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Abstract. The structure of the velocity field induced by internal solitary waves of the first and second
modes is determined. The contribution from second-order terms in asymptotic expansion into the horizontal
velocity is estimated for the models of almost two- and three-layer fluid for solitons of positive and negative
polarity. The influence of the nonlinear correction manifests itself firstly in the shape of the lines of zero
horizontal velocity: they are curved and the shape depends on the soliton amplitude and polarity, while for
the leading-order wave field they are horizontal. Also the wave field accounting for the nonlinear correction
for mode I has smaller maximal absolute values of negative velocities (near-surface for the soliton of
elevation, and near-bottom for the soliton of depression) and larger maximums of positive velocities. For
solitary waves of negative polarity, which are the most typical for hydrological conditions in the ocean
for low and middle latitudes, the situation is the opposite. The velocity field of the mode-II soliton in a
smoothed two-layer fluid reaches its maximal absolute values in a middle layer instead of near-bottom and
near-surface maximums for mode-I solitons.

1 Introduction

Studies of nonlinear internal waves’ (IWs) dynamics have
quite a long history, originating in the first half of the
twentieth century. Such waves have an influence on the
hydrological regime of natural water bodies due to hori-
zontal and vertical exchange, redistribution of heat, mix-
ing of water, forming of the bottom topography etc. It is
proved that such waves can create considerable loads and
bending moments on the underwater parts of the offshore
platforms, as well as contribute to the sediment resuspen-
sion. In the context of the impact on the environment
internal solitary and breather-like waves are of greatest
interest as the most intensive formations. Solitary waves
are observed almost everywhere on the ocean shelves and
they are clearly visible on satellite images [1].

The shapes and properties of these waves are studied
well enough in the framework of various theoretical mod-
els, in particular within the weakly nonlinear theory of
long waves, represented by the Korteweg-de Vries equa-
tion and its extended versions, such as the Gardner equa-
tion, the modified Korteweg-de Vries equation, “2 + 4”
Korteweg-de Vries equation [2], and others. In the major-
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ity of classical studies devoted to internal solitary waves
emphasis placed on the dynamics of such waves during
the propagation over a rough bottom (see, e.g., paper [3],
dedicated to the transformation of solitons over a slop-
ing bottom and the paper [4] devoted to the dynamics of
breather-like waves in the shelf zone of the Baltic sea),
the interaction of such waves, or estimation of such local
characteristics, as near-bottom and near-surface velocity
and pressure variations at the bottom and on the pillars
induced by the propagating waves. However, it is neces-
sary to represent the structure of the velocity field in the
entire water column for a more complete understanding
of what is happening in the ocean during the propagation
of internal solitary waves. Some peculiarities of the inter-
nal solitary waves’ spatial structure are investigated in the
framework of the Korteweg-de Vries equation [5] and the
modified Korteweg-de Vries equation for the ocean with
two pycnoclines [6].

In the present paper we briefly describe the governing
equations of a weakly nonlinear theoretical model for in-
ternal waves of different vertical modes (sect. 2). Then we
give the detailed description of the vertical structure, 2D
fields (vertical plane) of horizontal velocity, its nonlinear
correction and vorticity for mode-I and mode-II intenal
solitary waves with moderate amplitude in a quasi–two-
layer (sect. 3) and a quasi–three-layer (sect. 4) fluid. The
results are discussed and conclusions are given in sect. 5.
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2 Theoretical model

The weakly nonlinear theory of long IWs in a vertical
section of stratified basin assumes that the internal wave
field (in particular, the vertical isopycnal displacement
ζ(z, x, t)) can be expressed as a series (up to the 2nd order
in amplitude) [7]:

ζ(z, x, t) = η(x, t)Φ(z) + η2(x, t)F (z), (1)

where x is horizontal axis, z is vertical axis directed up-
wards, t is time, η(x, t) describes the wave propagation
along the axis of propagation and its evolution in time.
Function Φ(z) (the vertical mode) describes the vertical
structure of the long linear internal wave, and F (z) is the
first nonlinear correction to Φ(z). Φ(z) is a solution of
an eigenvalue problem, which can be written in the form
(in Boussinesq approximation usually valid for natural sea
stratifications):

d2Φ

dz2
+

N2(z)
c2

Φ = 0, Φ(0) = Φ(H) = 0. (2)

Here the eigenvalue c is the phase speed of the long linear
internal wave, H is the total water depth, N(z) is the
Brunt-Väisälä frequency determined by the expression

N2(z) = − g

ρ(z)
dρ(z)
dz

, (3)

g is the gravity acceleration and ρ(z) is the undisturbed
density profile. It is well known that problem (2) has an
infinite number of eigenvalues c1 > c2 > c3 > . . . and cor-
responding eigenfunctions Φ1, Φ2, Φ3, . . . . Though there
is a number of ways to normalize the solution for high
modes, it is convenient to do this in such a way that the
first extremum, counting from the surface, is equal to 1:
Φ(zmax) = 1 [8].

In this case the leading-order solution η(x, t) coincides
with the isopycnal surface displacement at zmax:

ς(x, zmax, t) = η(x, t). (4)

The function F (z) can be found as a solution of the
inhomogeneous boundary problem:

⎧
⎪⎨

⎪⎩

d2F

dz2
+

N2

c2
F = −α

c

d2Φ

dz2
+

3
2

d
dz

[(
dΦ

dz

)2
]

,

F (0) = F (H) = 0,
(5)

A unique solution for eq. (5) can be obtained using an
additional normalising condition F (zmax) = 0.

In this model, the function η(x, t) satisfies the non-
linear evolution equation (extended Korteweg–de Vries
(KdV) or Gardner equation):

∂η

∂t
+

(
c + αη + α1η

2
) ∂η

∂x
+ β

∂3η

∂x3
= 0. (6)

This equation compared to the classic KdV equation
contains cubic nonlinearity, the presence of which pro-
vides better predictions of the wave form, especially in

the coastal zone. The coefficients of this equation are de-
termined through the Φ(z) and F (z):

β =
c
∫ H

0
Φ2dz

2
∫ H

0
(dΦ

dz )2dz
, α =

3c
∫ H

0
(dΦ

dz )3dz

2
∫ H

0
(dΦ

dz )2dz
,

α1 =
1

2
∫ H

0

(
dΦ
dz

)2
dz

∫ H

0

dz

{

9c
dF

dz

(
dΦ

dz

)2

− 6c

(
dΦ

dz

)4

+ 5α

(
dΦ

dz

)3

− 4α
dF

dz

dΦ

dz
− α2

c

(
dΦ

dz

)2
}

. (7)

Let us consider the single-soliton solution of eq. (6):

η(x, t) =
A

1 + Bch(γ(x − V t))
, (8)

where the soliton velocity V = c+βγ2 is expressed through
the inverse width of the soliton, γ, and the soliton ampli-
tude, a, or the extremum of the function (8), is

A = a(1+B), γ2 =
Aα

6β
, B2 = 1+

6α1βγ2

α2
. (9)

When the cubic nonlinear coefficient α1 is negative,
soliton solutions of single polarity, with αη > 0, exist with
amplitudes between zero and a limiting value

alim =
α

|α1|
. (10)

With the use of eq. (1) the components of the veloci-
ties of particles (u,w) in the vertical section (x, z) can be
expressed as follows:
⎧
⎪⎨

⎪⎩

u(x, z, t) = ul + un,

ul = cη(x, t)
dΦ

dz
, un =

(
α

2
dΦ

dz
+ c

dF

dz

)

η2,
(11)

⎧
⎨

⎩

w(x, z, t) = wl + wn,

wl =−c
∂η

∂x
Φ(z), wn =−(αΦ(z)+2cF (z))η

∂η

∂x
.
(12)

The horizontal velocity component u gives the greatest
contribution into the local current speed. This is typical
for long waves and this characteristic of the internal wave
field must be considered in the analysis of near-bottom
processes connected with the sediment transport. The first
terms in eqs. (11) and (12) correspond to the leading order
of the asymptotic expansion. The remaining additives re-
sult from the first nonlinear correction in the asymptotic
series. Thus, for the forecast of the local current speed one
has to determine the isopycnal displacement η(x, t) at the
level of zmax (see (5)), the vertical IW mode Φ(z) and its
nonlinear correction F (z). The amplitude of η(x, t) is not
known a priori, it depends upon a large number of back-
ground conditions of internal wave generation, and can be
found by means of the detailed simulation.
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Fig. 1. Left panel: model vertical profile of the sea water den-
sity; right panel: Brunt-Väisälä frequency.

Fig. 2. Left panel: typical form of the first linear mode function
for internal waves; right panel: nonlinear correction to it.

3 IWs in quasi–two-layer fluid

The structure of the linear part and the contribution of
the correction terms to the horizontal velocity can be esti-
mated for the model stratification. A typical density strat-
ification profile is taken as a two-layer fluid with a smooth
density change on the pycnocline

ρ(z) =
Δρ

2
th

z − zp

wp
, (13)

where Δρ is the value of the density “jump” (assumed
here equal to 10 kg/m3), zp is the position of the “jump”
center along the vertical (here it corresponds to 20m from
the surface, with a total depth of 100m), wp is the typical
width of the “jump” along the vertical coordinate (here
it is equal 6m). This profile of the fluid density and the
vertical profile of the Brunt-Väisälä frequency are shown
in fig. 1.

The computed function Φ(z) and the nonlinear correc-
tion F (z) for the first (lowest) mode are shown in fig. 2 for
such density stratification. The coefficients of the Gardner

Table 1. The coefficients of the Gardner equation for internal
waves of the first and second modes.

Mode number 1 2

c [m/s] 1.13 0.32

β [m3/s] 357 18

α [s−1] −0.006 0.007

α1 [m−1 · s−1] −0.0018 0.0017

Fig. 3. Left panel: wave field represented as a vertical displace-
ment of isopycnic lines at different horizons, for the first mode
soliton with the amplitude equal to 10 m (the solid lines are
the linear component, the dashed lines are vertical displace-
ments with consideration of the nonlinear correction). Right
panel: the horizontal velocity field corresponding to a linear
wave field on the left panel (the bold solid line is the isoline
corresponding to the zero velocity value; thin solid lines are the
isolines of positive values; the dashed lines are the contours of
negative values; the interval between the contours corresponds
to 0.05c).

equation (6) under such background conditions for two
modes are given in table 1.

It can be noted that for the first mode both nonlin-
ear coefficients α and α1 are negative and in such a fluid
only solitons of negative polarity bounded by the limiting
amplitude alim = −33.3m can exist.

The contours of equal density (isopycnic lines) and the
contours of the horizontal velocity in the linear approxi-
mation for the internal solitary wave of the first mode with
an amplitude equal to H/10 = 10m are shown in fig. 3.

The spatial structure of the nonlinear correction to the
horizontal velocity and its total field are shown in fig. 4.
These figures demonstrate a quasi–two-layer structure of
the horizontal velocity with a thin transition layer of width
2wp. The particle velocity is considered positive when the
direction of its motion coincides with the direction of the
soliton’ propagation (here it is the direction of the posi-
tive values of the horizontal axis). For the chosen density
stratification, the particle velocities for a negative-polarity
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Fig. 4. Left panel: nonlinear correction to the horizontal ve-
locity; right panel: field of the horizontal velocity with consid-
eration of nonlinear correction for the internal solitary wave of
the first mode. (Solid line: isoline, corresponding to the zero
velocity value; the interval between the contours corresponds
to 0.05c.) Both characteristics are normalized to the phase ve-
locity c of the first mode.

soliton are positive in the upper layer and negative in the
lower layer.

The velocities in the upper and lower layers reach the
maximum absolute values at the surface and at the bottom
of the fluid, respectively. The influence of the nonlinear
correction is manifested primarily in the form of an isoline
of zero horizontal velocity (shown in bold in fig. 4): it is a
horizontal line in the linear approximation (fig. 3, right),
but when the nonlinear correction is taken into account, it
becomes curved. Its curvature and polarity depend on the
soliton amplitude. Accounting for the nonlinear correction
also leads to a slight increase in the absolute values of the
particle velocity near the bottom and to an insignificant
decrease in near-surface velocities. Thus, the linear part
of the horizontal velocity in (11) gives an upper estimate
for the flow velocity at the surface and a lower estimate
for the bottom.

The vertical structure of the second mode and its non-
linear correction F (z) are shown in fig. 5. The function
Φ(z) vanishes once inside the interval (0,H) in this case.
As one can see from table 1, both nonlinear coefficients
are positive for the second mode. In this case, there are
two families of soliton solutions: the first one with positive
polarity, for which there is no upper or lower amplitude
limitation, and the second family with negative polarity,
for which the absolute value of the amplitude should be
greater than the modulus of the amplitude of the algebraic
soliton (aalg = −2α/α1).

The displaced isopycnic lines and the contours of the
horizontal velocity in the linear approximation during the
propagation of the internal solitary wave of the second
mode with an amplitude of H/20 = 5m (having a positive
polarity at the maximum of the linear mode) are shown in

Fig. 5. Structure of the second linear mode function for inter-
nal waves (left); nonlinear correction (right).

Fig. 6. Left panel: wave field represented as a vertical displace-
ment of isopycnic lines at different horizons, for the second-
mode soliton with an amplitude equal to H/20 (the solid lines
are the linear component, the dashed lines are the vertical
displacements with consideration of the nonlinear correction).
Right panel: the horizontal velocity field corresponding to a lin-
ear wave field on the left panel (the bold solid line is the isoline
corresponding to the zero velocity value, thin solid lines are the
isolines of positive values, the dashed lines are the contours of
negative values; the interval between the contours corresponds
to 0.05c).

fig. 6. Such solitary waves of the second mode are usually
called “convex” [9].

The nonlinear correction to the horizontal velocity and
its total value for an internal solitary wave of second mode
are shown in fig. 7. Maximal absolute values of the hor-
izontal velocity are positive located inside the fluid. The
range of positive and negative velocity values is asymmet-
ric with respect to zero (the maximal absolute values of
negative velocities are much less than the maximal posi-
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Fig. 7. Left panel: nonlinear correction to horizontal velocity.
Right panel: field of the horizontal velocity with consideration
of the nonlinear correction for the internal solitary wave of the
second mode. Both characteristics are normalized to the phase
velocity c of the second mode.

Fig. 8. Left panel: vorticity for the internal solitary wave of
the first mode, shown in fig. 2. Right panel: vorticity for the
internal solitary wave of the second mode, shown in fig. 6.
Vorticity is normalized to the maximal value of the Brunt-
Väisälä frequency (fig. 1).

tive velocities’ values). Near-bottom and near-surface ve-
locities are small in relation to velocities in the “middle”
layer of the fluid and they are negative. There are two lines
of zero velocity in the water column. Taking into account
the nonlinear correction for the vertical structure of the
mode leads to their bending.

The vorticity (see, e.g. [10]) for internal solitary waves
of the first and second mode is shown in fig. 8. It is nor-
malized to the maximal value of the Brunt-Väisälä fre-
quency N(z). As we can see from this graph, vorticity for
the first-mode solitary wave is negative and its absolute
values reach 0.4Nmax. The vorticity for the second-mode
solitary wave has both positive and negative values in the
interval [−0.9Nmax; 1.2Nmax].

Fig. 9. Left panel: model vertical profile of a three-layer fluid;
right panel: Brunt-Väisälä frequency.

Table 2. The coefficients of the Gardner equation for internal
waves of the first and second modes in the three-layer fluid.

Mode number 1 2

c [m/s] 1.34 0.64

β [m3/s] 563 66.8

α [s−1] −0.045 0.0595

α1 [m−1 · s−1] 0.00014 −0.0065

4 IWs in quasi–three-layer fluid

It is obvious that the spatial structure of the velocity field
of a solitary wave will differ substantially for both modes if
we will use, for example, a three-layer model for which the
wave regimes in the framework of the Gardner equation
were studied in detail in [5].

The profile of the density for a three-layer fluid and the
vertical profile of the Brunt-Väisälä frequency for such a
fluid are shown in fig. 9.

The coefficients of the Gardner equation (6) under such
background conditions are given in table 2.

The function Φ(z) and the nonlinear correction F (z)
for the first mode are shown in fig. 10 for such density
stratification.

The contours of equal density and the contours of the
horizontal velocity in the linear approximation during the
propagation of the internal solitary wave of the first mode
with an amplitude of −H/10 are shown in fig. 11.

The structure of the isopycnal displacement field and
the field of horizontal velocity for the soliton of the first
mode in the selected three-layer fluid are qualitatively sim-
ilar to those for the soliton of the first mode in a two-layer
fluid. The spatial structure of the nonlinear correction to
the horizontal velocity and its total value for such a case
are shown in fig. 12. Here we can also see a qualitative
agreement with the results presented in fig. 4.
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Fig. 10. Left panel: typical form of the first linear mode func-
tion for internal waves in a three-layer fluid; right panel: non-
linear correction to it.

Fig. 11. Left panel: wave field represented as a vertical dis-
placement of isopycnic lines at different horizons, for the first-
mode soliton with an amplitude equal to −H/10 (the solid
lines are the linear component, the dashed lines are the verti-
cal displacements with consideration of the nonlinear correc-
tion). Right panel: the horizontal velocity field corresponding
to a linear wave field on the left panel (the bold solid line is
the isoline corresponding to the zero velocity value, thin solid
lines are the isolines of positive values, the dashed lines are the
contours of negative values; the interval between the contours
corresponds to 0.05c).

The vertical structure of the second mode and the first
nonlinear correction to it are shown in fig. 13 for a three-
layer fluid.

The displaced isopycnic lines and the contours of the
horizontal velocity in the linear approximation during the
propagation of the internal solitary wave of the second
mode with an amplitude of H/20 that has a positive po-
larity at the maximum of the linear mode (this wave is also
of convex type) are shown in fig. 14. The spatial structure

Fig. 12. Left panel: nonlinear correction to the horizontal ve-
locity; right panel: field of the horizontal velocity with consid-
eration of the nonlinear correction for the internal solitary wave
of the first mode. (Solid line: isoline, corresponding to the zero
velocity value; the interval between the contours corresponds
to 0.05c.)

Fig. 13. Left panel: typical form of the second linear mode
function for internal waves in a three-layer fluid; right panel:
nonlinear correction to it.

of the horizontal velocity for an internal solitary wave of
the second mode in a three-layer fluid is shown in fig. 15
in detail. From these figures, we can see that the spa-
tial structure of the horizontal velocity field and the field
of isopycnal displacements induced by an internal solitary
wave of the second mode are qualitatively similar in a two-
and three-layer fluid. Maximal absolute values of the hori-
zontal velocity are obtained in the mid-layer and near the
surface for this example. The spatial structure of the non-
linear correction to the horizontal velocity in a three-layer
fluid differs markedly from such a nonlinear correction in
a two-layer fluid.
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Fig. 14. Left panel: wave field represented as a vertical
displacement of isopycnic lines at different horizons, for the
second-mode soliton with an amplitude equal to H/20 (the
solid lines are the linear component, the dashed lines are the
vertical displacements with consideration of the nonlinear cor-
rection). Right panel: the horizontal velocity field correspond-
ing to a linear wave field on the left panel (the bold solid line is
the isoline corresponding to the zero velocity value, thin solid
lines are the isolines of positive values, the dashed lines are the
contours of negative values; the interval between the contours
corresponds to 0.05c).

Fig. 15. Left panel: nonlinear correction to the horizontal ve-
locity in the three-layer fluid. Right panel: field of the hori-
zontal velocity with consideration of the nonlinear correction
for the internal solitary wave of the second mode. Both char-
acteristics are normalized to the phase velocity of the second
mode.

The vorticity for internal solitary waves of the first
and second mode in the quasi–three-layer fluid is shown
in fig. 16. The features of the distribution of this charac-
teristic for the first and second modes in the quasi–three-
layer fluid are in many respects similar to those for internal
waves of the first and second modes in the quasi–two-layer
fluid.

Fig. 16. Left panel: vorticity for the internal solitary wave of
the first mode (fig. 11). Right panel: vorticity for the internal
solitary wave of the second mode (fig. 14). Vorticity is normal-
ized to the maximal value of the Brunt-Väisälä frequency in
the quasi–three-layer fluid (fig. 9).

5 Conclusion

The structure of the velocity field induced by internal soli-
tary waves of the first and second modes in a quasi–two-
and –three-layer fluid is investigated in the framework of
the weakly nonlinear theory of ideal fluid. We show that
nonlinear corrections in the asymptotic series are impor-
tant and lead to additional values of the velocities near
the sea surface, influencing the satellite images of internal
waves from space. Similarly, accounting for the nonlinear
correction of velocities in the near-bottom layer results
into the intensification of the sediment transport.

We would like also to mention that the thickness of the
pycnocline(s) is rather small in the considered models of
density stratification. As a result, the horizontal velocity
of the current in the soliton varies in a jump-like man-
ner in the pycnocline(s), providing the conditions for the
development of a Kelvin-Helmholtz instability and turbu-
lization of the current in the case when the viscosity is
taken into account [11]. Turbulent processes in the pyc-
nocline and the near-bottom layer will influence particle
transport, and here nonlinear corrections to the velocity
field should be also accounted.

The results were obtained in the framework of the state task
programme in the sphere of the scientific activity of the Min-
istry of Education and Science of the Russian Federation
(projects No. 5.4568.2017/6.7 and No. 5.1246.2017/4.6) and
with the support of the Russian President’s scholarship for
young scientists and graduate students SP-2311.2016.5.
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