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Abstract. Motivated by a recent experiment (C. Ulloa et al., Phys. Rev. E 89, 033004 (2014)), droplet
deformation in a flat microfluidic channel having a cross intersection with two inlet channels and two
outlet channels, i.e. hyperbolic flow, is numerically investigated. Employing the boundary element method
(BEM), we numerically solve the Darcy equation in the two dimensions and investigate droplet motion and
droplet deformation as the droplet enters the cross intersection. We numerically find that the maximum
deformation of droplet depends on droplet size, capillary number, viscosity ratio and flow rate ratio of the
two inlets. Our numerical scaling is in good agreement with the experimental scaling report.

1 Introduction

Microfluidics is a multidisciplinary field with a wide vari-
ety of applications in physics, biomedical, chemical biol-
ogy, oil industry and so on. Microfluidics is a field of fluid
dynamics which deals with the manipulation and control
of fluids in devices which have characteristic lengths in
the micrometer range. Indeed, the behavior of liquids in
the micro range greatly differs from the one in the macro
domain. Factors such as viscosity and surface tension are
playing an important role in microfluidics. One way to
study the behavior of liquid-liquid interface is to inves-
tigate droplet motion in microfluidic channels [1–4]. A
large number of studies have been carried out on droplet
motion in microchannels [5–9], as well as phenomena like
breakup [10,11], droplet coalescence [12–14], and droplet
deformation.

Droplet deformation in a flow field constitutes an inter-
esting field in the soft matter field. So far, droplet defor-
mation has been studied widely experimentally and nu-
merically in the literature. The first classical study of
droplet deformation has been reported by Taylor who
studied an isolated droplet in a simple shear flow field
when the droplet is located far enough from the channel
walls [15,16]. Rallison studied the deformation of small
viscous droplets and bubbles in a shear flow field [17].
Droplet deformation in the presence of a two-dimensional
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linear flow field has been experimentally investigated by
Bentley and Leal [18].

Recently, Brosseau et al. investigated the influence of
droplet confinement on its deformation, in a sudden ex-
pansion geometry. They have seen that droplet deforma-
tion in a microchannel strongly depends on droplet con-
finement in the channel before a sudden expansion region.
They have shown that in the geometry of a planar sud-
den expansion, the droplet maximum deformation follows
two regimes linked to its confinement in the microfluidic
channel [19]. They also investigated the influence and ad-
sorption of surfactants by following the idea of a microflu-
idic tensiometer. In a recent work, Ulloa et al. experimen-
tally studied droplet deformation in a diverging flow at
low Reynolds numbers and large aspect ratio of droplet
radius to channel height [20].

A series of numerical studies have been carried out to
investigate droplet deformation by using different numer-
ical methods. The effect of the surfactant-laden interface
on the droplet deformation in an extensional flow has been
numerically studied by Eggleton and Stebe [21]. Their nu-
merical results indicate that the behavior of droplet de-
formation is strongly influenced both by surfactant mass
transfer rate and concentration of surfactant present. Xi
and Duncan used a three-dimensional Lattice Boltzmann
model to simulate the droplet deformation in a straight
channel. They have also simulated the effect of larger
shear rates and have successfully evolved the sheared sin-
gle droplet to breakup [22]. Nagel and Gallaire numeri-
cally investigated the droplet dynamics by using the two-
dimensional Darcy-Brinkman equation model [23].

Stan et al. have experimentally and numerically in-
vestigated hydrodynamic lift forces acting on drops and



Page 2 of 8 Eur. Phys. J. E (2017) 40: 31

bubbles in microchannels [24,25]. Their results indicate
that droplets and bubbles can be reproducibly positioned
and centered in microfluidic channels without using sheath
fluids. The evolution of the droplet deformations with the
lateral positions in a straight microfluidic channel has been
studied by Chen et al. [26]. They have investigated the ef-
fect of droplet size, capillary number, viscosity ratio, and
lateral position on the droplet deformation and droplet
migration.

The present study is motivated by the recent experi-
mental work of Ulloa et al. on droplet deformation [20]. In
this work, we study the deformation of a droplet flowing
through a microfluidic channel having a cross-intersection
with two inlet channels and two outlet channels making
an angle of 90◦ relative to each other. We focus our atten-
tion on the high aspect ratio of channel width to channel
height. In this limit, the fluidic resistance in the microflu-
idic channel is high. Experimental observations indicate
that the velocity profile in a thin channel and in the di-
rection of channel thickness is assumed to be parabolic,
but far from walls it is almost constant along the channel
width. Therefore, a two-dimensional flow which is constant
far from walls and in the channel width direction can be
governed by the Darcy equation. The droplet deformation
has been numerically calculated as a function of droplet
size, surface tension, viscosity ratio, and flow rate ratio.

This paper is structured as follows: In the follow-
ing section 2, we will formulate the Darcy equation and
boundary conditions for the pressure and velocity field
for a quasi-two-dimensional droplet in a flat microfluidic
channel having a junction with two inlet channels and two
outlet channels. The numerical procedure to solve the in-
tegral equation for pressure field as well as for local droplet
velocity are also contained in sect. 2. The results of our
numerical solutions, including the dependence of the max-
imum deformation on the droplet size, capillary number,
and flow rate ratio are reported in sect. 3. Finally, in sect. 4
we summarize our findings, conclude, and give an outlook
on possible future work in this field.

2 Physical model and numerical methods

In this work, we will numerically compute the deforma-
tion of a monodisperse emulsion droplet flowing in a flat
microfluidic channel having a cross-intersection with two
inlet channels and two outlet channels making an angle of
90◦ relative to each other. The width of inlets, outlets, and
cross-section is equal to W . The inlet channels are along
the x-axis and the outlet channels are along the y-axis (see
fig. 1). We consider flow past a two-dimensional droplet
containing a droplet phase labeled d, and suspended in a
continuous phase labeled c. Continuous phase viscosity is
μc and viscosity of droplet phase is λμc, where λ(λ < 1)
is the viscosity ratio. In the Hele-Shaw limit which refers
to the case that channel height, H, is assumed to be much
smaller than droplet radius, the droplet will be confined
between the top and bottom walls of the microfluidic chan-
nel. In addition to vertical confinement, the droplet will
be deformed by the incident flows.

Fig. 1. Snapshots of a droplet deformation in the flat microflu-
idic channel at different times. Black arrows in (a) indicate the
incoming and outcoming flow directions. Numerical parameters
are Ca = 0.02, Λ = 1, μ = 0.008 and ad = 22.7.

Due to the small length scale, the flow resistance in the
microchannels is high. Therefore, flow rates usually range
between a few nl/min to μl/min and the Reynolds num-
ber is small. Experimental observations indicate that at a
thin channel, the velocity profile in the direction of chan-
nel height, z-axis, is assumed to be parabolic. However,
far from the walls, the velocity profile is almost constant
along the y-axis. It is easy to verify that by increasing the
aspect ratio of channel width to channel height, the veloc-
ity field computed from the 3D Stokes equation in the x-y
plane and far from the walls tends to a constant value in
the y-direction. Therefore, instead of solving the 3D Stokes
equation, we solve a depth-averaged problem which is la-
beled two-dimensional problem. It is important to note
that it has been shown that even in the complex thermo-
capillary flow around a droplet, the averaged model agrees
perfectly with the 3D Stokes’ one [27]. Hence, This flow
can be well approximated by a two-dimensional descrip-
tion. Such two-dimensional flow in a Hele-Shaw cell obeys
Darcy’s law; this laminar flow is mathematically equiva-
lent to a flow in a porous medium [28,29].

In the Hele-Shaw limit, the flow velocities obey locally
a Poiseuille profile

v(x, y, z) = h(z)(v̄x, v̄y, 0), (1)

where h(z) = 3/2(1− 4z2/H2) and v̄ indicates the depth-
averaged velocity. Deviations from the Poiseuille profile
become apparent once the distance to the side walls be-
comes the order of cell height, H, or smaller. On a small
length scale of H, the depth-averaged velocity v(x, y, z) =
(v̄x, v̄y) for both droplet and continuous phase are used in
this work. Under this assumption, when the gravitational
force is negligible, the velocity field inside and outside of
droplets are governed by the continuity equation

v̄i = − H2

12μi
∇pi on Ωi with i ∈ {c,d}, (2)

∇ · v̄i = 0 on Ωi with i ∈ {c,d}, (3)

respectively. ∇ = (∂x, ∂y) is the two-dimensional Nabla
operator, p(x, y) is the pressure, μ is the viscosity, and v̄
is the depth-averaged velocity. We denote 2D vectors in
the central plane of the channel by boldface symbols.

Droplet interface conditions are continuity of velocity
and discontinuity of interface stresses. The evolution of the
droplet interface is governed by mass conservation. If there
is no mass transfer through the interface, the kinematic
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condition is satisfied at the droplet-continuous phase in-
terface by using the continuity of the normal velocity com-
ponent. This boundary condition reads

nd · v̄c = nd · v̄d �= 0 on Γcd, (4)

where the unit normal vector, nd, points from the interior
of the droplet phase into the continuous phase at droplet
interface and Γcd is the two-dimensional droplet contour.
It is important to emphasise, in the case, that the inter-
face is independent of time, meaning that the interface is
not translating relative to the origin of the coordinate sys-
tem, and the normal component of velocity at fluid-fluid
interface will be zero.

On the liquid-liquid interface, the stress boundary con-
dition due to surface tension contains a jump in normal
stress, due to the curvature, and in tangential stresses, due
to the varying surface tension which is called Marangoni
effect. The jump condition on the stress, at a fluid-fluid
interface, can be written as

nd · (Tc − Td) =
π

4
γKnd − ∇sγ, (5)

where T is interface stresses tensor, γ is surface tension,
nd is the unit normal vector at droplet interface and K is
the local curvature. In the absence of Marangoni stresses,
and in the Hele-Shaw limit, which is valid asymptotically
in the slow flow limit, the pressure inside, pd, and outside
of droplet, pc, is discontinuous due to surface tension, γ
and local curvature, K. This boundary condition reads

pc − pd =
π

4
γ K, (6)

where the prefactor π/4 is related to the real droplet mi-
crofluidic system in which a non-wetting condition at the
top and bottom wall of the Hele-Shaw cell is assumed [30].

The boundary conditions require that the velocity
must vanish over all channel walls, Γw. We have

nw · ∇pc = 0 on Γw, (7)

where the normal vector nw on Γw points from the inside
of the wall into the continuous phase. At the open ends,
i.e., at the inlets and outlets of the microfluidic channel,
we assume that the flow velocity of the continuous phase
is constant. In this case the boundary condition at the
open ends reads

−αcnw · ∇pc =

{
vin inlet

vout outlets
on Γo, (8)

where αc = H2

12μc
is the mobility of the continuous phase,

Γo is a straight line cutting through the open ends of the
microfluidic channel and vin and vout are the constant nor-
mal velocities of the continuous phase at the inlets and
outlets of the channel, respectively (see fig. 1).

Employing the continuity equation ∇ · v̄ = 0, the pres-
sure in the dispersed and the continuous phases satisfy the
Laplace equation

∇2 pi = 0, i ∈ {d, c}. (9)

Solutions to eq. (9) for appropriate boundary conditions
(eqs. (4), (6), (7), (8)), together with the Darcy equa-
tion (2) describe the pressure and velocity fields of the
liquid in the droplet phase, (d), and continuous phase, (c).

2.1 Numerical methods

In order to numerically evolve the droplet interface under
flowing in time, the local depth-averaged velocity compo-
nents, vx and vy, at the droplet contour have to be calcu-
lated. One way to obtain the relevant boundary data of the
velocity field is to numerically compute a self-consistent
integral equation for pressure field pc of the continuous
phase on the boundaries Γcd ∩ Γw to its normal deriva-
tive ∇npc. Following the formulation of Pozrikidis [31],
the pressure field of the continuous phase satisfies a self-
consistent integral equation of the following form

pc(r0)=
∫

Γw,Γo

pcnw ·∇G(r, r0)d	−
∫

Γo

G(r, r0)nw ·∇pcd	

−
∫

Γcd

{
π

4
αγKnd ·∇G(r, r0)−(1−α) pcnd ·∇G(r, r0)

}
d	,

(10)

where α is the mobility ratio of the droplet to continuous
phase (α = 1/λ = μc/μd), and r0 is a point on the bound-
ary Γcd ∩ Γw ∩ Γo of the continuous phase. The function

G(r, r0) = − 1
2π

ln |r − r0| (11)

represents the free Green’s function of the two-
dimensional Laplace equation eq. (9), where r = (x, y)
and r0 = (x0, y0) are the field and the singular points,
respectively.

Before numerically solving the self-consistent integral
equation, it is useful to define four basic parameters which
are needed to express all physical quantities in this work.
In this way we select the length scale L0 ≡ H, the time
scale T0 ≡ μcH/γ, the pressure scale p0 ≡ γ/H, and
the capillary number Ca = μc vin/γ. The dimensionless
droplet area, ad, is defined as the droplet area divided
by the squared channel height, ad = πR2/H2. Here, and
in the remainder of this article, we will denote all non-
dimensional rescaled lengths and physical quantities by
lower case symbols.

2.2 Boundary element discretization

In order to numerically solve the self-consistent integral
equation, the droplet-continuous phase interface and chan-
nel walls have to be discretized into a collection of one-
dimensional boundary elements [31]. We discretized the
droplet-continuous phase interface by using the cubic-
spline method. This method provides us a globally smooth
slope and curvature at the end point of elements. In this
way, we described the droplet boundary with N nodes.
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The coordinates of each element are expressed in paramet-
ric form by the cubic polynomial. Because the droplet is a
closed surface, we used the periodic cubic-spline in which
periodicity conditions for the first and second derivative
at the first and last nodes are imposed. In contrast to
the droplet contours, fixed boundaries like walls and in-
flow and outflow boundaries are discretized by straight
segments. The mesh independence has been verified by
calculating the droplet area as a function of time. Accord-
ing to the continuity equation, it is clear that the droplet
area must be constant over time. It was found that 138
points for droplet contour and 400 straight elements for
fixed boundaries are satisfactory and any increase beyond
this mesh size would lead to insignificant changes in re-
sults.

The boundary integral equation is discretized with a
collection method and integrated by a Gauss-Legendre
quadrature with 12 nodes. Therefore, we calculate the
pressure and velocity at the collection points. After that,
we update the position of the points by using an explicit
Euler method and Runge-Kutta method. Using the ex-
plicit Euler method the interface droplet is advanced in
discrete time steps:

x(n+1) =
∫ t=n+1

t=n

v̄xdt + x(n),

y(n+1) =
∫ t=n+1

t=n

v̄ydt + y(n), (12)

where v̄ is the velocity field obtained by solving the bound-
ary element problem at node r(n). Since relative positions
of the points on Γcd are changed over time, it is necessary
to remesh the splines at each time step. This remeshing is
calculated by cubic interpolation to compute new points
on the droplet contour [8]. Since the boundary element
method is only implemented for boundaries which are dis-
cretized, it is unnecessary to remesh the whole domain as
the interface evolves.

3 Results

Motivated by a recent experiment [20], we present the
study of droplet deformation flowing through a flat mi-
crofluidic channel. As already mentioned in the physical
model section (sect. 2), our considered channel geometry
consists of straight channel having a cross-shaped inter-
section with two inlet channels and two outlet channels
which make an angle of 90◦ relative to each other (see
fig. 1). All channels in the network are characterized by a
uniform width W . The channel length is fixed by 20 times
the channel width. The ratio of channel width to chan-
nel height is approximately 8. The continuous fluid is in-
jected from two opposite sides into the inlet channels. The
flux ratio is characterized by the dimensionless parameters
Λ = QR/QL ≥ 1, where QL, QR are the flow rates of the
left-flow and right-flow inlets, respectively. In all numeri-
cal simulations, we control the outlet fluxes by the total
flow rate, Q = QR +QL, at the outlets of the microfluidic
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Fig. 2. Droplet deformation profile, δ(x), against droplet po-
sition, r, at capillary number Ca = 0.008, viscosity ratio
μ = 0.008. Green open circles are extracted from the experi-
mental data [20] and red squares correspond to our simulations.
Control parameters are ad = 1.85, and Λ = 1.

channel. From the left inlet channel, the droplet enters
the cross-shaped section. When a deformable droplet ap-
proaches the cross section the droplet decelerates and de-
forms. Eventually, the droplet leaves the stagnation point
and flows through one of the exits. Figure 1 illustrates the
snapshots of a droplet that enters the cross-section from
the left at several times. As one can see in fig. 1, the droplet
deformation is calculated by the ratio δ = (l−L)/(l + L),
where L is the axis of the droplet in the x-direction and l
its axis in the y-direction. The deformation of the droplet
is computed as a function of its dimensionless distance
from the center of the cross-intersection, r =

√
x2 + y2.

To validate the consistency of the numerical model, we
compare the droplet deformation profile reported by Ul-
loa et al.’s experimental observations [20] to the simulated
ones which were obtained using the same conditions of
capillary number, and droplet size. Simulation and exper-
iment results seem to be in good quantitative agreement,
as shown in fig. 2.

Figure 3 shows a typical evolution curve of δ as a func-
tion of distance from the center of the cross-intersection,
r, and dimensionless travel time, t. The red line shows
the evolution of δ when the droplet flows into the cross-
intersection while the green line is used for droplets leaving
it. As one can see in fig. 3, the droplet deformation in-
creases monotonically as the droplet approaches the stag-
nation point and deformation reaches its maximum value.
However, the droplet deformation backs into a circular
shape as it flows into the outlet channel (see the movie
given as Supplementary Material). The curves of droplet
deformation when droplet flows into and out of the cross-
intersection differ. This is due to the effect of the contin-
uous flow on the droplet deformation in the presence of
a hyperbolic flow. When a droplet flows into the cross-
intersection, a diverging external flow is experienced by
droplet, while a droplet flowing out of the cross-section
experiences a convergent flow. The difference between the
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Fig. 3. Droplet deformation flowing through a microchannel.
δ is plotted as a function of the dimensionless distance be-
tween the droplet and the center of the cross-intersection (top
panel) and of the dimensionless time when the droplet flows
into (red line) and out of (green line) the cross-intersection
(bottom panel). Numerical parameters are Ca = 0.02, Λ = 1,
ad = 22.7, μ = 0.008.

two graphs increases by increasing the capillary number
(see figs. 2 and 3 (top)). This behavior is due to the effect
of the capillary number on the convergence of the hyper-
bolic flow. This behavior indicates that the flow in the
presence of a droplet is an irreversible phenomenon.

The dependence of the droplet maximum deformation
upon the capillary number is obtained by varying the
surface tension, and continuous phase velocity. To investi-
gate the variation of the droplet speed with droplet posi-
tion, we compute the instantaneous velocity by a division
of the difference in the position of the droplet center be-
tween two successive positions by the step-time. Figure 4
illustrates the droplet speed as a function of droplet po-
sition for different capillary number. The droplet speed
monotonically decreases as the droplet enters the cross-
intersection and its speed reaches a minimum value. How-
ever, the droplet speed monotonically increases as it flows
into the outlet channel.

In order to quantify the dependence of the maximum
deformation, δmax, on the droplet size and capillary num-
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Fig. 4. Droplet speed profile v as a function of dimensionless
distance between the droplet center and the center of the cross-
intersection, r = 0, for different values of the capillary number.
Numerical parameters are ad = 22.7, μ = 0.008, Λ = 1, and
Ca = 0.02.

 0.01

 0.1

 1

 0.001  0.01

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014  0.016

Ca

δmax

Fig. 5. Dependence of the maximum deformation of the
droplet on the capillary number for a given value of droplet
size, R/H = 2.7. The inset shows a non-logarithmic plot. Flow
rate ratio Λ = 1.

ber, we fix the droplet size and vary the surface tension
and flow rate, e.g. the capillary number. The effect of in-
creasing the capillary number on the droplet is to elongate
the droplet as it enters the intersection. It is important to
emphasise that the numerical parameters such as viscosity
ratio, flow rate, and surface tension are chosen such that
the channel network operates in a dynamic regime of the
capillary number where the droplet deforms but does not
breakup when passing through the cross-intersection. For
given values of droplet size and viscosity ratio, the critical
capillary number, Cac for droplet breakup is reported in
the literature [10,11].

Figure 5 presents the maximum droplet deformation as
a function of capillary number for given values of the di-
mensionless droplet size and viscosity ratio. It is found
that the maximum droplet deformation varies linearly
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Fig. 6. Dependence of the maximum deformation of the
droplet on its size. Symbols are related to different surface ten-
sions. The inset illustrates a non-logarithmic plot. Flow rate
ratio Λ = 1.

with the capillary number (varies with the inverse of the
surface tension). Our numerical results indicate that for
a two-dimensional model, the exponent is 1.01 which is
very close to one. This numerical scaling is in good agree-
ment with the theoretical model in the small-deformation
limit [15,16,20]. The exponent on the capillary number
may vary in the three-dimensional channels or large-
deformation regime [32,33].

Similarly, the maximum droplet deformation as a func-
tion of the droplet size for different values of the capil-
lary number is illustrated in fig. 6. It is observed that
the maximum droplet deformation increases by increas-
ing the droplet size, ad. The capillary number and droplet
size dependence of the maximum droplet deformation are
plotted on a log-log scale in figs. 5 and 6. The maximum
droplet deformation can be rescaled according to the capil-
lary number, Ca, and the non-dimensional droplet radius,
R/H, in the following way:

δmax ∝ (R/H)2.58Ca1.01. (13)

It is to be noted that a power law Ca0.91 and R2.59 were
experimentally found by Ulloa et al. [20] in their descrip-
tion of the elongation of a viscous droplet in microfluidic
channel. Our numerical scaling is in good agreement with
the experimental results [20].

We investigate the influence of the viscosity ratio, λ,
on the droplet deformation while we hold the other pa-
rameters constant. To change the value of the viscosity
ratio without affecting the capillary number, we keep the
viscosity of the continuous phase and change the droplet
viscosity. Our numerical results indicate a nonlinear rela-
tion between the viscous ratio and droplet deformation.
The droplet deformation increases by increasing the vis-
cosity ratio. A plateau region in the maximum deforma-
tion curve appears as the viscosity ratio increases. Figure 7
illustrates the maximum droplet deformation as a function
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Fig. 7. The maximum deformation of a droplet as a function
of the viscosity ratio for a given value of the droplet size, ad =
22.7. Solid squares and circles are related to Ca = 0.004 and
Ca = 0.008, respectively. The solid and dashed lines are the
best numerical fitting results.

of viscosity ratio for two given values of the capillary num-
ber. The dots in fig. 7 are numerical data, the solid and
dashed lines are the best numerical fitting results. There-
fore, the maximum droplet deformation depends on the
viscosity ratio as

δmax ∝ (1 − exp(−bλ)), (14)

where b is constant parameter. Our numerical results are
in good agreement with the experimental observation that
the droplet deformation exponentially increases by in-
creasing the viscosity ratio [24,26].

We can now identify another characteristic of a droplet
deformation by invoking the rescaling of δmax with Λ
which has been not experimentally investigated in ref. [20].
The position of stagnation point, maximum deformation
of the droplet and the droplet shape at maximum defor-
mation depend on the flow rate ratio of two inlets of the
microchannel, Λ = QR/QL. In order to investigate the de-
pendence of the droplet deformation on the flow rate ratio,
the left flow rate is kept to be constant and the right flow
rate varies. We show in fig. 8 the droplet contour for a
set of flow rate ratio at a given value of droplet size and
capillary number. These profiles show that the position
of stagnation point shifts toward the inlet channel having
low flow rate. The position deviation, Δr, between the po-
sition of the stagnation point, r, and the center of cross-
intersection, as function of flow rate ratio of two inlets is
plotted in fig. 9. The deviation gradually increases to reach
a plateau form which is restricted by cross-intersection
length.

To study the effect of the flow rate ratio on the maxi-
mum droplet deformation, we keep the capillary number,
viscosity ratio and droplet size constant and vary the flow
rate ratio. The maximum droplet deformation δmax is cal-
culated for given values of droplet size and capillary num-
ber. The maximum deformation δmax as a function of Λ
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Λ=4
Λ=6

Fig. 8. Simulated droplet contour, and position at its maxi-
mum deformation for different values of the flow rate ratio of
two inlets at a given value of droplet size. The left flow rate is
kept constant.
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Fig. 9. The stagnation point deviation of the maximum de-
formation as a function of the flow rate ratio of two inlets for
a given value of droplet size and surface tension.

is shown in fig. 10. Numerical simulation shows a depen-
dence in Λ1.02.

To summarize our numerical findings, the maximum
droplet deformation can be rescaled according to the
capillary number, Ca, non-dimensionless droplet radius,
R/H, viscosity ratio in the following way:

δmax ∝ (1 − exp(−bλ))(R/H)2.58Ca1.01Λ1.02. (15)

This numerical scaling is in good agreement with the the-
oretical and experimental results in the confined microflu-
idic channel [15,20,24].

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1  2  3  4  5  6  7

Λ

δmax

Fig. 10. The maximum deformation as a function of flow rate
ratio of two inlets for a given value of droplet size and surface
tension. The left flow rate is kept constant.

4 Conclusion

By employing the boundary element method, we numer-
ically solved the two-dimensional Darcy equation to ob-
tain the dynamics of a monodisperse droplet. The fo-
cus of this work was to understand the deformation
of a single droplet entering a cross-shaped intersection
in a confined microfluidic channel. The droplet moved
through the microfluidic device to a cross-shaped inter-
section where the droplet experienced a hyperbolic flow.
The droplet was deformed by extensional forces due to
the flow rates. The deformation of the droplet in the con-
tinuous phase was characterized. The maximum deforma-
tion was rescaled in terms of capillary number, droplet
size, viscosity ratio and flow rate ratio. Our numerical
results for the maximum droplet deformation illustrates
δmax ∼ (1−exp(−bλ))(R/H)2.58Ca1.01Λ1.02. This numer-
ical scaling is in good agreement with the experimental
results [20].

The droplet size has a strong effect on the flow around
the droplet due to the confinement (ratio of channel width
to channel height), explaining the strong dependence of
the droplet deformation on droplet size. Further hydrody-
namic analysis including the effect of the channel thickness
on the droplet deformation in our channel geometry is of
interest and will be studied in a next work.

Precise information on the rheological and mechani-
cal properties of the interface can be extracted from the
study of the interface deformation under shear stress [34,
35], particularly in the presence of an adsorbed layer [19].
Direct applications are the methods employed to deter-
mine the surface tension by hydrodynamic deformation
of the interface. A further motivation is the prediction of
the stability of foams and emulsions, via the analysis of
droplet break up conditions [36,37].
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