the drop deforma-
tion are determined as given in eqs. (38) and (40), using
the following expressions:

d∗T = dTR
+ idTI

, |d∗T | =
√

d2
TR

+ d2
TI

, (B.6a)

dTR
=

dTR1
− dTR2

Λ2(1 + Ca2
ωλ2

2)
, dTI

= −
dTI1

+ dTI2

Λ2(1 + Ca2
ωλ2

2)
,

(B.6b)

where

dTR1
= λ1(σ̃ − ε̃)

[

(σ̃ + 2)2 + Π2(2σ̃ − ε̃ + 2)(ε̃ + 2)
]

,

(B.7a)
dTR2

= λ1(σ̃ − ε̃)CaωΠλ2[2σ̃ε̃ + 4ε̃ + 4 − σ̃2

+Π2(ε̃ + 2)2], (B.7b)
dTI1

= λ1(σ̃ − ε̃)[−Π(σ̃ + 2)(σ̃ − 2ε̃ − 2)

+Π3(ε̃ + 2)2], (B.7c)
dTI2

= λ1(σ̃ − ε̃)Caωλ2[(σ̃ + 2)2

+Π2(2σ̃ − ε̃ + 2)(ε̃ + 2)]. (B.7d)

Appendix C. Solution of momentum
equation for flow driven by [[τ e

rr]]tp

In what follows, subscript or superscript tp denotes time-
periodic parameters, while subscript or superscript N
stands for normal and is used to signify that the net elec-
tric normal stress [[τ e

rr]]tp is the driver. We take the same
approach as that taken in appendix B. Accordingly, the
suggested solution is

ψtp
iN

∗
=

(

Atp
iN

∗
r3 + Btp

iN

∗
r5

)

sin2 θ cos θ, (C.1a)

ψtp
oN

∗ =
(

Atp
oN

∗
r−2 + Btp

oN

∗
)

sin2 θ cos θ. (C.1b)

Here ψtp
N

∗
(r, θ) is the time-independent complex stream-

function, which is related to the real solution through
ψtp

N = Re(ψtp
N

′
), ψtp

N

′
(r, θ, t) = ψtp

N

∗
(r, θ)e2iωt being

the complex streamfunction. As in appendix B, the
jump conditions are expressed in terms of the veloc-
ity field, considering the complex velocities as uN

ri

′ =
uN

ri

∗
e2iωt and uN

θi

′ = uN
θi

∗
e2iωt, where uN

ri
= Re(uN

ri

′) and
uN

θi
= Re(uN

θi

′). Here, the shape factor and the curva-
ture are ξtp

N (t) = (2/3)aDtp
N (t)(3 cos2 θ − 1) and κtp

N (t) =
(8Dtp

N (t)/3a)(3 cos2 θ − 1); as before ξtp
N = Re(ξtp

N

′
) and

κtp
N = Re(κtp

N

′
), where ξtp

N

′
= ξtp

N

∗
e2iωt and κtp

N

′
=

κtp
∗e2iωt.
The following jump conditions apply:

I) Continuity of the tangential velocity, uN
θi

= uN
θo

at r =
a, which leads to uN

θi

∗ = uN
θo

∗ at r = a.
II) Continuity of the radial (normal) velocity, uN

ri
= uN

ro
=

∂ξtp
N /∂t at r = a, which leads to uN

ri

∗ = uN
ro

∗ = 2iωξtp
N

∗

at r = a.
III) Tangential force balance, [[τh

rθ]]
N
tp = 0, which leads to

[[τh
rθ]]

N
tp

∗ = 0.

IV) Normal force balance, [[τe
rr]]tp +[[τh

rr]]
N

tp− [[p]]Ntp = γκtp
N ,

which leads to [[τe
rr]]

∗
tp + [[τh

rr]]
N

tp

∗
− [[p]]Ntp

∗
= γκtp

N

∗
.

Jump conditions I)–IV) constitute five equations for
the five unknowns, Atp

iN

∗
, Btp

iN

∗
, Atp

oN

∗, Btp
oN

∗, and D∗
N ,
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leading to

3aAtp
iN

∗
+ 2a−4Atp

oN

∗ + 5a3Btp
iN

∗
= 0, (C.2a)

Atp
iN

∗
+ a2Btp

iN

∗
=

4
3
ωiDtp

N

∗
, (C.2b)

a−4Atp
oN

∗ + a−2Btp
oN

∗ =
4
3
aωiDtp

N

∗
, (C.2c)

−μo

(

8a−5Atp
oN

∗ + 3a−3Btp
oN

∗
)

+μi

(

3Atp
iN

∗
+ 8a2Btp

iN

∗)
= 0, (C.2d)

9εoE
2
0

4
F ∗

r − 3μo

(

8a−5Atp
oN

∗ + 6a−3Btp
oN

∗
)

+3μi

(

−2Atp
iN

∗
+ a2Btp

iN

∗)
=

8γDtp
N

∗

a
. (C.2e)

Here we first use jump conditions (C.2a)–(C.2d) to de-
termine Atp

iN

∗
, Btp

iN

∗
, Atp

oN

∗, and Btp
oN

∗ in terms of D∗
N ,

and then substitute for these coefficients in jump condi-
tion (C.2e) to find D∗

N . This yields

Dtp
N

∗
=

9
32

Cafd∗N , (C.3a)

d∗
N =

F ∗
r

1 + iCaωλ2
, (C.3b)

and

Atp
iN

∗
= C∗

N (16μ̃ + 19), (C.4a)

Btp
iN

∗
= −3a−2C∗

N (2μ̃ + 3), (C.4b)

Atp
oN

∗ = −3a5C∗
N (3μ̃ + 2), (C.4c)

Btp
oN

∗ = a3C∗
N (19μ̃ + 16), (C.4d)

where

C∗
N =

2Dtp
N

∗
ωi

15(μ̃ + 1)
. (C.5)

Subsequently, the streamfunction and the drop deforma-
tion are determined as given in eqs. (41) and (42), using
the following expressions:

d∗
N = dNR

+ idNI
, |d∗N | =

√

d2
NR

+ d2
NI

, (C.6a)

dNR
=

dNR1
+ dNR2

+ dNR3
− dNR4

Λ2(1 + Ca2
ωλ2

2)
,

dNI
= −

dNI1
+ dNI2

+ dNI3
+ dNI4

Λ2(1 + Ca2
ωλ2

2)
, (C.6b)

where

dNR1
= (σ̃ + 2)2(σ̃2 − 2ε̃ + 1), (C.7a)

dNR2
= Π2

[

−5σ̃2 + 4σ̃ + 6ε̃(σ̃2 + 2σ̃ − 2)

+ (2σ̃2 − 4σ̃ − 13)ε̃2 + 2ε̃3 + 8
]

, (C.7b)
dNR3

= Π4(ε̃2 + ε̃ − 2)2, (C.7c)

dNR4
= (σ̃ − ε̃)CaωΠλ2

[

−4 + 8ε̃ + 6σ̃ + 4σ̃ε̃ + 4σ̃2

+ 2Π2(ε̃ + 2)(4ε̃ − 1)
]

, (C.7d)
dNI1

= 2Π(σ̃ − ε̃) [(σ̃ + 2)(2σ̃ + 2ε̃ − 1)

+ Π2(ε̃ + 2)(4ε̃ − 1)
]

, (C.7e)
dNI2

= Caωλ2(σ̃ + 2)2(σ̃2 − 2ε̃ + 1), (C.7f)

dNI3
= Caωλ2Π

2
[

−5σ̃2 + 4σ̃ + 8 + 6ε̃(σ̃2 + 2σ̃ − 2)

+ (2σ̃2 − 4σ̃ − 13)ε̃2 + 2ε̃3
]

, (C.7g)
dNI4

= Caωλ2Π
4(ε̃2 + ε̃ − 2)2. (C.7h)
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