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Abstract. We present a new simple self-consistent field theory of a polarizable flexible polymer chain
under an external constant electric field with account for the many-body electrostatic dipole correlations.
We show the effects of electrostatic dipole correlations on the electric-field-induced globule-coil transition.
We demonstrate that only when the polymer chain is in the coil conformation, the electrostatic dipole
correlations of monomers can be considered as pairwise. However, when the polymer chain is in a collapsed
state, the dipole correlations have to be considered at the many-body level.

1 Introduction

Nowadays statistical thermodynamics of dielectric poly-
mers is one of the most unexplored areas of polymer
physics. Indeed, till now only several theoretical works
have been published, where thermodynamic and struc-
tural properties of dielectric polymers in the bulk solu-
tion [1–5] and under external electric field [6] have been
discussed. In ref. [1] Podgornik investigated, within the
path integrals formalism, the renormalized persistence
length of semi-flexible polymer chain whose segments in-
teract via a screened Debye-Hückel dipolar interaction po-
tential. In ref. [2] Kumar et al., within the Edwards-Singh
method, calculated the mean-square radius of gyration of
polyzwitterionic molecules in aqueous solutions as a func-
tion of the chain length, electrostatic interaction strength,
added salt concentration, dipole moment, and degree of
ionization of the zwitterionic monomers. In ref. [3] Dean et
al. showed that, taking into account the polarizing many-
body correlations at the level of random phase approx-
imation (RPA) can lead to ordering of the semi-flexible
anisotropic polymer chains in the solution. In ref. [4] Ku-
mar et al. showed, within the field-theoretic formalism,
that dipolar interactions in polymer blends can signifi-
cantly enhance the phase segregation. Lu et al., within
the field-theoretic formalism, analyzed the van der Waals
interactions between two rigid polymers polarizable along
their backbone [5].

In our recent work [6] we investigated the conforma-
tional behavior of the polarizable flexible polymer chain
under the external electric field within the Flory-type
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mean-field theory [7]. We showed that, regardless the poly-
mer chain conformation (coil or globule) an electric field
increase causes swelling of the polymer chain. We also
showed that, increasing the electric field in the regime
of poor solvent can provoke the globule-coil transition.
However, we fully neglected the many-body electrostatic
correlations between monomers related to their molecular
polarizability which cannot be accounted for at the level of
pure mean-field theory [3]. These polarizing correlations,
related to the fluctuations of the local electrostatic poten-
tial, could be accounted for via the fluctuation corrections
to the mean-field approximation. It is evident in advance
that contribution of the latter effects to the total free en-
ergy must be important at enough large monomer polar-
izability. Thus, a natural question appears: How can the
electrostatic many-body correlations of monomers change
the polarizable polymer chain conformational behavior un-
der the external electric field?

2 Theory

Let us consider a polarizable flexible polymer chain im-
mersed in a dielectric solvent which we model as a con-
tinuous dielectric medium with the dielectric permittivity
εs. Let the polymer chain have a degree of polymeriza-
tion N and each monomer have a molecular polarizabil-
ity γ. The monomer polarizability may be related to the
electronic polarizability of monomers as well as to the ori-
entational polarizability of their permanent dipoles. The
first case can be realized for the synthetic glassy polymers.
The second case of permanent monomer dipoles is possible
for the weak polyelectrolytes in the regime of counterion
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condensation, when the counterions and monomers form
the strongly bound ion pairs. We consider only the case
of isotropic dielectric response for simplicity. We also as-
sume that the polymer chain is under the homogeneous
electric field E. To study the conformations of the poly-
mer chain in the external electric field, we use the simple
Flory-type [7] mean-field theory, considering the radius of
gyration Rg as a single order parameter. Therefore, we as-
sume that the polymer chain occupies the volume which
can be estimated by the gyration volume Vg = 4πR3

g/3.
Using all the above-mentioned model assumptions, one
can write a total free energy of the polymer chain in the
following form:

F(Rg) = Fconf(Rg) + Fvol(Rg) + Fel(Rg), (1)

where Fconf(Rg) is the free energy of the ideal polymer
chain which can be calculated by the following interpola-
tion formula [8–14]:

Fconf(Rg) =
9
4
kBT

(
α2 +

1
α2

)
, (2)

where α = Rg/R0g is the expansion factor, R2
0g = Nb2/6

is the mean-square radius of gyration of the Gaussian
polymer chain, b is the Kuhn length, kB is the Boltzmann
constant, T is the temperature; the contribution of pair-
wise interactions of monomers to the total free energy can
be accounted for simplicity via the standard virial series
as follows:

Fvol(Rg) = kBT

(
N2B

2Vg
+

N3C

6V 2
g

)
, (3)

where B and C are the second and third virial coefficients,
respectively; the electrostatic contribution can be written
as a sum of two contributions

Fel(Rg) = F (MF)
el (Rg) + F (fl)

el (Rg), (4)

where first term is a mean-field approximation for the elec-
trostatic free energy which can be estimated as the free
energy of the dielectric sphere [15]

F (MF)
el (Rg) = −VgE

2

8π

3εs(εp − εs)
2εs + εp

= − 3NεsγE2

2
(
3εs + 4πγN

Vg

) ,

(5)
where the effective dielectric permittivity inside the poly-
mer volume εp = εs + 4πγN/Vg in the mean-field approx-
imation is introduced [6,16]; γ is the molecular polariz-
ability of monomers, and E = |E| is the absolute value
of the external electric field. The second term in eq. (4)
determines the contribution of correlations between fluc-
tuating dipoles. This contribution can be assessed for the
enough large polymer volume within the formalism pro-
posed in [3] at the level of random phase approximation
(RPA) for the case of isotropic dielectric response:

F (fl)
el � VgkBT

2

∫
|k|<Λ

dk
(2π)3

ln
(

Vs(k)
Vp(k)

)

=
2πVgkBT

3b3
ln

(
1 +

4πγ

εs

N

Vg

)
, (6)

where Vp(k) = 4π/(εpk2) and Vs(k) = 4π/(εsk2) is the
Fourier images of Coulomb potentials inside the polymer
volume and in the pure solvent, respectively; Λ = 2π/b
is the parameter of ultraviolet cut-off. The choice of such
value of the cut-off parameter Λ is due to the fact that
at the scales ∼ b fluctuations of the electrostatic potential
related to the dipoles fluctuations are absent [3].

Collecting together all the above-mentioned expres-
sions, we arrive at the following result for the total free
energy of the polymer chain in the solution under external
electric field:

F
kBT

=
9
4

(
α2 +

1
α2

)
+

N2B

2Vg
+

N3C

6V 2
g

− 3NεsγE2

2kBT
(
3εs+ 4πγN

Vg

) +
2πVg

3b3
ln

(
1+

4πγ

εs

N

Vg

)
. (7)

We would like to stress that in our previous work [6] we
have estimated the mean-field electrostatic contribution
as the free energy of dielectric plate, whereas here we use
more appropriate relation for the free energy of dielectric
sphere.

3 Numerical results and discussions

To further perform some analytical estimates and numeri-
cal calculations, it is convenient to introduce the following
dimensionless variables: Ẽ = E

√
εsb3/kBT , B̃ = Bb−3,

C̃ = Cb−6, and γ̃ = γb−3/εs.
Moreover, minimizing the total free energy (7) with

respect to the expansion factor α, after some algebra we
arrive at the equation in dimensionless form:

α5 − α =
3
√

6
2π
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√
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27C̃
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+

2
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√

N

⎞
⎠ .

(8)

The first and second terms on the right-hand side of eq. (8)
determine the effect of volume interactions. The third
term determines the influence of the interactions of in-
duced dipoles with the applied electric field on the poly-
mer swelling. As is seen, the latter always leads to swelling
of the polymer chain that is related to the well-known
electrostriction phenomena [15]. The fourth term deter-
mines the effect of many-body correlations of the fluctu-
ating dipoles on the polymer swelling.

To understand how the electrostatic dipole correlations
can affect the polymer conformation, at first we consider
the case of repulsive volume interactions (B̃ > 0), when
the polymer chain is in the conformation of expanded coil
(α � 1). Thus in this limit we get

α5 − α � 3
√

6
2π

√
N

(
B̃ +

4π

3
γ̃2Ẽ2 − 32π3

3
γ̃2

)
. (9)
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Equation (9) means that correlations between fluctuating
dipoles in the coil state lead to an effective decreasing
in the second virial coefficient. At zero electric field, in
the case when the monomer polarizability is attributed to
the orientational polarizability of permanent dipoles, i.e.,
when γ = p2/(3kBT ) (where p is a permanent dipole),
we get the following equation for the expansion factor in
physical units:

α5 − α � 3
√

6
2πb3

√
N

(
B − 32π3p4

27(kBT )2ε2
sb

3

)
. (10)

It should be noted that eq. (10) is similar to that was ob-
tained for the weak polyelectrolyte chain in the regime of
counterion condensation [17]. The latter equation means
that when the polymer chain is in the coil conformation,
the electrostatic dipole correlations can be considered as
pairwise. However, when the polymer chain adopts a col-
lapsed state, the higher dipole correlations become im-
portant. In other words, when the polymer chain is in
the globule state, polarizing dipole correlations have to be
accounted for at the many-body level. In order to eluci-
date the role of the many-body dipole correlations in the
polymer chain conformational behaviour, let us consider
the dependence of the expansion factor on the monomer
polarizability γ̃ at zero electric field. We assume in this
case that the volume interactions are repulsive, i.e., that
B̃ > 0. In fig. 1 the dependences of the expansion fac-
tor on the monomer polarizability at the different second
virial coefficients B̃ are depicted. As is seen, increasing the
monomer polarizability leads to a dramatic decrease in the
expansion factor. The latter result means that the enough
strong electrostatic many-body correlations of monomers
can provoke the coil-globule transition. It is worth noting
that in the theory (see, for instance, ref. [17]), where the
monomer dipole correlations were considered as pairwise,
to compensate the attraction of the dipoles, it is needed to
take into account the repulsive volume interactions up to
the third term of the virial expansion. However, account-
ing for the dipole correlations at the many-body level, as
is seen from fig. 1, allows to compensate the attraction of
the dipoles taking into account the repulsive volume in-
teractions even at the level of the second virial coefficient.

It should be noted that this effect is quite similar to
the coil-globule transition of polyelectrolyte chain induced
by correlations of charges [18–24].

As one can see from eq. (8), the presence of the electric
field inside the polymer coil, oppositely, leads to an effec-
tive increase in the second virial coefficient. In the case of
strong electric field (Ẽ � 1), we get the limiting laws for
the expansion factor and the radius of gyration:

α ∼ γ̃2/5Ẽ2/5N1/10, Rg/b ∼ γ̃2/5Ẽ2/5N3/5, (11)

which were first obtained (up to numerical prefactors) and
discussed in ref. [6].

Now let us pass to the discussion of how the many-
body electrostatic correlations of the fluctuating dipoles
can change the conformation behavior of the polymer
chain under the external electric field compared to the
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Fig. 1. The expansion factor α as a function of the monomer
polarizability at the different second virial coefficients B̃. The
data are shown for N = 100, Ẽ = 0, C̃ = 0.

pure mean-field theory. Especially, we would like to fo-
cus on the influence of the electrostatic correlations of
monomers on the electric-field-induced globule-coil transi-
tion which was in detail discussed in ref. [6] in the frame-
work of mean-field theory. We assume that B̃ = −0.25 and
C̃ = 0.1, so that the polymer chain is in the globule state
even at γ̃ = 0. Figure 2 demonstrates the expansion factor
as a function of the electric field at a different monomer
polarizability γ̃ obtained within a) the pure mean-field
theory and b) the present theory on accounting for the
many-body electrostatic dipole correlations. As is seen,
in both cases applying the electric field exceeding some
threshold value induces the globule-coil transition. Never-
theless, accounting for the electrostatic correlations shifts
this transition to larger electric fields. It is worth noting
that in the region of small electric fields, when the polymer
chain is in a collapsed state, electrostatic correlations lead
to smaller values of the expansion factor than what pre-
dicted by the mean-field theory. Thereby this phenomenon
is reminiscent of the globule-coil transition of the polyelec-
trolyte chain caused by the electic field [23,24]. It should
be noted that in the region of sufficiently large monomer
polarizability in both theories, globule-coil transition oc-
curs as a first-order phase transition, i.e., as an abrupt
increase in the expansion factor.

4 Conclusion

In conclusion, we have formulated the simple Flory-type
self-consistent field theory of the polarizable polymer
chain under an external electric field accounting for the
many-body dipole electrostatic correlations. We have
shown that when the polymer chain is in the coil state,
while the monomer polarizability is small, the electrostatic
dipole correlations can be considered as pairwise. In this
case their effect consists of a decrease in the second virial
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Fig. 2. The expansion factor α as a function of the electric
field Ẽ is calculated by the (a) mean-field theory and (b) the-
ory with account for the electrostatic dipole correlations at
different monomer polarizabilities γ̃. The data are shown for
N = 100, B̃ = −0.25, C̃ = 0.1.

coefficient of monomer-monomer interaction. However,
at a strong enough monomer polarizability, electrostatic
dipole correlations can cause the coil-globule transition.
When the polymer chain is in the globule state, electro-
static dipole correlations have to be considered at the
many-body level. We have also shown that the account
for the many-body electrostatic dipole correlations does
not qualitatively change the main result of our previous
pure mean-field theory [6]: the electric-field-induced
globule-coil transition. However, in the present theory
the electric field, at which the globule-coil transition takes

place, shifts to higher values. Such trend is related to the
fact that the availability of the polarizability on the poly-
mer backbone leads to an additional effective attraction
between monomers. So a stronger electric field needs to
be applied to disjoin the polymer globule.

This work was supported by grant from Russian Foundation
for Basic Research (Grant No. 15-43-03195).
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