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Abstract. We study the Brownian dynamics of a solid particle on a vibrating solid surface. Phenomenolog-
ically, the interaction between the two solid surfaces is modeled by solid friction, and the Gaussian white
noise models the vibration of the solid surface. The solid friction force is proportional to the sign of rela-
tive velocity. We derive the Fokker-Planck (FP) equation for the time-dependent probability distribution
to find the particle at a given location. We calculate analytically the steady state velocity distribution
function, mean-square velocity and diffusion coefficient in d-dimensions. We present a generic method of
calculating the autocorrelations in d-dimensions. This results in one dimension in an exact evaluation of
the steady state velocity autocorrelation. In higher dimensions our exact general expression enables the
analytic evaluation of the autocorrelation to any required approximation. We present approximate ana-
lytic expressions in two and three dimensions. Next, we numerically calculate the mean-square velocity and
steady state velocity autocorrelation function up to d = 3. Our numerical results are in good agreement
with the analytically obtained results.

1 Introduction

One of the corner stones on which non-equilibrium statisti-
cal physics is based is the Langevin equation, phenomeno-
logically describing a large particle interacting with a sys-
tem of small interacting particles [1]. While the noise af-
fecting it is somewhat difficult to measure directly, the
drag force, which is proportional to the velocity of the
particle, is easily accessible to macroscopic measurements.
Another frictional force, perhaps even more important in
most human activities is solid friction between touching
macroscopic solid objects [2–4]. The main difference be-
tween the two is the way in which they depend on the
velocity. While the drag force is proportional and oppo-
site in direction to the velocity, the solid friction force is
just a constant and points in the opposite direction of the
velocity. The problem of solid friction is a very old prob-
lem, which arises in many contexts, ranging from geology
and engineering to physics and biology and to the study of
the dynamics of a mesoscopic systems [5–8]. Solid friction
is necessary in the study of stick-slip motion [9–12], dy-
namics of dense granular fluids [13–16], vibrated granular
media [17,18], pouring of granular particles on an inclined
plane and through a chute [19–22] as well as ratchet mo-
tion of a solid object on a vibrated surface [23,24].
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There exist experimental studies where solid frictional
interaction plays the crucial role. Goohpattader et al. [25]
studied the dynamics of a small object under solid friction
in the presence of bias and white noise. They have cal-
culated the displacement distribution experimentally and
numerically. They found that the distribution function is
non-Gaussian and that the variance of the distribution in-
creases with time. Later, Gnoli et al. [26, 27] studied the
dynamical properties of a granular rotor subjected to dry
friction and random excitation in a fluidized stationary
granular gas. In their study, the experimental results for
velocity distribution of the probe, autocorrelation func-
tion, and power spectra are in good agreement with the
analytical predictions.

The problem of Brownian motion with solid or dry
friction has also been studied extensively by using ana-
lytical techniques [28–31]. Dubkov et al. [32] studied the
phenomenological Langevin equation for the particle mo-
tion in the presence of solid friction and interacting with
a non-Gaussian thermal bath. Talbot et al. [33] studied
the dynamics of a granular rotor immersed in a bath of
thermalized particles in the presence of a frictional torque
on the axis. Numerically, they found two scaling regimes.
In the large friction limit, the asymptotic behavior of the
Boltzmann-Lorentz equation describes the dynamics while
in the limit of large rotor mass and small friction, the
dynamics are described by the Fokker-Planck (FP) equa-
tion. Baule and Sollich [34] studied an exactly solvable
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nonlinear model to describe the directed motion of an ob-
ject in the presence of dry friction and shot noise with
zero mean. In their study, the object shows a unidirec-
tional motion above a critical dry friction strength, re-
sulting in a singular stationary velocity distribution. Sano
and Hayakawa [35] studied the motion of an adiabatic pis-
ton under solid friction in a model system. They found
that dry friction can reverse the direction of motion of
the piston which causes a discontinuity or a cusplike sin-
gularity in the velocity distribution functions of the pis-
ton. Kanazawa et al. [36] studied a nonlinear Langevin
equation with non-Gaussian white noise. They obtained
an asymptotic formula of the steady distribution function
for a large friction coefficient.

Thus, the solid friction between the individual grains
and the confinements is of considerable importance in
granular flow. One of the most important unsolved prob-
lems in the field of dense granular flow is to obtain well-
defined hydrodynamic equations. In this context, the for-
mation of plugs in the presence of solid friction causes
complications [13–15]. Also, most of the studies mentioned
above are in one dimension. However, in reality, the fric-
tional interaction is present in higher dimensions. There-
fore, before tackling the more complicated issues of dense
granular flow, we should first address the simplest prob-
lem: a single particle affected by noise and solid friction in
higher dimensions. In this paper, we analytically and nu-
merically obtain the velocity distribution function, mean-
square velocity, velocity autocorrelation function and dif-
fusion coefficient in d > 1 for the above problem.

The organization of the paper is as follows. In sect. 2,
we describe the details of the model and analytical re-
sults. Numerical results are discussed in sect. 3. Finally,
we conclude the paper in sect. 4.

2 Details of the model and analytical results

The model for single particle Brownian motion in the pres-
ence of solid friction and noise was introduced some years
ago independently by de Gennes [37] and Hayakawa [38].
The model consists of a Langevin equation of the form

m
d�v

dt
= −μ

∣
∣
∣ �N

∣
∣
∣

�v

|�v | + �ξ(t), (1)

where m is the mass of the particle, �v its velocity, μ the
dynamic friction coefficient between the particle and the
d-dimensional system against which it rubs, �N the nor-
mal persistent force applied by that system and �ξ(t) is a
random force applied by the system to the particle due
to its vibration (or its thermal agitation, when the parti-
cle is extremely small [37]). The average random force is
assumed to obey

〈

�ξ(t) = 0
〉

and 〈ξi(t)ξj(t′)〉 = γδijδ(t − t′), (2)

where i and j denote Cartesian components. (Both au-
thors [37, 38] consider slightly more general forces on the

left-hand side of eq. (1) but in both cases solid friction and
noise play the dominant role.) The most realistic physical
realization of eq. (1) is the two-dimensional system, where
the particle is placed on a vibrating plane. The three-
dimensional realization is less clear, because the motion
of an intruder into a piece of dense material like wood or
concrete, for example, will leave an erratic bore in the ma-
terial and the effect of the particle meeting the bore again
must be taken into account. An intruder in dense sand,
for example might be perhaps a possible realization as the
bore is expected to close, in the wake of the intruder.

One of the most important quantities of physical in-
terest is the diffusion coefficient D. The expression for D
in d-dimensions is

D =
1
d

∫ ∞

0

〈�v(0) · �v(t)〉 dt. (3)

The quantity 〈�v(0) ·�v(t)〉 on the right-hand side of eq. (3)
is known as the velocity autocorrelation function (VACF).
Detailed calculations of the VACF and D are given later.

To proceed with a canonical form of the above
Langevin equation (eq. (1)), we rescale the velocity and
the time as

�v =
γ

mμ| �N |
�v ′, (4)

t =
γ

μ2| �N |2
t′, (5)

where �v′ and t′ are, respectively, the dimensionless velocity
and time. This results in the canonical form (dropping the
primes)

d�v

dt
= − �v

|�v | + �χ(t), (6)

where all the quantities are now dimensionless. The cor-
relations of the rescaled noise are given by 〈χi(t)χj(t′)〉 =
δijδ(t − t′). The resulting FP equation for the velocity
distribution, P (�v), is

∂P

∂t
= �∇v ·

[
1
2

�∇v +
�v

|�v |

]

P, (7)

where the gradient is with respect to �v. It is obvious from
the above that the normalized steady state (∂P

∂t = 0) is

Ps =
2d−1Γ (d/2)
πd/2Γ (d)

exp (−2|�v |) . (8)

The mean square velocity at steady state is easily obtained
from the above

〈

�v2
〉

s
=

1
4
d(d + 1). (9)

To continue to the steady state VACF, we must di-
gress a little in order to keep the present article self-
contained. In the interests of pedagogy, we present the
general framework for calculating the time-dependent cor-
relation function. We start by addressing the meaning
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of a general time-dependent steady state correlation of
the form 〈A(0)B(t)〉 with t ≥ 0. In the steady state, we
measure a function of the dynamical variables A. Conse-
quently, the system is not anymore in steady state. After
time t, during which the distribution is decaying towards
the steady state, we measure the quantity B which is an-
other function of the dynamical variables. We take the
product and then average. Denoting the dynamical vari-
ables by {xi}, we can express the required average in the
following way:

〈A(0)B(t)〉 =
∫

∏

dx
(1)
i dx

(2)
i Ps

{

x
(1)
l

}

P
{

x
(2)
l , t;x(1)

l

}

×A
{

x
(1)
l

}

B
{

x
(2)
l

}

, (10)

where Ps{x(1)
l } is the normalized steady state solution of

the FP equation; P{x(2)
l , t;x(1)

l } is the distribution func-
tion of the dynamical variables {x(2)

l } in which the set
{x(1)

l } plays the role of a set of parameters. The distribu-
tion P{x(2)

l , t;x(1)
l } is the solution of the FP equation for

the distribution of the variable {x(2)
l } at time t with the

initial condition

P
{

x
(2)
l , t;x(1)

l

}

=
∏

l

δ
(

x
(2)
l − x

(1)
l

)

. (11)

When the FP equation can be put in the form

∂P

∂t
=

∑

i

∂

∂xi

[
1
2

∂

∂xi
+

∂W

∂xi

]

P, (12)

we can obtain a more useful expression for the steady
state time-dependent correlation by transforming from
the above FP equation to an imaginary time Schrödinger
equation, by the standard transformation,

P = P 1/2
s ψ = exp(−W )ψ. (13)

The imaginary time Schrödinger equation has the form

∂ψ

∂t
= −Hψ, (14)

where

H =
∑

i

1
2

[
∂

∂xi
− ∂W

∂xi

] [
∂

∂xi
+

∂W

∂xi

]

. (15)

It is clear from the above equation that H is Hermitian,
non-negative definite with only a single eigenstate with
eigenvalue zero, the ground state exp(−W ).

Equations (13)–(15) will enable us to write the re-
quired time-dependent correlation in terms of the eigen-
states and eigenvalues of H. The next step is to express
P{x(2)

l , t;x(1)
l } in that way. We note first that

ψ
{

x
(2)
l , 0;x(1)

l

}

= P−1/2
s

{

x
(1)
l

}∏

l

δ
(

x
(2)
l − x

(1)
l

)

,

(16)

where the pre-factor of the product of delta functions
should have been taken as a function of the x

(2)
l ’s but

we are allowed to take it to be the same function of the
x

(1)
l ’s, because of the product of the δ functions multi-

plying it. The product
∏

l δ(x
(2)
l − x

(1)
l ) can be expressed

in terms of the eigenstates of H, that form a complete
orthonormal set as

∑

n φ∗
n{x

(1)
l }φn{x(2)

l }, where φn is a
normalized eigenstate of H with eigenvalue λn. Thus,

P
{

x
(2)
l , t;x(1)

l

}

=

P 1/2
s

{

x
(2)
l

}

P−1/2
s

{

x
(1)
l

}∑

n

φ∗
n

{

x
(1)
l

}

× exp (−λnt)φn

{

x
(2)
l

}

. (17)

This enables us immediately, by using eqs. (10) and (17),
to write the required time-dependent correlation in bra-
ket notation,

〈A(0)B(t)〉 =
∑

n

〈G|A|φn〉 exp (−λnt) 〈φn|B|G〉 for t > 0, (18)

where |G〉 is the ground state of the Hamiltonian, which
in the coordinate representation is just (the normalized)
exp(−W ). As we shall see in our specific problem below,
the autocorrelation function in dimensions higher than one
will be obtained as an approximate finite series. The fact
that for an autocorrelation (B = A) all the terms on the
right-hand side of the above, are positive, enables to write
down an exact inequality, which facilitates to estimate the
error when truncating the expression on the right-hand
side of eq. (18).

Let f(t) ≡ 〈A(0)A(t)〉. We define the N -th-order ap-
proximation of the autocorrelation function,

f(t)N =
∑

n(λn≤λN )

|〈φn|A|G〉|2 exp(−λnt), (19)

which clearly obeys

f(t)N−1 + [f(0) − f(0)N−1] exp (−λN t) > f(t) > f(t)N .
(20)

The above is practical, because in many cases, like in the
cases of the velocity correlation we are discussing in this
article, f(0) is most easily obtained.

Now we return to our problem. The dynamical vari-
ables are the component of the velocity vector and from
eq. (7), it is clear that the corresponding “classical poten-
tial” is W = |�v |.

We start with the one-dimensional problem, although
it was solved more than a decade ago by de Gennes [37],
because our solution is a demonstration of the general
method, described by eq. (18), which we will apply later
to higher dimensions. The one-dimensional Hamiltonian
is (eq. (15)),

H = −1
2

∂2

∂v2
+

1
2
− δ(v). (21)
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It is well known that the one-dimensional Hamiltonian
with an attractive δ-function potential has a single bound
state, exp(−|v|), which is already normalized. The (δ-
function normalized) states in the continuum for which
the matrix element of v with the ground state are not zero,
are the antisymmetric eigenstates of the Hamiltonian,
1√
π

sin(kv) for positive k, with eigenvalues λk = 1
2 + k2

2 .
The matrix elements are easily calculated and the final
result is

〈v(0)v(t)〉= 16
π

exp
(

− t

2

)∫ ∞

0

dk
k2

[1+k2]4
exp

[

−
(

k2

2

)

t

]

,

(22)
which for large t behaves as t−3/2 exp(− t

2 ). For early
times, the autocorrelation function reduces to

〈v(0)v(t)〉 =
1
16

exp
(

− t

2

)
(

8 − 4t + 5t2
)

+ O(t3). (23)

The one-dimensional result above has already obtained
by de Gennes [37]. However, our above expression corrects
typographical errors in the de Gennes paper [37]. Concur-
rently with de Gennes, Hayakawa investigated the math-
ematical properties of the Langevin equation with solid
friction [38]. He obtained the steady state velocity dis-
tribution function under a uniform external field. Baule
et al. [39, 40] studied the sliding or slipping and stick-
slip motion using the path integral formalism in one di-
mension. Just et al. [41] studied a Langevin equation of
an object subjected to a viscous drag, an external force,
and a Coulomb-type friction in one dimension. Menzel and
Goldenfeld [42] studied the FP equation in the presence of
both solid friction and viscous friction in d = 1. The eigen-
value analysis of their FP equation reduces to a quantum
mechanical harmonic oscillator in the presence of a delta
potential. Later, Menzel [43] studied the FP equation in
the presence of nonlinear friction and drift using the same
technique. In their study, the Hamiltonian corresponding
to the FP equation is equivalent to the Hamiltonian of a
quantum particle in a box. So, obviously, the more inter-
esting systems to study are the higher-dimensional sys-
tems.

In d-dimensions, the “quantum Hamiltonian” is given
by

H = −1
2
∇2

v +
1
2
− (d − 1)

2
1
|�v | . (24)

Since the most important physical dimension for our dis-
cussion is d = 2 and perhaps also d = 3, we will concen-
trate here only on these dimensions.

For the two-dimensional case, we note that 〈�v(0) ·
�v(t)〉 = 2〈vx(0)vx(t)〉, where the subscript x denotes the x
Cartesian component of the vector. To calculate the lat-
ter autocorrelation function, we use the fact that vx =
|�v | cos(ϕ). This implies at once that only the eigen states
of H which have the form φn = Rn(v) cos(ϕ) (we use here
v instead of |�v | to simplify the notation) will have non-
vanishing matrix elements 〈φn|vx|G〉. The radial equation
can be readily solved just as for the 3d, ”hydrogen atom”
problem by the ansatz Rn(v) = pn(v) exp(−αnv), where

Table 1. Eigenstates and eigenvalues for two dimensions.

State Normalized wave function Eigenvalue

Ground state

r

2

π
exp(−v) λ0 = 0,

not relevant

R1(v)
1√
6π

„

2

3

«2

v exp
“

−v

3

”

λ1 =
4

9

R2(v)

r

3 · 23

π · 55

»

v− 2

15
v2

–

exp
“

−v

5

”

λ2 =
12

25

n ≥ 1 and pn is a polynomial of degree n. We present in
the following the long time behaviour of the autocorre-
lation function by considering the two lowest eigenvalues
entering eq. (18). The states entering the matrix elements
in two dimensions are given in table 1.

The matrix elements are now readily evaluated and the
long time autocorrelation function is

〈�v(0) · �v(t)〉 =
35

29
exp

(

−4
9
t

)

+
55

2 · 39
exp

(

−12
25

t

)

. (25)

For the three-dimensional case, we take 〈�v(0) · �v(t)〉 =
3〈vz(0)vz(t)〉, where vz denotes the z component of �v,
which equals to v cos(ϑ). The only states to be used for
the calculation of the matrix elements of vz are the ground
state and states of the form Rn(v) cos(ϑ). The normalized
ground state and the two states of the required form with
the lowest eigenvalues are summarized in table 2.

The corresponding long time 3d autocorrelation func-
tion is given by

〈�v(0) · �v(t)〉 =
215

39
exp

(

−3
8
t

)

+
37

213
exp

(

−4
9
t

)

. (26)

A number of remarks are in order here. Since the method
of obtaining the relevant bound states in any number of
dimensions and the corresponding eigenvalues is straight-
forward, it is possible to improve the expression to any
required accuracy. It has to be recalled though, that we
need a complete set of eigenstates and therefore, like in
one dimension, there is also a contribution of the states in
the continuum (states with eigenvalues of H larger than
1/2), which has to be taken into account.

Table 2. Eigenstates and eigenvalues for three dimensions.

State Normalized wave function Eigenvalue

Ground state

r

2

π
exp(−v) λ0 = 0,

not relevant

R1(v)
1

4
√

2π
v exp

“

−v

2

”

λ1 =
3

8

R2(v)
1√
2π

22

33

»

v − v2

6

–

exp
“

−v

3

”

λ2 =
4

9
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Fig. 1. Time evolution of 〈v2〉(t) for different spatial dimen-
sions, d, as mentioned. Numerical data is obtained by averaging
over N = 100 000 single particle trajectories. The different lines
represent the analytically obtained value of 〈v2〉s for different
value of d. Clearly, our analytical results are in good agreement
with the numerical results.

Now we return to the calculation of the diffusion co-
efficient D in eq. (3), which requires the VACF. Since
all the VACFs are calculated in dimensionless form, we
will rewrite eq. (3) in dimensionless units. Using eqs. (4)
and (5), D in eq. (3) reduces to (dropping primes of �v′

and t′)

D =
1
d

(

γ

mμ| �N |

)2 (

γ

μ2| �N |2

)
∫ ∞

0

〈�v(0) · �v(t)〉 dt, (27)

Clearly, the integral on the right-hand side of eq. (27)
is a constant, say Kd. This can be evaluated numerically
from the corresponding integral expressions for the VACF.
Therefore, eq. (27) yields

D =
Kd

d

γ3

m2μ4| �N |4
. (28)

Moreover, one can define the granular temperature, T ,
from the mean kinetic energy as

T =
∫ ∞

−∞
�v2P (�v )d�v. (29)

Using the dimensionless form of �v from eq. (4) in eq. (29),
we obtain T ∝ γ2. Combining this with eq. (28), we find
D ∝ T 3/2, in contrast to D ∝ T for usual Brownian mo-
tion [1].

3 Numerical results

Next, we solve eq. (6) numerically to obtain the 〈v2〉(t)
and 〈�v(0) · �v(t)〉 in d = 1, 2 and 3 respectively, using the
Euler-discretization scheme [44]. The discretized version
of eq. (6) is as follows:

v(t + Δt) = v(t) − sign[v(t)]Δt +
√

Δtn(t), (30a)

0 2 4 6 8
t

10
-3

10
-2

10
-1

〈v
(0

)v
(t

)〉
〈v

(0
)v

(t
)〉

〈v
(0

)v
(t

)〉

(a) d=1

0 2 4 6 8 10
t

10
-2

10
-1

10
0

(b) d=2

0 2 4 6 8 10 12 14
t

10
-2

10
-1

10
0

(c) d=3

e
-4t/9

e
-3t/8

Fig. 2. Plot of the velocity autocorrelation function (VACF)
vs. t in the steady state on linear-log scale. The numerical
results are shown by open circles. (a) The VACF in d = 1.
The solid line represents the result obtained by calculating the
exact VACF, given by eq. (22). (b) The VACF in d = 2. At
early times, the VACF decays as e−t/2. At later times, the
VACF decays as e−4t/9, shown by the solid line. (c) The VACF
in d = 3. In the early stage, the decay of the VACF is similar
to the case with d = 2. However in the late stage, the VACF
decays as e−3t/8 which is shown by the solid line.

with 〈n(t)n(t′)〉 = δtt′ for d = 1. Further,

vi(t + Δt) = vi(t) −
vi(t)
|v(t)|Δt +

√
Δtni(t), (30b)

with 〈ni(t)nj(t′)〉 = δijδtt′ in d > 1 with i = 1, . . . , d. Here
Δt is the discretized time step and n(t) is the Gaussian
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white noise of unit width. In the simulation, the numerical
value of Δt = 0.001 is used and the results are obtained
by averaging over 105 trajectories. At t = 0, we start with
zero initial velocity of the particle. The velocity of each
particle is updated according to eq. (30). In fig. 1, we plot
the time evolution of 〈v2〉(t) in different spatial dimen-
sions. Numerical details are given in the figure caption.
Clearly, in the steady state, the numerical values of 〈v2〉(t)
for long times agrees with the analytically obtained 〈v2〉s
in eq. (9) for all physical dimensions.

Figure 2 shows the velocity autocorrelation function
(VACF) in the steady state. Simulation details are given
in the figure caption. Starting from the initial condition,
the velocity of individual particle is updated up to t = 20,
when 〈v2〉(t) reaches steady state. Figure 2(a) shows the
VACF in one dimension. The numerical results obtained
from the simulation follows the exact analytical VACF
given by a numerical integration of eq. (22). For d > 1, we
have approximate solutions for the VACF. In fig. 2(b), the
VACF in d = 2 shows a crossover from e−t/2 at early times
to e−4t/9 at later times in agreement with the analytical
predictions, given by eq. (25). Of course, it is not easy to
numerically distinguish between the early time e−t/2 and
the late time e−4t/9 behavior. The early time behavior of
the VACF in d = 3 is similar to that in d = 2 as shown in
fig. 2(c). However, at the late stage, the VACF decays as
e−3t/8 as given by eq. (26).

4 Conclusion

Let us conclude our results presented here with a summary
and discussion. Here, we studied the Brownian motion of
a solid particle on a vibrating plate. Solid friction models
the interaction between two solid surfaces, which is pro-
portional to the direction of the relative velocity between
the two interacting surfaces. Gaussian white noise mod-
els the vibration of the plate. We obtain the steady state
velocity distribution function and mean-square velocity in
d-dimensions. The numerical results for the mean-square
velocity are in good agreement with the analytical results.
We also calculate analytically the velocity autocorrelation
function (VACF) up to d = 3 dimensions. In d = 1, we
have the exact form of the VACF followed by the numer-
ical result. However, for d > 1, we obtain an approximate
expression for the VACF. The numerical results show that
the VACF in the early stage decays as e−t/2 for both d = 2
and d = 3; and shows a crossover to e−4t/9 for d = 2 and
e−3t/8 for d = 3 in the late stage, which is in agreement
with the analytic results. Next, we calculate the diffusion
coefficient, D, which depends on μ and γ. We believe that
the results presented here will be useful for the further
study of rheology of dense granular matter.
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