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Abstract. Multicellular tumour spheroids (MCTSs) are extensively used as in vitro system models for
investigating the avascular growth phase of solid tumours. In this work, we propose a continuous growth
model of heterogeneous MCTSs within a porous material, taking into account a diffusing nutrient from
the surrounding material directing both the proliferation rate and the mobility of tumour cells. At the
time scale of interest, the MCTS behaves as an incompressible viscous fluid expanding inside a porous
medium. The cell motion and proliferation rate are modelled using a non-convective chemotactic mass
flux, driving the cell expansion in the direction of the external nutrients’ source. At the early stages,
the growth dynamics is derived by solving the quasi-stationary problem, obtaining an initial exponential
growth followed by an almost linear regime, in accordance with experimental observations. We also perform
a linear-stability analysis of the quasi-static solution in order to investigate the morphological stability of
the radially symmetric growth pattern. We show that mechano-biological cues, as well as geometric effects
related to the size of the MCTS subdomains with respect to the diffusion length of the nutrient, can drive
a morphological transition to fingered structures, thus triggering the formation of complex shapes that
might promote tumour invasiveness. The results also point out the formation of a retrograde flow in the
MCTS close to the regions where protrusions form, that could describe the initial dynamics of metastasis
detachment from the in vivo tumour mass. In conclusion, the results of the proposed model demonstrate
that the integration of mathematical tools in biological research could be crucial for better understanding
the tumour’s ability to invade its host environment.

1 Introduction

A multicellular tumour spheroid (MCTS) is an ensemble
of tumour cells organized in a multi-layered structure [1,2].
In general, a MCTS consists of a central core of necrotic
cells, surrounded by a layer of quiescent (i.e. dormant)
cells and an outer rim of proliferating cells [1–4].

MCTSs are widely used in vitro to study the early
stages of avascular tumour growth and to assess the effi-
cacy of anti-cancer drugs and therapies, since their growth
and structure resemble the in vivo avascular phase of solid
tumour invasion. Such an early growth phase is charac-
terized by diffusion-limited growth, since the tumour ab-
sorbs vital nutrients via diffusion from the external en-
vironment [1, 3, 5]. Thus, diffusion may become suddenly
ineffective in the center of the tumour mass, forming a
characteristic necrotic core (see fig. 1a). At later stages, a
solid tumour is characterized by the occurrence of angio-
genesis (i.e. the process by which the tumour induces new
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blood vessels formation from the nearby existing vascula-
ture), thus switching to a vascular growth phase [6, 7].

The analysis of the avascular growth phase in tumours
has attracted a lot of interest in the mathematical and
physical research communities, and a large number of in
silico mathematical models has been proposed [2, 8–16].
Thanks to the controllability and the reproducibility of
the experimental setting, MCTS has become a widely used
system model for the development of theoretical models.

The classical approach of deterministic tumour model
comprised an ordinary differential equation (ODE), de-
rived from either mass conservation or population dy-
namics, coupled with at least one reaction-diffusion equa-
tion, representing the spatio-temporal distribution of vi-
tal nutrients or chemical signals inside the tumour [2, 9–
12,14,15,17]. Only recently, many authors have extended
such models including the pivotal role of mechanics in tu-
mour growth. In most cases, fluid-like constitutive equa-
tions have been used to model the tumour mass [18–26].
This choice is obviously only an approximation of the by
far more complex behaviour of cellular aggregates, that
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Fig. 1. (a) Morphological evolution of a multicellular tumour
spheroid of HeLa cells, showing the development of an undu-
lated contour and a necrotic core (reproduced with permission
from [51]). HeLa cells were trypsinized, counted and grown as
multicellular spheroids using the liquid overlay technique. The
sections were counterstained with hematoxylin and eosin to vi-
sualize the cytoplasms of the cells. The multicellular spheroid
section is reproduced at days 0, 4 and 12, from left to right. (b)
Solid tumours extracted from mice after orthotopic implant of
MCF10CA1a cell lines in the mammary fat pad of the nude
mice (courtesy of T. Stylianopoulos, Cancer Biophysics Labo-
ratory, University of Cyprus).

also display solid-like properties related to the adhesive
characteristics of cells [27] and to the mechanical proper-
ties of the single cell in the cluster. Thus, in some limit-
ing cases, cell aggregates are better described as solids
with linear or eventually nonlinear elasticity, in which
compressive and shear loads are balanced by the solid
stress in the body, depending on the strain of its material
points [28–33]. A solid-like constitutive equation has been
advocated for its suitability of accounting for both resid-
ual stresses [29, 32, 34] and the plastic behaviour of cellu-
lar aggregates [35–37]. Even though these considerations
support the idea that a cellular aggregate can behave as
a solid at some extent, experimental evidences [26, 38, 39]
have shown that aggregates behave as elastic solids on
short timescales (of the order of a few minutes) but dis-
play a fluid-like behaviour at longer times. Furthermore,
it was shown that cellular aggregates behave as an elastic
solids at time scales short compared to that of cell division
and apoptosis, and as a fluid (with the traceless stress that
relaxes to zero) for long times [40]. Thus the description
of MCTSs as a liquid is widespread.

Even though the existing mathematical models on
both solid tumours and MCTSs successfully reproduce the
experimentally observed growth dynamics [2, 9–12, 14, 15,
17,41,42], they poorly consider the mechanical and chem-

ical interaction with the surrounding environment. Fur-
thermore, most approaches assume that the initial spher-
ical symmetry is preserved during the growth of the ag-
gregate [28–30], whilst only in few cases [11, 12, 15] the
development of tumour irregular contours has been taken
into account. Indeed, it is known that some solid tumours,
e.g. carcinomas, grow almost spherically only in the first
stages of their progression [1,3,5], while they might show a
less defined and even asymmetric outer boundary [43] (see
fig. 1b). Since higher irregular contours usually indicate
aggressive tumours, the capability to undergo a morpho-
logical transition might promote tumour infiltration and
invasion within the surrounding tissue [2,11,12,15,44–46].
Thus, it has been proposed that some measure of the ir-
regularity of a tumour boundary (e.g. its fractal index
measured via particular medical imaging techniques such
as computerized tomography scans), may provide clini-
cians with useful information for its prognosis and treat-
ment [44–46], being potentially useful in predicting the
efficacy of drug treatment or chemotherapy [47,48].

In this work we go beyond the state-of-the art in the
field [2, 49, 50] by proposing a mathematical model that
accounts for the presence of a surrounding porous media
with a finite thickness. Thus, nutrient diffusion from the
external environment creates a chemical gradient that di-
rects both the proliferation rate and the motility of the
tumour cells. MCTS is modelled as a viscous fluid with
adhesive interactions at the border, expanding inside a
porous material.

This work is organized as follows. First, we introduce in
sect. 2 the mathematical model describing the expansion
of an initially spherical tumour. In sect. 3, we derive the
radially symmetric solution of the quasi-stationary prob-
lem. Then, we perform a linear stability on the quasi-static
tumour growth. Finally, in sect. 4, we discuss the mod-
elling results with respect to the key chemo-mechanical
and geometric parameters that govern the mathemati-
cal problems, highlighting the key mechano-biology effects
that promote a morphological transition during tumour
invasion.

2 Mathematical model

The MCTS is modelled as a three-dimensional contin-
uum growing inside a rigid porous structure, representing
the surrounding environment, usually extracellular matrix
(ECM) or matrigel. In this respect, the proposed model
refers to the in vitro case in which MCTS grows inside
a three-dimensional either natural medium (e.g. agarose
gel, hyaluronic acid gel) or synthetic matrices scaffolds
(e.g. polylactide and polyglycolide biodegradable struc-
tures mimicking a tissue-like environment) [52].

The outer boundary of the tumour is considered as
a freely moving material interface separating the tumour
cells from the surrounding medium.

In particular, we account for the presence of a central
region of necrotic cells, surrounded by a layer of quies-
cent and proliferating cells. Thus, the whole domain Ω
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Fig. 2. Representation of the domain used for the analytical
analysis. At time t = 0, the three domains ΩN , ΩT and ΩH

are concentric spherical shells, with radius RN , RT and Rout,
respectively. In this work, we consider that only the tumour
boundary ∂ΩT evolves in time.

is divided in different regions, depending on the residing
cellular population (see fig. 2):

– the necrotic cells are located in the central core of the
spheroid, in a region called ΩN (t), with

ΩN (t)={(r, θ) : r < RN (t), 0 < ϕ ≤ π, 0 < θ ≤ 2π} ,

where RN is the radius of the necrotic core, that might
evolve in time;

– the proliferative and quiescent tumour cells are located
in the region

ΩT (t) =
{(r, θ) : RN (t) < r < RT (t), 0 < ϕ ≤ π, 0 < θ ≤ 2π},

where RT is the radius of the spheroid, whose evolution
in time represents the growth of the MCTS;

– the healthy space, composed by either the in vitro scaf-
fold or the extracellular matrix, the extracellular liquid
and possibly healthy cells (in vivo),

ΩH(t) =
{(r, θ) : RT (t) < r < Rout, 0 < ϕ ≤ π, 0 < θ ≤ 2π} ,

being Rout the outer boundary of the whole domain.

The boundary between the necrotic core and the prolifer-
ative region is called ∂ΩN (t), whereas the moving inter-
face between the tumour region and the healthy space
is denoted with ∂ΩT (t). In the following we will con-
sider that the interior boundary between the necrotic core
and the quiescent-proliferative region does not evolve in
time, since we are interested only in the evolution of the
MCTS boundary, which is related to tumour infiltration
inside the healthy region. Furthermore, we assume that
the porous material is homogeneously distributed in the
whole region Ω = ΩN ∪ ΩT (t) ∪ ΩH(t) and it is nei-
ther produced/degraded (i.e. behaves as inert matter),
nor deformed (i.e. structurally rigid) by the moving tu-
mour cells. We will consider a single nutrient species (e.g.

oxygen) with volume concentration n(x, t), diffusing from
the fixed outer boundary ∂Ω through the porous material.
Thus, we assume that the vascular network providing the
source of nutrients is outside the modelled domain, and
can be represented by a boundary term at ∂Ω. The diffu-
sion coefficient is a constant value Dn everywhere, but the
nutrient is only consumed, with an uptake rate γn, in the
region occupied by the proliferative and quiescent cells.
Indeed we consider that the consumption of nutrients in
the healthy region is negligible. This is certainly the case
of MCTSs growing inside artificial/natural scaffolds, but,
in a first approximation, it can be used also to model the
in vivo condition [20, 53], since the net consumption of
nutrients in the extracellular healthy space is negligible
compared to the uptake by tumour cells [54].

Thus, the 3D homogenized concentration per unit
volume of this generic chemical species, indicated with
n(x, t), obeys the following reaction-diffusion equation:

ṅ(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

Dn∇2n(x, t) in ΩN ,

Dn∇2n(x, t) − γnn(x, t) in ΩT (t),

Dn∇2n(x, t) in ΩH(t).

(1)

We remark that, in principle, the uptake rate γn should
depend on the tumour cell density, although, in the fol-
lowing, it will be considered homogeneous and constant
over time. Even the diffusion coefficient Dn can be af-
fected by the cell packing inside the tumour and by the
extracellular matrix alignment and distribution. However,
coherently with the hypothesis of an inert, rigid and ho-
mogeneous extracellular matrix distributed in the whole
domain, the diffusion of nutrients can be assumed to be
constant [53,55].

The diffusing nutrient notably not only affects the
growth of single individuals in the tumour but also directs
cell movements, e.g. through chemotaxis [56, 57]. There-
fore, we consider a non-convective mass flux term, m, tak-
ing into account both tumour proliferation and chemotac-
tic motion, differently from the standard volumetric pro-
duction rate considered in literature [2, 11–15]. Accord-
ingly, the mass balance inside ΩT (t) reads

dρ

dt
+ ρ∇ · v = ∇ · m in ΩT (t), (2)

where ρ is the tumour cell density, which is approximately
the same of water. Since mass transport phenomena in
MCTSs are driven by the local concentration of chemicals,
the mass flux vector appearing in eq. (2) should depend
on nutrient availability. A simple constitutive law for m
can be taken in the form of a chemotactic term [56, 58],
i.e. m = χρ∇n, where χ is the chemotactic coefficient,
here considered constant. Consequently, the mass flux m
describes the expansion of the tumour due to proliferation
and driven by chemotaxis towards higher concentration of
nutrients.

Assuming that the living aggregate can be macroscop-
ically modelled as a Newtonian fluid, Darcy’s law de-
scribes its motion inside the inert, porous surrounding
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medium [2, 18]. Thus, the cell velocity v is related to the
pressure field p through

v = −Kp∇p, (3)

where Kp is related to the permeability of the medium, k,
and the viscosity of the cellular material, μ, by Kp = k/μ.
Assuming the incompressibility of the cellular spheroid,
which is mostly composed by water, we impose dρ/dt = 0
in eq. (2), so that the relation between the pressure p and
the nutrient concentration n reads

∇2p = − χ

Kp
∇2n in ΩT (t), (4)

which has been obtained substituting the Darcy’s law (3)
and the constitutive relations for m in the mass balance
equation (2). In summary, the coupling of eq. (1) with
eq. (4), complemented by a proper set of boundary con-
ditions (BCs), describes the macroscopic evolution of the
avascular tumour inside the healthy tissue.

In particular, for the pressure we impose the Young-
Laplace equation at the moving boundary ∂ΩT (t) and the
null velocity of the tumour cells at the fixed boundary
∂ΩN , i.e.

p = p0 − σbC on ∂ΩT (t), (5)

v∂ΩN
· nN = 0 → (∇p)|∂ΩN

· nN = 0 on ∂ΩN , (6)

being nN the normal at the fixed boundary ∂ΩN , C the
local curvature of the free boundary ∂ΩT (t), p0 the con-
stant pressure in the outer healthy domain and σb the sur-
face tension at the moving interface. The surface tension
σb arises from the collective adhesive interaction among
tumour cells at the MCTS boundary, primarily mediated
by cadherins, [59] and from the differential contractility
between the cell-cell and cell-medium interfaces, mainly
mediated by α-catenin [60]. Even if, in principle the sur-
face tension σb depends on the density of cells, the dis-
tribution of cadherins and the presence of α-catenin [60],
we will assume that it can be considered constant, for the
chosen cellular population composing the aggregate.

For what concerns the chemical species, in absence of
an interfacial structure, the continuity for the nutrient
concentration and flux can be imposed (both in ∂ΩT (t)
and in ∂ΩN ), and the concentration at the outer boundary
can be assumed constant (to model the source of nutrients
from the external vascular network), so that

n|∂Ω = nout on ∂Ω, (7)

�n�|∂ΩT
= 0, �∇n�|∂ΩT

· n = 0 on ∂ΩT , (8)

�n�|∂ΩN
= 0, �∇n�|∂ΩN

· nN = 0 on ∂ΩN , (9)

where n is the outward normal vector at the boundary
∂ΩT and �(·)�|∂Ωj

denotes the jump of the quantity be-
tween brackets across the boundary ∂Ωj , with j = N,T .

Finally, the compatibility condition at the free inter-
face imposes

dx∂ΩT

dt
· n = v∂ΩT

· n on ∂ΩT . (10)

In the following we will work with dimensionless equa-
tions, obtained writing the system of eqs. (1)–(4) in terms
of the dimensionless chemical concentration, n̄ = n/nc,
and the dimensionless pressure, p̄ = p/pc and referring to
the geometry outlined in fig. 2. The dimensionless quan-
tities are obtained using the following characteristic time
tc, length lc, velocity vc, pressure pc and chemical con-
centration nc: tc = γ−1

n , lc =
√

Dnγ−1
n , vc =

√
Dnγn,

pc = DnK−1
p , nc = nout. Finally, the resulting dimension-

less systems of equations reads

˙̄n =

⎧
⎪⎪⎨

⎪⎪⎩

∇̄2n̄ for r̄ < R̄N ,

∇̄2n̄ − n̄ for R̄N < r̄ < R̄T (t),

∇̄2n̄ for R̄T (t) < r̄ < R̄out

(11a)

∇̄2p̄ = −β∇̄2n̄ for R̄N < r̄ < R̄T (t), (11b)

�n̄�|R̄N
= 0, �∇̄n̄�|R̄N

· n̄N = 0, (∇̄p̄) · n̄N = 0

for r̄ = R̄N , (11c)

�n̄�|R̄T
= 0, �∇̄n̄�|R̄T

· n̄ = 0, p̄ = p̄0 − σ̄C̄

for r̄ = R̄T (t), (11d)

n̄(t̄, R̄out) = 1 for r̄ = R̄out, (11e)

dx̄R̄T

dt̄
· n̄ = v̄R̄T

· n̄ = −∇̄p̄|R̄T
· n̄ for r̄ = R̄T (t). (11f)

The non-dimensionalization leads to the definition of five
dimensionless parameters, classified into two broad cate-
gories:

– β :=χnc/Dn and σ :=σbKpγ
1/2
n D

−3/2
n = σbKpl

−1/2
c D−1

n

define mechano-biology effect on the aggregate expan-
sion, and are called motility parameters;

– R̄N , R̄T and R̄out (i.e. the dimensionless radii of the
necrotic core, of the MCTS and the whole domain,
respectively) define the geometrical properties of the
system with respect to the diffusive length lc, and are
denoted as size parameters.

In particular, the dimensionless parameter β represents
the chemical effects associated to the expansion of MCTSs,
since it can be regarded as the ratio between the typical
time-scales of mass production over nutrient diffusion. On
the other hand, the parameter σ defines the influence of
mechanical cues over tumour development, representing
the ratio of the surface tension of the aggregate over the
characteristic viscous pressure of the fluid ensemble.

For sake of simplicity, in the following we will omit the
barred notation to denote dimensionless quantities, e.g.
RT stands for R̄T and so on.
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T − e2RN w−
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(12)

p∗ = p0 +
σ

RT
+ β(n∗

RT
− n∗) (13)

3 Linear-stability analysis of the quasi-static
solution

In this section, we first derive the quasi-static solution of
the proposed model in order to mimic the early avascular
growth. We later perform a linear-stability analysis to in-
vestigate the occurrence of a morphological instability at
later growth stages.

3.1 Quasi-stationary solution

At early stages of avascular growth MCTSs maintain
a spherical shape [1, 3, 5]. Thus, we look for a radially
symmetric quasi-stationary solution, assuming that the
diffusive process is much faster than the MCTS expan-
sion, so that it is possible to drop the time derivative
in eq. (11a). This assumption is valid in many biologi-
cal conditions, since a fast-growing tumour may expand
at a rate of up to 0.5mm/day, whereas a typical dif-
fusion time scale is about 1min (considering a typical
length scale L ≈ 10−2 cm and a typical diffusion coeffi-
cient D ≈ 10−6 cm2 s−1) [11]. Thus, it is clear that the
diffusion timescale of nutrients is much shorter than the
growth timescale, so that the quasi-stationary assumption
can be effectively formulated. Furthermore for such long
time scale the MSC can be actually treated as a viscous
fluid.

Specializing our analysis to the case of a spherical tu-
mour of radius RT , we will denote with n∗ = n∗(r, t)
the quasi-stationary solution of eq. (11a) and with p∗ =
p∗(r, t) the quasi-stationary pressure field satisfying (11b).
Given the boundary conditions (11c)-(11d)-(11e) and con-
sidering that n∗ and p∗ should be bounded, the quasi-
stationary fields read

see eqs. (12) and (13) above

where we called n∗
RT

= n∗(RT ) the concentration of the
nutrient at the boundary of the aggregate and we defined
w+

T = (RN +1)(Rout−RT +1) and w−
T = (RN −1)(Rout−

RT − 1), being wT = (Rout −RT ) the width of the region
occupied by the tumour. Then, using eq. (11f), it is possi-
ble to compute the quasi-stationary velocity of the front,
which is directed along the radial direction for symmetry

considerations, i.e. v∗ = v∗
rer, with

v∗
r (RT ) =

β
Rout

(
e2RN (RN−1)(RT +1) − e2RT (RN +1)(RT −1)

)

R2
T

(
e2RN w−

T − e2RT w+
T

) .

(14)

Equation (14) can be integrated numerically to determine
the evolution of the spheroid border over time. The re-
sult, reported in fig. 3 for different values of the parame-
ter β, highlights the existence of an initial phase in which
the growth of the aggregate is nearly exponential and
a subsequent one in which the expansion of the tumour
is almost linear, as observed in [32, 61]. Indeed, in stan-
dard MCTS free-growth (i.e. without the introduction of
an external stress) in liquid suspension or at moderate
agarosis gel concentration, the plot of the tumour diame-
ter over time exhibits an early stage of exponential growth,
corresponding to spheroid volumetric growth, since nutri-
ents are available everywhere in the spheroid bulk [32,61].
Subsequently, when the diameter of the spheroid becomes
much larger than the penetration length of the nutrient,
the cellular growth becomes mainly localized on the sur-
face of the tumour, leading to a linear growth in time.

3.2 Perturbation of the quasi-stationary solution

In this section, we investigate the stability of the steady,
radially symmetric solution by applying small perturba-
tions of the MCTS boundary.

Let R∗
T be the unperturbed position of the moving

interface, we consider a small perturbation (ε � 1) of the
kind

R(θ, ϕ, t) = R∗
T (t) + εeλt

Re [Y m
� (θ, ϕ)] , (15)

where λ ∈ R is the amplification rate (or time-growth rate)
of the perturbation and Y m

� (θ, ϕ) is the spherical harmonic
of degree � and order m, with m ∈ N, � ∈ N

+ and |m| ≤ �.
The spherical harmonics Y m

� (θ, ϕ) form a complete set
of orthonormal functions and thus any square-integrable
function can be expanded as a linear combination of spher-
ical harmonics. For physical consistency, the variations of
n and p from the quasi-stationary solutions n∗ and p∗
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Fig. 3. Quasi-stationary solution of the proposed model, de-
picting the radius of the tumour over time for different values
of the motility parameter β. At early stages the growth is expo-
nential, as a consequence of the bulk availability of nutrients.
At later stages, the growth law is almost linear, reflecting the
higher nutrient concentration on the outer surface of the grow-
ing spheroid.

should be in the form

n(r, θ, ϕ, t) = n∗(r, t) + εn1(r)eλt
Re [Y m

� (θ, ϕ)] , (16)

p(r, θ, ϕ, t) = p∗(r, t) + εp1(r)eλt
Re [Y m

� (θ, ϕ)] . (17)

Using eq. (11a) and the relation ∇2
ΩY m

� + �(�+1)Y m
� = 0,

where we set the angular part of the Laplacian operator as
∇2

Ω(·) = 1/ sin θ ∂/∂θ(sin θ ∂(·)/∂θ) + 1/ sin2 θ ∂2(·)/∂φ2,
the term n1 must obey the following ODE:

r2n′′
1(r) + 2rn′

1(r) −
(
�(� + 1) + (λ + 1ΩT

)r2
)
n1(r) = 0,

(18)
where primes denote derivatives on r and 1ΩT

= 1 if RN <
r ≤ R∗

T , 1ΩT
= 0 otherwise. The solution of eq. (18), for

λ 
= {0,−1} is

n1(r) =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C1i�

(√
λr

)
if r ≤ RN ,

B1i�
(√

λ + 1r
)

+ B2k�

(√
λ + 1r

)
if RN < r≤ R∗

T ,

A1i�
(√

λ + 1r
)

+ A2k�

(√
λ + 1r

)
if R∗

T < r≤ Rout,

(19)

where i�(r) and k�(r) are the modified spherical Bessel
function of the first and second kind, respectively, evalu-
ated in r. The coefficients A1, A2, B1, B2, C1 appearing
in the expression of n1(r) can be determined imposing
the incremental boundary conditions for the concentra-
tion field (11c), (11d) and (11e), being

�n1�|RN
= 0,

�
∂n1

∂r

�∣
∣
∣
∣
RN

= 0, (20)

�n1�|R∗
T

= 0,
�

∂n1

∂r

�∣
∣
∣
∣
R∗

T

= n0, n1(Rout) = 0. (21)

The perturbed pressure field p1 in ΩT is obtained from
eq. (11b) that leads to

p1(r) = Qr� + Wr−�−1

−β
(
B1i�

(√
λ + 1r

)
+ B2k�

(√
λ + 1r

))
, (22)

where the constants Q and W can be determined from the
boundary conditions on the pressure field (11c) and (11d),
considering only the first order terms, i.e.

p1(R∗
T ) = −σ

2
R∗

T
2 (2 − (� + 1)�) − ∂p∗

∂r

∣
∣
∣
∣
R∗

T

,

∂p1

∂r

∣
∣
∣
∣
RN

= 0. (23)

Finally, using standard procedures in perturbation the-
ory [62], imposing the boundary condition (10) at the per-
turbed interface and neglecting the terms of order higher
than the first in the series expansion, it is possible to ob-
tain the following dispersion equation

λ = −p∗′′(R∗
T ) − p′1(R

∗
T ), (24)

which has the same form of the relation found for the rec-
tilinear front on an infinite domain [63] or an expanding
circular colony [64, 65]. The dispersion equation (24) is
an implicit function of the time-growth mode λ and the
spherical harmonic degree �, depending on the five dimen-
sionless parameters βi, σ, RN , R∗

T and Rout. Interestingly,
λ does not depend on the azimuthal component of the
model solutions Y m

� (φ, θ), i.e. the solutions are indepen-
dent of the order m, as observed also in previous works
based on different models [15,50].

4 Results and discussion

The dispersion equation (24) has been solved numerically
in order to investigate the global stability of the solutions
depending on the system parameters. The corresponding
dispersion diagrams are reported in fig. 4 for different val-
ues of both the size and the motility parameters. As in
classical perturbation theory [62], a positive real part of
the growth rate λ implies global instability, thus highlight
a critical spatial mode of the perturbation defined by the
degree � associated with the highest positive growth rate.
Interestingly, fig. 4 shows that the spheroid front is linearly
unstable at small �, with � = 1 being always unstable. In-
deed, whilst for a spheroid growing inside an infinite ho-
mogeneous domain with constant chemical concentration,
one would expect to find λ = 0 for � = 1, due to transla-
tional symmetry [11, 15, 50], we must remind that in our
case, due to the presence of the external environment the
translational symmetry is no longer preserved.

Furthermore, the dispersion diagrams in fig. 4 also in-
dicate the emergence of a characteristic mode different
from � = 1 in the cases of bigger size parameters (see
fig. 4a), as well as of small values of the motility param-
eters σ (see fig. 4c) and β (see fig. 4d). Interestingly, the
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Fig. 4. Dispersion diagrams for different values of the model parameters (a) Rout keeping q = Rout/RN constant, (b) Rout

keeping RN constant, (c) σ and (d) β. The solid lines in the graphs are obtained by interpolating the discrete values (see the
dots on the curves) of the time growth rate of the perturbation, λ, calculated for integer values of � from eq. (24). In (a) the
shapes of the tumour corresponding to the characteristic mode (� = 1, 2, 3, 6) are reported.

characteristic mode is not significantly affected by varying
only the dimension of the external domain, while keeping
the necrotic radius RN and the initial tumour radius RT

fixed (fig. 4b) Moreover, whether the range of unstable
modes is highly influenced by the sizes parameters and
by the motility parameter σ (fig. 4a-c), it is not deeply
influenced by variations of Rout and β (fig. 4b-d). Indeed
as either the size of the domains decreases (fig. 4a) or σ
increases, the range of unstable modes decreases, up to a
range where only � = 1 is unstable. The dependency on
the size of the domains states that smaller diffusive lengths
(i.e. smaller diffusion coefficient or higher absorption rate
of the nutrients) lead to highly irregular contours during
the growth of the tumour. On the other hand, the effect
on the mechanical parameter σ on the dispersion diagram
shows that, as expected, the surface tension σb, along with
a high permeability of the surrounding porous environ-
ment k act a stabilizing effect on the front (see fig. 4c),
whereas the viscosity of the tumour cluster destabilizes the

border of the MCTS leading to more aggressive tumours.
As β settles the velocity of the quasi-stationary moving
front (see eq. (14)), the dispersion diagram in fig. 4d shows
that the tumour developed highly irregular contour only
in the case of slowly moving front (i.e. small chemotactic
coefficient and proliferation), since for fast moving front
the characteristic mode decrease, until only � = 1 is un-
stable.

Moreover, it is interesting to consider the role played
by the radius of the growing tumour in the development of
instabilities, while keeping all the other parameters fixed
(see fig. 5). Figure 5a reports the results for a set of pa-
rameters Rout, RN , β and σ for which, independently from
RT , the most unstable mode is always � = 1. This situ-
ation corresponds to a sort of translation of the spheroid
inside the domain (see fig. 5a on the right). On the other
hand, the characteristic mode depends on the MCTS size
in a certain range of material parameters (see fig. 5b).
Indeed, it increases for increasing RT , so that bigger tu-
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Fig. 5. Evolution of the time growth rate of the perturbation λ with respect to the dimensionless tumour radius, RT , for
different values of � (with � = 1, 2, 4, 6, 8, 10). (a) For the chosen set of parameters, � = 1 is the most unstable mode, whatever
the tumour radius is. The deformed shapes corresponding to RT = 2, 5, 8 are reported aside (the gray region represents the outer
environment). (b) The characteristic mode � changes for different values of the tumour radius. Aside the dispersion curves, the
section of the tumour perturbed shapes are reported for RT = 2.5, 8, 12.5, 20, 26, 35 to which the corresponding characteristic
modes are � = 1, 2, 4, 6, 8, 10, respectively.

Fig. 6. Evolution of the quasi-stationary and perturbed pressure and velocity fields for Rn = 1, R∗
T = 35, Rout = 50 for a

perturbation of the kind eλtY 6
10(θ, ϕ). Since higher changes in the velocity and pressure field occur only at the interface, we use

a logarithmic scale in the velocity plot in order to show small variations of the perturbed field inside the bulk of the tumour.
The perturbed velocity field highlights the existence of negative radial velocities (i.e. radial convergent flow), as pointed out
in [66,67].

mours show more irregularities at their border. Therefore,
a growing MCTS can undergo a morphological transition
that may significantly affect the invasion pattern towards
the typical finger-like structures observed for invasive car-
cinomas (see fig. 5b).

Finally, fig. 6 depicts the perturbed pressure and ve-
locity fields for a linearly unstable perturbation, given by
a spherical harmonic of the kind Y 6

10(θ, ϕ). The highest
variation of the pressure is located in a thin shell closer
to the interface of the tumour, so that in the bulk of the
tumour the velocity is almost null. In the region just at
the rear of small protrusions (due to the perturbation of
the boundary), the pressure field increases, so that the
velocity at the border of the MCTS where a protrusion

form, for the unstable modes (such as the one reported
in fig. 6), is higher than the velocity in the invagination
on the contour. Furthermore, from the perturbed field it
is possible to appreciate small negative radial velocities in
the bulk, just at the rear of the region where protrusion
forms. Thus, while the spheroid surface moves outward,
some cells inside the cluster move inward. This result con-
firms the existence of a radial convergent flow, in addition
to the divergent flow that makes the aggregate expand,
as pointed out in [66, 67]. This effect combined with the
higher velocity associated to the protrusion border could
explain the possible detachment of carcinoma cells that
lead to metastasis and thus the higher invasivity of tu-
mours with irregular contours.
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Even though the onset of irregular contours and the
development of a retrograde flow are in qualitative agree-
ment with biological experiments [66–68], a direct quan-
titative comparison between our predictions and the bi-
ological experiments is not straightforward. First, not all
the data required by the mathematical model, even though
measurable in principle, are reported in the literature. Sec-
ond, most of the work in the vast literature on MCTSs
focus on the effect of nutrients availability and stress on
the growth of the spherical tumour aggregate, whereas lit-
tle attention has been paid to the systematic mapping of
contour instabilities onset and evolution. Therefore, fur-
ther morphological data on MCTS, combined with esti-
mates of the underlying biological parameters involved in
the process (i.e. nutrients diffusion and uptake, surface
tension of the aggregate and permeability of the porous
medium), are highly required for the future validation of
the proposed model.

5 Conclusions

In this work we have presented a continuum model for
describing the avascular growth of a multicellular tumour
spheroid, comprising a fixed necrotic core surrounded by
a region of proliferative cells, guided by the uptake of a
diffusing nutrient. The proposed model encapsulates the
diffusion of a chemical species from the vasculature of
the healthy region and the tumour cell response to nu-
trients, via their proliferation and their chemotactic mi-
gration inside the extracellular space. The proposed model
differs from existing approaches [2, 49, 50] since it consid-
ers a growth though a rigid, porous surrounding material.
Moreover, the MCTS expansion is guided not only by cell
proliferation as in [2, 49, 50], but also by the chemotactic
motion of cells, through a non-convective mass flux term.
Differently from [2, 50], that assumed a Gibbs-Thompson
relation [69] on the moving boundary for the chemical po-
tential, we considered a mechanical effect in term of a
surface tension at the MCTS outer boundary, leading to
the Young-Laplace equation at the interface.

The proposed model is governed by five dimensionless
parameters: two of them, β and σ are called motility pa-
rameters and representing the mechano-biology cues, the
other three are denoted size parameters and are related
to the typical sizes of the domains with respect to the dif-
fusive length. The analytic results predicted the existence
of a quasi-stationary radially symmetric tumour configu-
ration that is always linearly unstable to asymmetric per-
turbations involving spherical harmonics Y m

� (θ, φ), with
the range of the unstable modes depending on the dimen-
sion of the domain with respect to the diffusive length
and on the motility parameter β, related to the chemo-
tactic growth of the tumour. We remark that, whilst a
MCTS growing inside an infinite homogeneous domain is
marginally stable, i.e. λ = 0 for � = 1 [11, 15, 50], the
proposed model is always linearly unstable, since transla-
tional symmetry is broken by considering a finite dimen-
sion of the surrounding media. Furthermore, differently
from existing works [2, 8, 9, 14, 15, 17], the perturbation

analysis is conducted here without neglecting the diffu-
sion timescale in the unstable growth rate.

The analysis of the perturbed field also pointed out a
possible mechanism that could lead to the detachment of
metastasis from the primary tumour mass, based on the
development of higher velocity at the border of the MCTS
and a convergent flow inside where protrusions form. This
mechanism could explain the reason why the propensity
for asymmetric invasion and the installation of irregular
morphology characterize the growth of aggressive carci-
nomas in vivo. Thus, this approach has the potential to
foster our understanding on the process of transition from
the benign to the aggressive tumour stage and might pro-
vide also some indications for improving therapeutic treat-
ments. Indeed, more blurred and irregular contours de-
tected in vivo can be related to more malignant tumour,
with respect to smoother and clearer contours that can be
associated to benign carcinomas.

However, the present model considers a really sim-
plified geometry and adopts some simplifications in or-
der to obtain a model that can be studied analytically.
Thus, future improvements of the proposed mathematical
model should focus on the explicit description of the qui-
escent cell region (that in the present model corresponds
to the region of the spheroid in which we have an almost
null velocity) and on tracking the evolution of the inner
necrotic core, occurring, for instance, when the nutrients
concentration attains a specific value [2, 12] (whereas in
the present work the fixed radius RN of the necrotic core
is a parameter in the sensitivity analysis). Then, the sta-
bility analysis can be enriched by considering the weakly
nonlinear interactions of the asymmetric modes, as well as
their evolution depending on the order m of the spherical
harmonic perturbation (as done for example in [15] in a
simplified case) and numerical techniques should be de-
veloped in order to simulate the fully nonlinear evolution
of the morphological transition.

From the modelling point of view, future studies
should also consider the effect of the cells populating the
surrounding healthy environment on the consumption of
nutrients and the effect of varying local densities (both
inside the healthy tissue and inside the different tumour
regions) on the nutrient diffusion coefficient. Then, the ef-
fect of solid mechanical stresses on the growth dynamics
of tumours [32, 61, 67, 70–73] and the effect of the possi-
ble deformation, degradation and reorganization of extra-
cellular matrix fibres [74–76] should be included to move
towards a more realistic representation of the problem. In-
deed, for tumours growing both in vivo and in xenograft
animal models, the description of the system evolution
is far more complex than the one proposed in this work,
referred to MCTS growth inside inert and rigid ECM scaf-
folds. In particular, it has been shown that the geometrical
and mechanical properties of the ECM [74,75] play an im-
portant role for the possible formation of metastasis, since
they can lead to growth arrest (i.e. spheroid compartmen-
talization) or, on the contrary, foster the detachment of in-
vasive cells. Along with the rigidity of the matrix, its den-
sity, and the tensile forces generated in the ECM [74,75],
more recent studies identify the matrix pore size as the
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critical property modulating cancer cell invasion [77, 78].
Based on these biological observations, some recent math-
ematical models have been developed to take into account,
on the one hand, MCTS segregation by thick porous (but
still rigid and homogeneous) structures [79–81] and, on
the other, ECM deformation [82]. Furthermore, not only
ECM fibers can accumulate or being degraded at the host-
MCTS interface, but they strongly reorganize, aligning
parallel to the tumour border, in a first stage, and then
perpendicular to the tumour boundary [74].

Thus, to take into account all these aspects and
more realistically describe tumour growth in vivo, an
anisotropic poro-elasto-visco-plastic model with a thresh-
old (based on microscopic arguments) for cell motion
should be developed. However in that case tumour ir-
regular contours will likely arise for inhomogeneity and
anisotropy in the ECM, whereas this work demonstrates
that mechano-biological and (macroscopic) geometrical
cues can determine the occurrence of a morphological
transition in growing tumours that can promote invasive-
ness, even in a homogeneous environment. The theoretical
results push towards the developments of further biolog-
ical experiments for accurate characterization of MCTS
morphology and careful measures of the surface tension
and the interstitial pressure within MCTSs [59,83], as well
as growth and mobility properties of the tumour cells to
validate the predictions of the model. Indeed, the integra-
tion of mathematical tools in biological research could be
crucial for estimating the tumour’s ability to invade its
host environment.
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