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Abstract. On the basis of the linear hydrodynamic equations, we present an analytical theory for the
low-Reynolds-number motion of a solid particle moving inside a larger spherical elastic cavity which can
be seen as a model system for a fluid vesicle. In the particular situation where the particle is concentric
with the cavity, we use the stream function technique to find exact analytical solutions of the fluid motion
equations on both sides of the elastic cavity. In this particular situation, we find that the solution of
the hydrodynamic equations is solely determined by membrane shear properties and that bending does
not play a role. For an arbitrary position of the solid particle within the spherical cavity, we employ the
image solution technique to compute the axisymmetric flow field induced by a point force (Stokeslet).
We then obtain analytical expressions of the leading-order mobility function describing the fluid-mediated
hydrodynamic interactions between the particle and the confining elastic cavity. In the quasi-steady limit
of vanishing frequency, we find that the particle self-mobility function is higher than that predicted inside
a rigid no-slip cavity. Considering the cavity motion, we find that the pair-mobility function is determined
only by membrane shear properties. Our analytical predictions are supplemented and validated by fully
resolved boundary integral simulations where a very good agreement is obtained over the whole range of
applied forcing frequencies.

1 Introduction

Transport phenomena are ubiquitous in nature and are
essential for the understanding of a variety of processes
in biological physics, chemistry and bioengineering [1–3].
Prime examples include the paracellular transport of
drugs and macromolecules across an epithelium in organs
and target tissues [4,5], and the active locomotion of swim-
ming microorganisms in living systems [6–12].

In the microscopic world, fluid motion is well described
by the linear Stokes equations, as long as the viscous forces
play a dominant role compared to the inertial forces. In
these situations, a full representation of the motion of sus-
pended particles is achieved by the mobility tensor [13,14],
which bridges between the velocity moments of the par-
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ticle and the moments of the force density on its surface.
In biological media, the motion of suspended tracer parti-
cles is sensitive to the mechanical state of living cells and
the experimentally recorded trajectories can provide use-
ful information about the membrane structure [15], or the
nature of active processes driving particle motion inside
living cells [16]. Over the last few decades, intracellular
particle tracking experiments have widely been utilized as
a powerful and often accurate tool for the characteriza-
tion and diagnostic of individual living cells [17–20], or
the determination of cell mechanical properties [21–23].

From a theoretical standpoint, particle motion inside
a rigid spherical cavity with fluid velocity satisfying the
no-slip boundary condition at the inner cavity is well un-
derstood and has been solved since some time ago. The
exact solution of fluid flow takes a particularly simple form
when the particle is located at the center of the cavity, and
can be determined using the stream function technique, as
derived e.g. by Happel and Brenner [24]. The first attempt
to obtain the fundamental solution to the Stokes equations
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due to a point force acting in a Newtonian fluid bounded
by a rigid spherical container dates back to Oseen [25]
who used the image solution technique. Complementary
works, which represent extensions of Oseen’s solution,
commonly known under the name of sphere theorem, have
later been presented by Butler [26], Collins [27, 28], Hasi-
moto [29–31], Shail [32,33], and Sellier [34], to name a few.
A more transparent form of the solution has been pre-
sented by Maul and Kim [35, 36] where both the axisym-
metric and asymmetric Stokeslets have been considered
independently. Their results are more useful for compu-
tational purposes using boundary integral methods [37],
and their resolution approach is based on the method pre-
sented by Fuentes et al. [38,39]. The latter computed, us-
ing the image solution technique, the flow field due to
a Stokeslet acting outside a viscous drop. The coupling
and rotational mobilities have further been reconsidered
by Felderhof and Sellier [40], who employed the point-
particle approximation. The latter is valid when particle
radius is very small compared to that of the cavity. In ad-
dition, a combination of multipole expansion and Faxén’s
theorem has been used by Zia and collaborators [41, 42],
providing the elements of the grand mobility tensor of
finite-sized particles moving inside a rigid spherical cav-
ity. Additional works addressed the low-Reynolds-number
locomotion inside a viscous drop [43–45], or the dynamics
of a particle-encapsulating droplet in flow [46,47].

Despite enormous studies on particle motion inside a
rigid cavity or a viscous drop, to the best of our knowl-
edge, no works have been yet conducted to investigate
particle motion inside a deformable elastic cavity. Indeed,
elastic walls stand apart from rigid boundaries or fluid-
fluid interfaces as they endow the system with memory.
Such an effect leads to a long-lived transient anomalous
subdiffusive behavior of nearby particles [48–52]. Accord-
ingly, particle mobility does not depend only on geometry
but also on the forcing frequency of the system.

The goal of this work is to calculate analytically and
numerically the frequency-dependent hydrodynamic mo-
bility function of a solid particle slowly moving inside
a spherical elastic cavity. The membrane cavity is mod-
eled as an infinitely thin (two-dimensional) sheet made
of a hyperelastic material, endowed with shear elastic-
ity and bending rigidity. Membrane resistance towards
shear stresses is modeled by the well-established Skalak
model [53] which is frequently used as a practical model
for capsules and red blood cells [54]. For calculating the
membrane bending forces, we compare two different mod-
els. The first model is based on Helfrich free energy func-
tional [55], often employed for lipid bilayers and biologi-
cal membranes. The second model is the linear isotropic
model derived from the linear elastic theory of plates and
shells [56].

When the particle is concentric with the cavity, we use
the stream function technique to obtain exact solutions of
the equations of fluid motion. For an arbitrary position
within the cavity, we use the image solution technique to
find analytical expressions of the axisymmetric flow field
due to a Stokeslet, in addition to the leading-order cor-
rection to the particle hydrodynamic mobility function.

Fig. 1. Illustration of the system setup. A small solid particle
of radius b positioned at x2 = Rez inside a large spherical
elastic cavity of radius a. The Stokeslet is directed along d
connecting the centers of the particle and the cavity.

Moreover, we investigate the cavity motion, finding that
the correction to the pair-mobility function for an arbi-
trary eccentricity within the cavity is solely determined
by membrane shear properties. In order to assess the va-
lidity and appropriateness of our analytical predictions, we
compare our results with fully resolved boundary integral
simulations where a very good agreement is obtained.

The remainder of the paper is organized as follows.
In sect. 2, we present the stream function technique to
obtain exact expressions of the axisymmetric flow field
and the hydrodynamic mobility function in the concentric
configuration. We then present in sect. 3 the image solu-
tion technique and compute the particle mobilities in the
point-particle framework for arbitrary particle eccentricity
within the elastic cavity. Concluding remarks summariz-
ing our findings and results are contained in sect. 4.

2 Stream functions

We consider the steady translational motion of a spheri-
cal solid particle of radius b inside a large spherical elastic
cavity of initial (undeformed) radius a. The origin of coor-
dinates is located at x1, the center of the cavity, and the
solid particle is located at x2 = Rez, with R < a − b, as
schematically illustrated in fig. 1.

For small amplitude and frequency of motion, the fluid
dynamics inside and outside the cavity is governed by the
steady Stokes equations

η∇2vα − ∇pα = 0, (1a)
∇ · vα = 0, (1b)

where α = 1 applies for the fluid on the inside and α = 2
for the fluid on the outside. Here, we assume that the fluid
filling the cavity has the same dynamic viscosity η as the
outer fluid. In real physiological situations, such as, for
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red blood cells, the viscosity ratio between the interior
and exterior fluids is of about five [57]. In order to limit
the parameter space to be explored, we will, in the present
work, only assess the effect of membrane rigidity on the
motion of the encapsulated particle. The viscosity ratio is
expected to have only a quantitative but not a qualitative
effect.

For the sake of convenience, we will scale from now
on all the lengths by the cavity radius a. We begin with
the relatively simple situation where the two spheres are
concentric. This corresponds to setting x2 = x1 and R =
0. Since, in this situation, the flow is axisymmetric, it is
more convenient to express the solution of the equations of
motion in terms of the stream function. Accordingly, the
solution is reduced to the search of a single scalar function
instead of solving simultaneously for the unknown velocity
and pressure fields.

The stream functions inside and outside the elastic
cavity satisfy [24]

E4ψα(r, θ) = 0, α ∈ {1, 2}, (2)

where r and θ are the radial distance and polar angle,
respectively, and the operator E2, in spherical coordinates,
is given by

E2 =
∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)
. (3)

We now assume that the particle moves in the pos-
itive z direction with a constant velocity U . The no-slip
boundary conditions that must be satisfied on the particle
surface read (see p. 119 of [24])

ψ1|r=b = −Ub2

2
sin2 θ, (4a)

ψ1,r

∣∣
r=b

= −Ub sin2 θ. (4b)

Additionally, we require the following regularity condi-
tions:

|ψ1| < ∞, as r → 0, (5a)
ψ2

r2
→ 0, as r → ∞. (5b)

As suggested by the regularity and boundary condi-
tions, the general solution for the steam function in eq. (2)
has previously been derived by Happel and Brenner [24].
It can be written as

ψ1 =
(

Ar + Dr2 + Er4 +
F

r

)
sin2 θ, (6a)

ψ2 =
(

Gr +
H

r

)
sin2 θ, (6b)

where A, D, E, F , G, and H are six unknown constants
to be determined from the boundary conditions imposed
at the particle and cavity surfaces.

The flow radial and circumferential velocity compo-
nents are then computed from the stream functions as

vr = − ψ,θ

r2 sin θ
, vθ =

ψ,r

r sin θ
, (7)

leading to

v1r = −
(

2A

r
+ 2D + 2Er2 +

2F

r3

)
cos θ, (8a)

v1θ =
(

A

r
+ 2D + 4Er2 − F

r3

)
sin θ, (8b)

for the fluid on the inside, and

v2r = −2
r

(
G +

H

r2

)
cos θ, (9a)

v2θ =
1
r

(
G − H

r2

)
sin θ, (9b)

for the fluid on the outside.
In addition, the general expressions of the hydrody-

namic pressure inside and outside the spherical cavity can
readily be determined from the momentum equation (1a),
to obtain

p1

η
= −2

(
A

r2
+ 10Er

)
cos θ, (10a)

p2

η
= −2G

r2
cos θ. (10b)

Having expressed the general solution of fluid motion
on both sides of the cavity, we now determine the six un-
known coefficients by applying the appropriate boundary
conditions: a) the no-slip conditions imposed at the par-
ticle surface, given by eqs. (4), b) the natural continuity
of the fluid velocity between the two sides of the cavity,
and c) the discontinuity of the fluid stress tensor due to
the presence of the elastic membrane. Mathematically, we
may formulate the problem at hand as

[vr] = 0, (11a)
[vθ] = 0, (11b)

[σθr] = ΔfS
θ + ΔfB

θ , (11c)

[σrr] = ΔfS
r + ΔfB

r , (11d)

where the notation [w] := w2(r = 1) − w1(r = 1) rep-
resents the jump of a quantity w across the membrane.
In spherical coordinates, the non-vanishing components
of the fluid stress tensor are expressed in the usual way
as [13,58]

σθr = η
(
vθ,r −

vθ

r
+

vr,θ

r

)
, (12a)

σrr = −p + 2ηvr,r, (12b)

where comma in indices denotes a spatial partial deriva-
tive. Furthermore, Δfr and Δfθ stand for the radial and
circumferential traction jump across the cavity, where the
superscripts S and B stand for the shear and bending re-
lated parts, respectively.

The boundary conditions stated by eqs. (11) possess
a structure analogous to that of Marangoni flow. In this
context, Tsemakh et al. [43] considered the locomotion of
a viscous drop encapsulating another smaller drop that
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serves as a source of a soluble surfactant. The tangen-
tial stresses at the interface are balanced by interfacial
forces due to gradients in the surface tension. Conse-
quently, the drops undergo an axisymmetric motion driven
by Marangoni effect. It has been demonstrated that, when
the drops are not concentric, the inner drop moves toward
the surface of the larger drop. Here, however, we consider
the driven motion of the encapsulated particle when sub-
jected to an imposed force. The tangential and normal
hydrodynamic stresses are balanced by the elastic forces,
which react back on the surrounding fluid to resist defor-
mation. Therefore, unlike a surfactant-covered fluid-fluid
interface, which, due to concentration gradients and sur-
face tension effects, introduce discontinuities in the stress
tensor, elastic membranes stand apart as these disconti-
nuities are intrinsically induced by shear and bending de-
formation modes.

Continuing, the traction due to shear elasticity accord-
ing to the Skalak model reads

ΔfS
θ = −2κS

3
(
(1 + 2C)ur,θ + (1 + C)uθ,θθ

+(1 + C)uθ,θ cot θ −
(
(1 + C) cot2 θ + C

)
uθ

)
,

(13a)

ΔfS
r =

2κS

3
(1 + 2C) (2ur + uθ,θ + uθ cot θ) , (13b)

where κS is the shear modulus, and C is a dimensionless
number, commonly known in the blood flow community
as Skalak parameter [59–63]. The latter is defined as the
ratio between the area expansion modulus κA and the
shear modulus κS. Moreover, ur and uθ denote the mem-
brane radial and circumferential displacements, respec-
tively. These are related to the fluid velocity in Fourier
space by the no-slip relation imposed at r = 1. Specifi-
cally [64]

vα|r=1 = iω uα, α ∈ {r, θ}. (14)
Additionally, we include a membrane resistance to-

ward bending, which can be modeled using the celebrated
Helfrich model [55, 65], or by assuming a linear isotropic
model for the bending moments following a thin-shell
theory approach [66]. The two formulations are equiva-
lent for a planar membrane but not necessarily for mem-
branes of arbitrary geometry [67]. Considering first a lin-
ear isotropic model, the traction jumps due to bending are
given by [68,69]

ΔfB
θ = κB

( (
1 − cot2 θ

)
ur,θ + ur,θθ cot θ + ur,θθθ

)
, (15a)

ΔfB
r = κB

( (
3 cot θ + cot3 θ

)
ur,θ − ur,θθ cot2 θ

+2 cot θur,θθθ + ur,θθθθ

)
, (15b)

where κB is the membrane bending modulus. The traction
jump according to Helfrich model reads [67]

Δf = −2κB

(
2(H2 − K + H0H) + Δ‖

)
(H − H0)n,

(16)
where H and K are the mean and Gaussian curvatures,
respectively, given by

H =
1
2

bα
α, K = det bβ

α, (17)

with bβ
α being the mixed version of the curvature ten-

sor [70]. The other quantities are the spontaneous curva-
ture H0, which we take as the initial undeformed shape,
the vector normal to the spherical cavity n, and the
Laplace-Beltrami operator Δ‖ [71]. Accordingly, bending
introduces a discontinuity only in the normal traction,
such that

ΔfB
θ = 0, (18a)

ΔfB
r = κB

(
4ur + (5 + cot2 θ) cot θ ur,θ + (2 − cot2 θ)ur,θθ

+2 cot θ ur,θθθ + ur,θθθθ

)
. (18b)

It is worth mentioning here that the traction jumps due
to membrane bending depend only on the normal (radial)
displacement. This behavior is in contrast to the traction
jumps due to shear, which, for curved membranes, depend
on both the normal and tangential displacements.

Employing the no-slip conditions stated by eqs. (4) to-
gether with the boundary conditions imposed at the mem-
branes, stated by eqs. (11), and solving for the unknown
coefficients, we obtain

A = −6bUλ
(
(1 + 2C)(1 − b5)α + 5

)
, (19a)

D = 5bUλα(1 + 2C)
(
1 − b2

)
, (19b)

E = −3bUλα(1 + 2C)(1 − b2), (19c)
F = 2b3Uλ

(
(1 + 2C)(1 − b3)α + 5

)
, (19d)

G = A, (19e)
H = 2bUλ

(
(1 + 2C)

(
1 − b5

)
α + 5b2

)
, (19f)

where we have defined

iα =
2κS

3ηω
, (20)

as a characteristic number associated with membrane re-
sistance towards shear, and

λ−1 := 40 + 2α(1 − b)(1 + 2C)
(
4 − b(1 + b)

(
1 − 9b2

))
.

(21)
Interestingly, both the linear isotropic and Helfrich bend-
ing models lead to analogous expressions of the stream
functions. Therefore, the flow field for a particle concentric
with the cavity is solely determined by membrane shear
resistance and bending does not play a role.

2.1 Particle mobility

The exact analytical solution obtained for the stream func-
tions can be used to assess the effect of the elastic cavity
on the motion of a nearby particle, notably for the calcu-
lation of the hydrodynamic self-mobility function.

The force exerted by the fluid on the sphere is cal-
culated from the stream function using the formula (see
p. 115 of [24])

F2 = ηπ

∫ π

0

ρ3 ∂

∂r

(
E2ψ1

ρ2

)
r dθ = 8πηA, (22)
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which is equivalent to the expression given by Stimson and
Jeffery [72]. Here ρ = r sin θ denotes the polar distance.
We define the membrane correction factor K as the ratio
between the drag in the presence of the outer spherical
membrane and the drag in a bulk fluid, such that F2 =
−6πηbUK. Then,

K =
4((1 + 2C)(1 − b5)α + 5)

20 + α(1 − b)(1 + 2C)(4 − b(1 + b)(1 − 9b2))
.

(23)
Equivalently, the fluid-mediated hydrodynamic inter-

actions can also be assessed by determining the correction
to the particle self-mobility function, defined in a scaled
form as

Δμ

μ0
:=

1
K

− 1 = −5
4

bα(1 + 2C)(1 − b2)2

5 + α(1 + 2C)(1 − b5)
, (24)

where μ0 = 1/(6πηb) is the usual bulk mobility. Not
surprisingly, the frequency-dependent particle mobility is
solely determined by membrane shear properties. At lead-
ing order in b, eq. (24) can be expanded as

Δμ

μ0
= −5

4
α(1 + 2C)

5 + α(1 + 2C)
b + O(b3), (25)

and is commonly denominated the mobility correction in
the point-particle approximation. Taking α → ∞, corre-
sponding to an infinite shear modulus, or equivalently, to
a vanishing frequency, we obtain

lim
α→∞

Δμ

μ0
= −5

4
b(1 − b2)2

1 − b5
= −5

4
b + O(b3). (26)

For a rigid spherical cavity with no-slip boundary con-
ditions at the inner surface, the cavity does not move and
thus creating an additional resistance to the motion of the
particle. Accordingly, the particle mobility is obtained as

μR = lim
α→∞

μ − 1
6πη

, (27)

where the subscript R stands for rigid, and the term sub-
tracted on the right-hand side is the bulk mobility of the
cavity. Scaling by the particle bulk mobility, the correction
for a hard cavity reads

ΔμR

μ0
= −b

(
1 +

5
4

(1 − b2)2

1 − b5

)
= −9

4
b + O(b3). (28)

The latter result is in full agreement with the solution
by Happel and Brenner [24], and with the solution by
Aponte-Rivera and Zia [41], who accounted for the par-
ticle finite size up to the 5th order in b. Therefore, apart
from a term b, the mobility in the vanishing frequency
limit for an elastic cavity, as given by eq. (26), is identical
to that obtained inside a rigid cavity given by eq. (28). In-
deed, the additional term is due to the fact that the rigid
cavity remains at rest while the elastic cavity necessarily
undergoes translational motion.

Fig. 2. (Color online) The scaled self-mobility correction ver-
sus the scaled frequency β inside a spherical elastic cavity
whose membrane is endowed with pure shear (green), pure
bending (red) of both shear and bending rigidities (black). The
small solid particle has a radius b = 1/10, concentric with a
large spherical cavity of unit radius. For the membrane parame-
ters, we take C = 1 and a reduced bending modulus EB = 8/3.
The analytical predictions are shown as solid lines for the imag-
inary parts and as dashed lines for the real parts. Since the self-
mobility is solely determined by membrane shear resistance,
the green and black lines are indistinguishable. Symbols refer
to the boundary integral simulations where squares are for the
real part and circles are for the imaginary part. The horizontal
dashed line represents the vanishing frequency limit predicted
by eq. (26).

In a way analogous to a planar elastic membrane [73],
we define the characteristic frequency for shear as β :=
6Bηhω/κS, where B := 2/(1 + C), and h = 1 − R is the
distance from the particle center to the closest point on
the cavity surface, such that h = 1 for concentric spheres.
In fig. 2, we show the scaled correction to the frequency-
dependent self-mobility versus the scaled frequency β.
Here the particle has a radius b = 1/10, concentric with a
spherical elastic cavity of unit radius. We consider the sit-
uations where the membrane is endowed with pure shear
(green), pure bending (red), or both rigidities (black). We
take a Skalak parameter C = 1 and a reduced bending
modulus EB := κB/(h2κS) = 8/3.

We observe that the correction to the particle mobil-
ity depends uniquely on membrane shear resistance, and
thus in full agreement with our theoretical calculations.
The real part of the hydrodynamic mobility correction
(shown as dashed line) is a logistic-like function whereas
the imaginary part exhibits the typical peak structure at
intermediate frequencies around β ∼ 1. The latter is a
clear signature of the memory effect induced by the elas-
tic nature of the membrane on the system. In the high
frequency limit, the correction to the mobility vanishes
and thus the behavior in a bulk fluid is recovered. In the
low frequency limit, the correction approaches that pre-
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dicted theoretically by eq. (26), being the same, apart
from a term b, as the hard cavity limit given by eq. (28).
A perfect agreement is obtained between the exact ana-
lytical calculations and the numerical simulations we have
performed using a completed double layer boundary inte-
gral method.

2.2 Cavity motion

In the following, we examine the motion of the cavity in-
duced by a concentric solid particle translating along the
z direction. For that purpose, we define the pair-mobility
function μ12 as the ratio between the capsule velocity V1

and the force exerted by the solid particle on the fluid.
The net translational velocity of the cavity can be com-
puted by volume integration of the z component of the
fluid velocity inside the cavity. Specifically [74]

V1(ω) =
2π

Ω

∫ π

0

∫ 1

b

v1z(r, θ, ω) r2 sin θ dr dθ, (29)

where Ω := 4π/3 is the volume of the undeformed cavity
and v1z = v1r cos θ−v1θ sin θ is the fluid velocity along the
z direction. The radial and circumferential velocities are
given by eqs. (8). This leads to the pair-mobility function,
written in a scaled form as

6πημ12 =
3
2

(
1 − b2

)

−α

4
(1 + 2C)(1 − b)3(1 + b)(3b2(2 + b) + 2(1 + 2b))

5 + α(1 + 2C)(1 − b5)
.

The first term on the right-hand side of the latter equa-
tion represents the bulk contribution stemming from the
Stokeslet solution in an unbounded medium, whereas the
second term is the frequency-dependent correction due to
the presence of the elastic cavity. The correction can there-
fore be expressed as a Debye-like model with a single re-
laxation time, given by

τ =
15

2(1 + 2C)(1 − b5)
η

κS
. (30)

At leading order in b, the scaled pair-mobility given by
eq. (30) reads

6πημ12 =
3
2
− α

2
1 + 2C

5 + α(1 + 2C)
+ O(b2). (31)

Taking α → ∞, eq. (30) yields

lim
α→∞

6πημ12 =
(1 − b2)(4 + b3(5 − 9b2))

4(1 − b5)
= 1 + O

(
b2

)
.

(32)
We further mention that the hydrodynamic force act-

ing by the fluid on the cavity internal surface S1 is readily
determined by integrating the normal stress vector over
the surface, to obtain

F1 = −
∫

S1

σ · er dS = −8πηAez, (33)

Fig. 3. (Color online) The pair-mobility function scaled by
1/(6πη) versus the scaled frequency for a membrane cavity
endowed with pure shear (green), pure bending (red) or both
rigidities (black). The analytical prediction given by eq. (30)
is shown as dashed and solid lines for the real and imagi-
nary parts, respectively. Symbols refer to the corresponding
BIM simulations. The horizontal dashed line in the low fre-
quency regime corresponds to the limit predicted theoretically
by eq. (32). Here we use the same particle/membrane param-
eters as in fig. 2.

which is found to be the same in magnitude but opposite
in sign as the force F2 acting by the fluid on the solid
particle.

In fig. 3 we show the scaled pair-mobility function ver-
sus the scaled frequency β using the same parameters as
in fig. 2. For a membrane with pure bending, the real part
of the pair-mobility amounts to (3/2)(1 − b2) while the
imaginary part vanishes, corresponding to the behavior in
a bulk fluid. In contrast to that, a membrane endowed
with shear resistance shows a richer dynamics, where the
pair-mobility depends strongly on the actuation frequency.
Indeed, the pair-mobility for a membrane possessing both
shear and bending rigidities is undistinguished from that
of a membrane with a pure shear. An excellent agreement
is obtained between the analytical theory and boundary
integral simulations.

Analogous exact analytical predictions using the
stream function technique can in principle be carried out
for any arbitrary position within the spherical cavity. The
general solution may conveniently be expressed in terms
of an infinite series involving Legendre polynomials [24].
Nevertheless, due to the complex nature of the underlying
boundary conditions, the resolution is laborious and non-
trivial. In order to overcome this difficulty, we will employ,
as an alternative way, a fundamentally different approach
based on the image solution technique to compute the flow
field induced by a Stokeslet acting inside a spherical elastic
cavity. This will result in the computation of the hydrody-
namic mobility function in the point-particle approxima-
tion, valid when b � 1, as is detailed in the next section.
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3 Singularity solution

The following image solution technique has originally been
proposed by Fuentes et al. [38,39], who computed the flow
field induced by a point force acting outside a spherical
drop. The same approach has been employed by some of
us in earlier works [68, 75] to address the fluid motion in-
duced by a point force acting nearby a spherical elastic
membrane with shear and bending rigidities. It is worth
mentioning that this method has recently been employed
by Shaik and Ardekani to calculate the Stokeslet singular-
ity outside a drop covered with an incompressible surfac-
tant [76].

The fluid flow inside the cavity can be written as a
sum of two distinct contributions

v1 = vS + v∗, (34)

where, vS is the velocity field induced by a point force
acting at the particle position x2, and v∗ is the image
solution required to satisfy the boundary conditions stated
by eqs. (11), in addition to the regularity conditions

|v1| < ∞, as r → 0, (35a)
v2 → 0, as r → ∞. (35b)

Now we briefly sketch the main resolution steps. First,
the velocity vS due to the Stokeslet is written in terms
of spherical harmonics, which are then transformed into
harmonics based at x1 via the Legendre expansion. Sec-
ond, the image system solution v∗ and the solution out-
side the cavity v2 are, respectively, expressed as interior
and exterior harmonics based at x1 using Lamb’s gen-
eral solution [77, 78]. The last step consists of determin-
ing the series unknown expansion coefficients by satisfying
the boundary conditions at the membrane surface, given
by eqs. (11). We note that the hydrodynamic fields are
expanded in terms of harmonics such that the regularity
conditions stated by eqs. (35) are satisfied.

3.1 Stokeslet solution

We begin with writing the Stokeslet acting at x2,

vS
i = GijFj =

1
8πη

(
Fi

1
s

+ Fj(x − x2)i∇2j

1
s

)
, (36)

where s := |x − x2|. Here ∇2j := ∂/∂x2j stands for the
nabla operator taken with respect to the singularity posi-
tion x2. Using Legendre expansion, the harmonics based
at x2 can be expanded as

1
s

=
∞∑

n=0

Rn ϕn(r, θ), (37)

where the unit vector d := (x1 − x2)/R = −ez, the po-
sition vector r = x − x1, and r := |r|. Furthermore, ϕn

are the harmonics of degree n, related to the Legendre
polynomials of degree n by [79]

ϕn(r, θ) :=
(d · ∇)n

n!
1
r

=
1

rn+1
Pn(cos θ). (38)

For the axisymmetric case, the force is exerted along
the unit vector d, and can thus be written as F = Fd. By
making use of the identities

∇2R
n = −nRn−1 d, (d · ∇2)d = 0, (39)

eq. (36) therefore becomes

vS = − F

8πη

∞∑
n=0

Rn−1
[
(n − 1)R d + n r

]
ϕn. (40)

Hence, the Stokeslet at x2 is written in terms of harmonics
based at x1. Note that the terms with dϕn in eq. (40) are
not independent harmonics. For their elimination, we will
use [68]

dϕn =
1

2n + 1
[
∇ϕn−1 − r2∇ϕn+1 − (2n + 3)r ϕn+1

]
,

leading after substitution into eq. (40) to

vS =
F

8πη

∞∑
n=1

[(
n − 2
2n − 1

r2Rn−1 − n

2n + 3
Rn+1

)
∇ϕn

−2(n + 1)
2n − 1

Rn−1rϕn

]
. (41)

For future reference, we will state explicitly the projected
velocity components onto the radial (normal) and circum-
ferential (tangential) directions. For that purpose, we will
make use of the following identities:

er · ∇ϕn = −n + 1
r

ϕn, (42a)

er · rϕn = rϕn, (42b)
eθ · rϕn = 0, (42c)

leading to the final expression of the Stokeslet solution

vS
r =

F

8πη

∞∑
n=1

[
−n(n + 1)

2n − 1
rRn−1 +

n(n + 1)
2n + 3

Rn+1

r

]
ϕn,

vS
θ =

F

8πη

∞∑
n=1

(
n − 2
2n − 1

r2Rn−1 − n

2n + 3
Rn+1

)
ψn,

where we have defined

ψn := eθ · ∇ϕn =
1
r

∂ϕn

∂θ
. (43)

The pressure can directly be determined from the integra-
tion of eq. (1a), to obtain

pS =
F

8π

∞∑
n=1

−2nRn−1ϕn. (44)

We further note that ϕn and ψn constitute sets of in-
dependent harmonics satisfying the properties∫ π

0

ϕnϕm sin θ dθ =
2

2n + 1
δmn

r2n+2
, (45a)

∫ π

0

ψmψn sin θ dθ =
2n(n + 1)

2n + 1
δmn

r2n+4
. (45b)

In the following, the image system solution in addition
to the solution inside the cavity will be derived.
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3.2 Image system solution

For the image system solution inside the cavity, we use
Lamb’s general solution [78, 80], which can be written in
terms of interior harmonics based at x1 as

v∗ =
F

8πη

∞∑
n=1

[
An

(
n + 3

2
r2n+3 ∇ϕn

+
(n + 1)(2n + 3)

2
r2n+1rϕn

)

+Bn

(
r2n+1∇ϕn + (2n + 1)r2n−1rϕn

) ]
. (46)

After making use of eqs. (42a) through (42c), the pro-
jected components of the image system solution read

v∗r =
F

8πη

∞∑
n=1

[
n(n + 1)

2
r2n+2An + nr2nBn

]
ϕn, (47a)

v∗θ =
F

8πη

∞∑
n=1

(
n + 3

2
r2n+3An + r2n+1Bn

)
ψn, (47b)

while the solution for the pressure field inside the cavity
is obtained as

p∗ =
F

8π

∞∑
n=1

(n + 1)(2n + 3)Anr2n+1ϕn. (48)

3.3 Solution outside the cavity

We use Lamb’s general solution which can be written in
terms of exterior harmonics based at x1 as

v2 =
F

8πη

∞∑
n=1

[
an

(
− n − 2

2
r2 ∇ϕn + (n + 1) rϕn

)

+bn∇ϕn,

]
, (49)

which can be projected onto normal and tangential com-
ponents, to obtain

v2r =
F

8πη

∞∑
n=1

[
n(n + 1)

2
ran − n + 1

r
bn

]
ϕn, (50a)

v2θ =
F

8πη

∞∑
n=1

(
−n − 2

2
r2an + bn

)
ψn. (50b)

Lastly, the pressure field outside the cavity can then be
presented as

p2 =
F

8π

∞∑
n=1

n(2n − 1)anϕn. (51)

Having expressed the general solution for the velocity
and pressure fields, we now proceed for the determination
of the unknown coefficients inside the cavity An and Bn,
and outside the cavity an and bn.

3.4 Determination of the series coefficients

3.4.1 Continuity of velocity

The continuity of the radial and circumferential velocities
as stated by eqs. (11a) and (11b) leads to

an

2
− bn

n
=

An

2
+

Bn

n + 1
− Rn−1

2n − 1
+

Rn+1

2n + 3
,

−n − 2
2

an + bn =
n + 3

2
An+Bn+

n − 2
2n − 1

Rn−1−nRn+1

2n + 3
.

Solving these two equations for an and bn, the coefficients
outside the cavity can be expressed in terms of those inside
as

an =
2n + 3

2
An +

2n + 1
n + 1

Bn − 2
2n − 1

Rn−1, (52a)

bn =
n(2n + 1)

4
An +

n(2n − 1)
2(n + 1)

Bn − n

2n + 3
Rn+1.

(52b)

The coefficients An and Bn can be determined from the
traction jump equations stemming from membrane shear
and bending resistances. In order to probe the effect of
these two elasticity modes in more depth, we will consider
in the following idealized membranes with pure shear or
pure bending resistances.

3.4.2 Discontinuity of stress tensor

a) Shear contribution. We first consider a membrane with
only-shear resistance, such as that of a typical artificial
capsule designed for drug delivery [61, 81, 82]. It follows
from eqs. (11), representing the tangential and normal
traction jumps, that

[vθ,r] = −α
(
(1 + 2C)vr,θ + (1 + C) (vθ,θθ + vθ,θ cot θ)

−
(
(1 + C) cot2 θ + C

)
vθ

)∣∣
r=1

, (53a)[
− p

η

]
= −α(1 + 2C)vr,r|r=1 , (53b)

where, again, iα := 2κS/(3ηω) is the shear parameter. In
order to handle the derivatives with respect to r, we will
make use of the identities

ϕn,r = −n + 1
r

ϕn,

ψn,r = −n + 2
r

ψn. (54)

By making use of the orthogonality property given by
eq. (45b), together with

∫ π

0

ψm

(
ψn,θθ + ψn,θ cot θ − ψn cot2 θ

)
sin θ dθ =

−2n(n + 1)(n2 + n − 1)
2n + 1

δmn

r2n+4
, (55)
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the tangential traction jump equation given by eq. (53a)
leads to

(2n + 1)(2n + 3)An +
2(4n2 − 1)

n + 1
Bn =

α
(
(1 + 2C)(n + 1) (nan − 2bn)

+ (1 − (1 + C)n(n + 1)) (−(n − 2)an + 2bn)
)
. (56)

Further, the shear-related contribution to the normal
traction equation, given by eq. (53b) results in

(n − 2)(2n + 1)(2n + 3)An +
2n(4n2 − 1)

n + 1
Bn =

α(1 + 2C)(n + 1)
(
−n2an + 2(n + 2)bn

)
. (57)

Equations (56) and (57) together with eqs. (52) form a
closed system of linear equations, amenable to direct reso-
lution via the standard substitution technique. We obtain

An =
αn(n + 2)

K

(
2n + 1
2n + 3

Rn+1 K+ − Rn−1 K−

)
, (58a)

Bn =
α(n + 1)

2M

(
2n + 1
2n − 1

Rn−1M− − n(n + 2)Rn+1M+

)
,

(58b)

where the coefficients K, K±, M and M± have rather
complex and lengthy expressions and are therefore moved
to appendix A. Particularly, by considering α → ∞, cor-
responding to taking an infinite shear modulus, or, a van-
ishing frequency limit, we obtain

lim
α→∞

An =
2n + 1
2n + 3

Rn+1 − Rn−1, (59a)

lim
α→∞

Bn =
(n + 1)(2n + 1)

2(2n − 1)
Rn−1 − n + 1

2
Rn+1. (59b)

The latter limits correspond to the solution obtained for
a point force acting inside a rigid spherical cavity with
no-slip boundary conditions. Moreover, both an and bn

vanish in this limit in which the fluid outside the cavity is
at rest.

b) Bending contribution. Next, we consider a membrane
endowed with pure bending resistance such as that of a
fluid vesicle [83–86]. As already pointed out, two mod-
els are commonly used to describe membrane resistance
towards bending. We will first provide explicit analytical
expressions by assuming a linear isotropic model for the
bending moments. The corresponding traction jump equa-
tions given by eqs. (11c) and (11d) read

[vθ,r] = αB

( (
1 − cot2 θ

)
vr,θ + vr,θθ cot θ + vr,θθθ

)∣∣
r=1

,

(60a)[
− p

η

]
= αB

( (
3 cot θ + cot3 θ

)
vr,θ − cot2 θ vr,θθ

+2 cot θ vr,θθθ + vr,θθθθ

)∣∣
r=1

, (60b)

where, iαB := κB/(ηω) is the bending parameter. By mak-
ing use of eqs. (45b) and (55), the tangential traction jump

reads

(2n + 1)(2n + 3)An +
2(4n2 − 1)

n + 1
Bn =

αB(n2 + n − 2)(n + 1) (nan − 2bn) . (61)

Continuing, using eq. (45a) together with the orthog-
onality relation

∫ π

0

ϕm

( (
3 cot θ + cot3 θ

)
ϕn,θ − ϕn,θθ cot2 θ

+2ϕn,θθθ cot θ + ϕn,θθθθ

)
sin θdθ =

2n(n − 1)(n + 1)(n + 2)
2n + 1

δmn

r2n+2
, (62)

the normal traction jump reads

(n − 2)(2n + 1)(2n + 3)An +
2n(4n2 − 1)

n + 1
Bn =

−αBn(n − 1)(n + 1)2(n + 2) (nan − 2bn) . (63)

Solving the system of linear equations arising from
eqs. (52) together with (61) and (63) leads to the deter-
mination of the unknown coefficients. We obtain

An =
αBn2(n + 2)2(n2 − 1)

KB

(
2n − 1
2n + 3

Rn+1 − Rn−1

)
,

(64a)

Bn =
αBn(n + 2)(n − 1)(n + 1)2(n2 + 2n − 2)

2KB

×
(

2n + 3
2n − 1

Rn−1 − Rn+1

)
, (64b)

where

KB = 2αBn6 + 6αBn5 − αBn4 + 4(2 − 3αB)n3

+(12 − αB)n2 + 2(3αB − 1)n − 3. (65)

By taking the limit αB → ∞, which corresponds to taking
an infinite membrane bending modulus, or a vanishing
forcing frequency, the two coefficients read

lim
αB→∞

An =
n(n + 2)

2n2 + 2n − 3

(
2n + 3
2n − 1

Rn−1 − Rn+1

)
,

lim
αB→∞

Bn =
(n + 1)(n2 + 2n − 2)

2(2n2 + 2n − 3)

(
2n+3
2n−1

Rn−1−Rn+1

)
,

which are found to be different from the solution previ-
ously obtained when taking α → ∞ in a shear-only mem-
brane, as can be seen from eqs. (59).

We next consider the Helfrich model for membrane
bending, which leads to the traction jumps equations

[vθ,r]=0, (66a)[
− p

η

]
=αB

(
4vr + (5 + cot2 θ) cot θ vr,θ

+(2 − cot2 θ)vr,θθ+2 cot θvr,θθθ+vr,θθθθ

)∣∣
r=1

.

(66b)
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After making use of the orthogonality property (45a),
together with

∫ π

0

ϕm

(
4ϕn + (5 + cot2 θ) cot θ ϕn,θ + (2 − cot2 θ)ϕn,θθ

+2 cot θ ϕn,θθθ + ϕn,θθθθ

)
sin θ dθ =

2(n + 2)2(n − 1)2

2n + 1
δmn

r2n+2
,

we obtain the two following equations:

(2n + 1)(2n + 3)An +
2(4n2 − 1)

n + 1
Bn = 0,

(n − 2)(2n + 1)(2n + 3)An +
2n(4n2 − 1)

n + 1
Bn =

−αB(n + 2)2(n − 1)2(n + 1)(nan − 2bn),

which, upon making use of eqs. (52), and solving for the
coefficients An and Bn, yields

An =
αB(n−1)2n(n+1)(n+2)2

KH

(
2n−1
2n+3

Rn+1−Rn−1

)
,

(67a)

Bn =
αB(n−1)2n(n+1)2(n+2)2

2KH

(
2n+3
2n−1

Rn−1−Rn+1

)
,

(67b)

where

KH = 2αBn6 + 6αBn5 − 2αBn4 + 2(4 − 7αB)n3

+12n2 + 2(4α − 1)n − 3. (68)

Similarly, by taking the limit αB → ∞, eqs. (66) leads to

lim
αB→∞

An =
1
2

(
2n − 1
2n + 3

Rn+1 − Rn−1

)
, (69a)

lim
αB→∞

Bn =
n + 1

4

(
2n + 3
2n − 1

Rn−1 − Rn+1

)
. (69b)

Clearly, these coefficients also differ from those obtained
previously for a shear-only membrane given by eqs. (59).

3.5 Particle mobility

The leading-order particle mobility is obtained by evalu-
ating the image system solution given by eq. (46) at the
particle position as

v∗|x=x2
= ΔμF , (70)

leading to the particle mobility correction, which can con-
veniently be written in a scaled form as an infinite series

Δμ

μ0
= −3b

8

∞∑
n=1

[
n(n + 1)Rn+1An + 2nRn−1Bn

]
. (71)

In the particular case of R = 0, which corresponds to
the concentric case earlier considered in sect. 2, only the

term with n = 1 remains. We thus recover the leading-
order self-mobility

Δμ

μ0

∣∣∣∣
R=0

= −3b

4
B1

= −5
4

α(1 + 2C)
5 + α(1 + 2C)

b, (72)

in full agreement with eq. (25), obtained using the stream
function technique. Clearly, the mobility correction de-
pends only on membrane resistance towards shear since
B1 = 0 for bending-only membranes (see eqs. (64b)
and (67b) for the general expressions of Bn using the two
bending models).

Now, by taking the limit α → ∞ in eq. (71), the cor-
rection to the particle self-mobility reads

lim
α→∞

Δμ

μ0
= b

(
1 − 9

4
1

1 − R2

)
. (73)

The same limit is obtained when considering a membrane
with pure shear. For a large cavity radius, eq. (73) reduces
to the leading-order mobility correction near a no-slip pla-
nar wall, as first obtained using the method of reflection
by Lorentz [87]. Specifically,

lim
α→∞

Δμ

μ0
= −9

8
b

h
+ O

(
1
a

)
. (74)

By considering the coefficients (59a) and (59b) associ-
ated with a hard cavity, the scaled correction to the par-
ticle mobility reads [34,40]

ΔμR

μ0
= −9

4
b

1 − R2
, (75)

being identical to the leading-order correction given for
R = 0 by eq. (28). Again, the mobility inside a hard cavity
is recovered in the vanishing frequency limit apart from a
term b, as explained by eq. (27).

In fact, the sum over n in eq. (71) and the limit when
α → ∞ cannot be swapped. In other words, taking the
limit when α → ∞ before evaluating the sum as is the
case for a hard cavity does not lead to the same result as
evaluating the sum first and then taking the limit, as is
done for an elastic cavity. This is justified by the fact that
the dominated convergence theorem does not hold here
for the infinite series given by eq. (71).

Now, by considering a membrane with pure bending
resistance modeled by Helfrich model, the mobility cor-
rection in the vanishing frequency limit reads

lim
αB→∞

Δμ

μ0
= b

(
1 − 15

8
1

1 − R2

)
. (76)

We further recover for large cavity radius the well-known
mobility correction near a planar interface separating two
fluids having the same viscosity, namely [88–90]

lim
αB→∞

Δμ

μ0
= −15

16
b

h
+ O

(
1
a

)
. (77)
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Fig. 4. (Color online) The scaled frequency-dependent mo-
bility correction versus the scale frequency inside a spherical
elastic cavity with pure shear (green), pure bending (red) and
both shear and bending (black). The thin and thick red lines
correspond to the linear isotropic model and Helfrich model re-
spectively. The particle has a radius b = 1/10 and is positioned
at R = 4/5. The horizontal dashes lines shown in black and
red correspond to the vanishing-frequency limits predicted by
eqs. (73) and (76), respectively. Here we use the same mem-
brane parameters as in fig. 2.

In fig. 4, we show the scaled frequency-dependent self-
mobility correction versus the scaled frequency β for a
particle of radius b = 1/10 located at R = 4/5 inside a
spherical cavity. Unlike the situation where the particle is
concentric with the cavity, a contribution from bending
resistance arises. We observe that Helfrich model (thick
red lines) leads to a better agreement with the BIM sim-
ulations than the linear isotropic model (thin red lines).
Considering the shear-only membrane, we observe that a
second peak of more pronounced amplitude arises in the
low frequency regime. This peak does not occur in planar
membranes but has been observed previously for a particle
moving outside a large spherical capsule [68, 75]. In fact,
the peak is attributed to the fact that the traction jumps
due to shear involve a contribution from the normal dis-
placement, in contrast to planar membranes, where these
traction jumps depend solely on the in-plane tangential
displacements. Only one single peak however occurs for a
bending-only membrane for both models since the traction
jumps due to bending involve only the normal deforma-
tions and thus explaining the absence of the second peak.

It is worth noting that the calculation of the hydrody-
namic mobility function based upon the singularity solu-
tion is valid only in the far-field limit, i.e. when h � b.
For separation distances h ∼ b, the far-field approxima-
tion falls apart. In this situation, it becomes necessary to
consider higher-order reflections. However, even though h
is taken as only one particle diameter, i.e. h = 2b, the
point-particle approximation is remarkably found to yield
a good prediction of the particle mobilities when compared
with fully resolved BIM simulations.

3.6 Cavity motion

Finally, the cavity translational velocity is computed by
integrating the fluid velocity as stated by eq. (29), with
the exception that the radial variable r is now integrated
between 0 and 1. We find that only the term with n = 1
of the series remains, leading to

μ12 = − 1
8πη

(
A1 + B1 − 2 +

2
5

R2

)
, (78)

which, upon substitution of the coefficients with their ex-
pressions, yields

6πημ12 =
3
2
− 3

10
R2 − 5 − 3R2

10
α(1 + 2C)

5 + α(1 + 2C)
. (79)

Interestingly, even for R 	= 0, the pair-mobility de-
pends solely on membrane shear. Therefore, bending does
not play a role, i.e. in a way similar to that previously
observed for two concentric spheres. As α → ∞, the pair-
mobility tends to unity, independently of the value of R.
In particular, for R = 0 we recover the leading-order so-
lution given by eq. (31), obtained using the stream func-
tion technique. The correction to the pair-mobility follows
a Debye-like model with a relaxation time given by the
leading-order term in eq. (30).

Similarly, it can be shown that the force exerted by
the fluid on the internal surface of the cavity is equal in
magnitude but opposite in sign to the friction force F2

acting on the particle.
In fig. 5 we show the scaled pair-mobility function ver-

sus the scaled frequency using the same parameters as
in fig. 4. The pair-mobility for a bending-only membrane
remains unchanged and amounts to 3/2 − 3R2/10 in the
whole range of forcing frequencies. For a cavity with a
finite shear resistance, the real part is a monotonically in-
creasing function of frequency that varies between 1 and
3/2−3R2/10, while the imaginary parts exhibits the usual
bell-shaped behavior with the typical peak at β ∼ 1. Our
analytical predictions are favorably compared with BIM
simulations.

Due to the motion of the encapsulated particle, the
imbalance in the hydrodynamic stress tensor across the
membranes leads to cavity deformation. The latter can be
determined from the flow velocity field via the no-slip con-
dition imposed at r = 1. In Fourier space, this condition
reads

u(θ) =
v1(r, θ)

iω

∣∣∣∣
r=1

=
v2(r, θ)

iω

∣∣∣∣
r=1

. (80)

Neglecting the bending contribution, and assuming
that the shear parameter |α| � 1, the series coefficients
an and bn scale as α−1 ∼ iωη/κS. Therefore, the fluid
velocity field v2 ∼ iωF/κS. It follows from eq. (80) that
the membrane displacement field u ∼ F/κS. As a result,
the deformation of the cavity becomes important when
F/κS ∼ h. In the present work, we have considered a force
amplitude F � κSh such that the membrane deformation
remains sufficiently small.
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Fig. 5. (Color online) The pair-mobility function scaled by
1/(6πη) versus the scaled frequency for cavity with only-shear
(green), only-bending (red) or both shear and bending (black).
The particle has a radius b = 1/10 and is positioned at
R = 4/5. The analytical prediction stated by eq. (79) is shown
as dashed and solid lines for the real and imaginary parts,
respectively, while symbols are the BIM simulations. The hor-
izontal dashed line in the low frequency regime corresponds to
one. For the membrane parameters, see fig. 2.

4 Conclusions

In this paper, we have presented a fully analytical the-
ory of the low-Reynolds-number motion of small parti-
cle slowly moving inside a large spherical elastic cavity.
We have modeled the membrane resistance towards shear
forces by Skalak model which incorporates into a sin-
gle strain energy functional both the resistance towards
shear and area conservation. We have assessed two differ-
ent models for bending, namely Helfrich model and the
linear isotropic model.

We have first solved the underlying equations of fluid
motion in the relatively simple scenario, where the par-
ticle is concentric with the large spherical cavity. In this
situation, exact analytical solutions are obtained and ex-
pressed in a closed mathematical form using the stream
function technique. We have found that the solution of
the flow problem is solely determined by membrane shear
and that bending does not play a role. Moreover, we have
shown that, in the vanishing frequency limit, the particle
hydrodynamic mobility is higher than that obtained in-
side a rigid cavity with no-slip boundary conditions at its
inner surface. This behavior has been justified by the fact
that a steady rigid cavity exerts an additional hindrance in
particle motion, reducing particle hydrodynamic mobility
in a significant way.

For an arbitrary position of the particle within the
spherical cavity, we have employed the image solution
technique to find analytical expression of the axisymmet-
ric flow field induced by a point force acting on the fluid
domain. This leads to expressions of the mobility function

in the point-particle framework, valid when the particle
size is smaller than that of the spherical elastic cavity.
Considering the motion of the cavity, we have found that
the pair-mobility function depends uniquely on membrane
shear properties. This behavior has been shown to be true
for any arbitrary value of particle eccentricity. For example
setups, we have favorably compared our analytical predic-
tions with fully resolved numerical simulations performed
using a completed double layer boundary integral method.

The solution presented in the present work is limited
to the axisymmetric situation in which the velocity field is
decomposed onto radial and circumferential components.
The asymmetric situation in which the particle is moving
tangent to the spherical cavity can be explored in future
studies. In conjunction with the results obtained here, the
motion induced by external forces directed along an arbi-
trary direction, can thus, in this way, be determined.
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Appendix A. Mathematical expression

The analytical expressions of the function appearing in
eqs. (58a) and (58b) are given for the series coefficient An

by

K+ = 2(1 + C)n3 + ((2α + 5)C + α + 1)n2 + (1 + C)n

−(1 + 2C)(1 + α),

K− = 2(1 + C)n3 + ((2α + 3)C + α − 1) n2 + (1 + C)n

−(1 + 2C)α + 1,

K = 4(1 + C)αn5 +
(
16 + (1 + 2C)α2 + 10(1 + C)α

)
n4

+2
(
16 + (1 + 2C)α2 + 3(1 + C)α

)
n3

+
(
8 − (1 + 2C)α2 − (1 + C)α

)
n2

−
(
8 + 2(1 + 2C)α2 + (7 + C)α

)
n − 3(1 + α),
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and for Bn by

M− = −12 + 2(1 + C)n5 + ((2α + 5)C + α + 1) n4

+ ((4α + 3)C + 2α − 5) n3 + (9 − (1 + 2C)α) n2

−2 ((1 + 2C)α − 5) n,

M+ = 2(1 + C)n3 + ((2α + 3)C + α − 1) n2

+(1 + C)n − α(1 + 2C) + 1,

M = 4(1 + C)αn5 +
(
16 + (1 + 2C)α2 + 10(1 + C)α

)
n4

+2
(
16 + (1 + 2C)α2 + 3(1 + C)α

)
n3

+
(
8 − (1 + 2C)α2 − (1 + C)α

)
n2

−
(
8 + 2(1 + 2C)α2 + (C + 7)α

)
n − 3(1 + α),
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84. B. Kaoui, T. Krüger, J. Harting, Soft Matter 8, 9246

(2012).
85. B. Kaoui, J. Harting, Rheol. Acta 55, 465 (2016).
86. A. Nait-Ouhra, A. Farutin, O. Aouane, H. Ez-Zahraouy,

A. Benyoussef, C. Misbah, Phys. Rev. E 97, 012404 (2018).
87. H.A. Lorentz, Abh. Theor. Phys. 1, 23 (1907).
88. S.H. Lee, R.S. Chadwick, L.G. Leal, J. Fluid Mech. 93,

705 (1979).
89. S.H. Lee, L.G. Leal, J. Fluid Mech. 98, 193 (1980).
90. T. Bickel, Phys. Rev. E 75, 041403 (2007).


