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Abstract. The effects of viscoelasticity on the dynamics and break-up of fluid threads in microfluidic T-
junctions are investigated using numerical simulations of dilute polymer solutions at changing the Capillary
number (Ca), i.e. at changing the balance between the viscous forces and the surface tension at the interface,
up to Ca ≈ 3×10−2. A Navier-Stokes (NS) description of the solvent based on the lattice Boltzmann models
(LBM) is here coupled to constitutive equations for finite extensible non-linear elastic dumbbells with the
closure proposed by Peterlin (FENE-P model). We present the results of three-dimensional simulations in
a range of Ca which is broad enough to characterize all the three characteristic mechanisms of break-up
in the confined T-junction, i.e. squeezing, dripping and jetting regimes. The various model parameters of
the FENE-P constitutive equations, including the polymer relaxation time τP and the finite extensibility
parameter L2, are changed to provide quantitative details on how the dynamics and break-up properties
are affected by viscoelasticity. We will analyze cases with Droplet Viscoelasticity (DV), where viscoelastic
properties are confined in the dispersed (d) phase, as well as cases with Matrix Viscoelasticity (MV), where
viscoelastic properties are confined in the continuous (c) phase. Moderate flow-rate ratios Q ≈ O(1) of
the two phases are considered in the present study. Overall, we find that the effects are more pronounced
in the case with MV, as the flow driving the break-up process upstream of the emerging thread can be
sensibly perturbed by the polymer stresses.

1 Introduction

Droplet-based microfluidic devices have gained a consid-
erable deal of attention, due to their importance in stud-
ies that require control over droplet size [1–8]. Common
droplet generator designs used in these devices are T-
shaped [9, 10] and flow-focusing [11–13] geometries. In T-
shaped geometries, a dispersed (d) phase is injected per-
pendicularly into the main channel containing a contin-
uous (c) phase. Forces are created by the cross-flowing
continuous phase which periodically produces break-up
of droplets. The operational regime of these devices is
primarily characterized by the Capillary number, which
quantifies the importance of the viscous forces with re-
spect to the surface tension forces at the non-ideal inter-
face, and the droplet size and its distribution are dictated
by the flow-rate ratio Q = Qd/Qc of the two immisci-
ble fluids. Distinct regimes of formation of droplets have
been identified: squeezing, dripping and jetting, providing
a unifying picture of emulsification processes typical of
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microfluidic systems [9, 10, 12, 14]. The squeezing mecha-
nism of break-up is peculiar of all microfluidic systems,
because of the physical confinement which naturally ac-
companies these geometries. In this regime, the break-up
process is driven by the build-up of pressure upstream of
the emerging thread. The dripping regime, while appar-
ently homologous to the unbounded case, is also signifi-
cantly influenced by the constrained geometry [9], which
modifies the scaling law for the size of the droplets de-
rived from the balance of interfacial and viscous stresses.
Finally, the jetting regime sets in only at very high flow
rates, or with low interfacial tension, i.e. higher values of
the Capillary number.

With few exceptions [15–17], previous research has
been mainly restricted to Newtonian fluids. However, the
processing of biological fluids inevitably results in con-
sidering a non-Newtonian viscoelastic behaviour. Consis-
tently, the study of viscoelastic liquids in flow-focusing
geometries [15, 16, 18] or T-junction geometries [17] has
gained some attention. The formation and the pinch-off
mechanism of viscoelastic droplets in Newtonian contin-
uous phases was investigated in various flow-focusing ge-
ometries by Steinhaus et al. [16], while the effect of poly-
mer molecular weight on filament thinning was studied by
Arratia et al. [15, 18]. In a recent paper, Derzsi et al. [13]
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presented an experimental study of the effects of viscoelas-
ticity in microfluidic flow-focusing geometries. The au-
thors find that the viscoelasticity of the focusing liquid sta-
bilizes the jets facilitating formation of smaller droplets,
and leads to transitions between various regimes at lower
ratios of flow and at lower values of the Capillary numbers
in comparison to the Newtonian focusing liquids. Comple-
menting these results with systematic investigations by
varying deformation rates and non-Newtonian constitu-
tive parameters would be of extreme interest. This is wit-
nessed by the various papers in the literature [9–12, 19–23]
addressing these kind of problems with the help of numer-
ical simulations.

Here we present a three-dimensional numerical in-
vestigations of the interplay between viscoelasticity and
geometry-mediated breaking in confined microfluidic T-
junctions. Numerical simulations allow to address system-
atically the importance of the various free parameters in
the viscoelastic model and visualize the distribution of the
polymer feedback stresses, thus correlating the distribu-
tion of those stresses to the interface shape. Our numerical
approach offers the possibility to tune the viscosity ratio
of the two Newtonian phases, a fact that is instrumental
to perform simulations with non-Newtonian phases and
compare them with the results of fully Newtonian systems
with the same viscosity ratio.

The paper is organized as follows: in sect. 2 we will
present the necessary mathematical background for the
problem studied, showing the relevant equations that we
integrate in both the continuous and dispersed phases,
and identifying the relevant dimensionless numbers use-
ful for our investigation. Useful benchmarks for the shear
rheology of the numerical model will be provided for the
typical parameters used in our study. In sect. 3 we will
present the numerical results and characterize the effects
of viscoelasticity in the three distinct regimes of squeez-
ing (subsect. 3.1) and dripping/jetting (subsect. 3.2). We
will study both the droplet size soon after break-up as
well as the characteristic time for break-up and compare
them with the corresponding Newtonian cases. To explain
the observed behaviour we will explore the distribution of
feedback stresses in the non-Newtonian phases and cor-
relate them with the characteristic mechanisms of break-
up in the confined T-junction. Conclusions will follow in
sect. 4.

2 Theoretical model

Numerical modeling of viscoelastic fluids often relies on
the coupling of constitutive relations for the stress ten-
sor, typically obtained via approximate representations
of some underlying micro-mechanical model for the poly-
mer molecules, with a Navier-Stokes (NS) description for
the solvent. The FENE-P constitutive model is obtained
via a pre-averaging approximation applied to a suspen-
sion of non-interacting finitely extensible non-linear elas-
tic (FENE) dumbbells. FENE-P is well-adapted for di-
lute (and semi-dilute) polymer solutions, and has been
used previously to analyze filament thinning of viscoelas-

tic fluids in macroscopic experiments [24, 25], as well as
the effects of viscoelasticity on the dynamics of filament
thinning and break-up processes in microchannels [15, 18].
In this paper we provide quantitative details on how the
FENE-P model parameters affect the break-up properties
of confined threads in microfluidic T-junctions, by analyz-
ing separately the cases of Droplet Viscoelasticity (DV),
where the viscoelastic properties are confined in the dis-
persed (d) phase undergoing the break-up process, as well
as the cases with Matrix Viscoelasticity (MV), where the
viscoelastic properties are confined in the continuous (c)
phase. A fluid described by the FENE-P model possesses
the same dynamical properties as a fluid described by the
much simpler Oldroyd-B model, which assumes that poly-
mers can be modeled as Hookean springs which relax to
the equilibrium configuration with a characteristic time
τP . The main difference is that the Oldroyd-B model al-
lows for infinite extension of polymer molecules, while the
FENE-P model uses a spring-force law in which the poly-
mer molecules can be stretched only by a finite amount in
the flow field [26, 27]. Thus we can explore systematically
both the effects of the polymer relaxation times as well as
their finite extensibility.

The solvent part of the model is obtained with lattice
Boltzmann models (LBM) [28, 29], which proved to be ex-
tremely valuable tools for the simulation of droplet defor-
mation problems [30–33], droplets dynamics in open [34,
35] and confined [22, 23, 33] microfluidic geometries. LBM
is instrumental to solve the diffuse-interface hydrodynamic
equations of a binary mixture of two components [36–41]:
the resulting physical domain can be partitioned into dif-
ferent subdomains, each occupied by a “pure” fluid, with
the interface between the two fluids described as a thin
layer where the fluid properties change smoothly. The
FENE-P constitutive equations are solved with a finite dif-
ference scheme which is coupled with the solvent LBM as
described in [42, 43]. The numerical approach has been ex-
tensively validated in our previous works [42, 43], where we
have provided evidence that the model is able to capture
quantitatively rheological properties of dilute suspensions
as well as deformation and orientation of single viscoelas-
tic droplets in confined shear flows. The main essential
features of the model are recalled in appendix A.

In the MV case, the equations we solve in the contin-
uous phase are the Navier-Stokes (NS) equations coupled
to the FENE-P constitutive equations

ρc [∂tuc + (uc · ∇)uc] = −∇Pc+∇
(
ηc(∇uc+(∇uc)T )

)

+
ηP

τP
∇ · [f(rP )C], (1)

∂tC + (uc · ∇)C = C · (∇uc) + (∇uc)T · C

−
(

f(rP )C − I

τP

)
. (2)

Here, uc and ηc are the velocity and the dynamic viscosity
of the continuous phase, respectively. ρc is the solvent den-
sity, Pc the solvent bulk pressure, and (∇uc)T the trans-
pose of (∇uc). As for the polymer details, ηP is the vis-
cosity parameter for the FENE-P solute, τP the polymer
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relaxation time, C the polymer-conformation tensor, I the
identity tensor, f(rP ) ≡ (L2 − 3)/(L2 − r2

P ) the FENE-P
potential that ensures finite extensibility, rP ≡

√
Tr(C)

and L is the maximum possible extension of the poly-
mers [26, 27]. In the dispersed phase we just consider the
NS equations

ρd [∂tud+(ud · ∇)ud] = −∇Pd

+∇
(
ηd(∇ud + (∇ud)T )

)
, (3)

where the different fields have the same physical mean-
ing but they refer to the dispersed phase. Immiscibility
between the dispersed phase and the continuous phase is
introduced using the so-called “Shan-Chen” model [42, 44,
45] which ensures phase separation with the formation of
stable interfaces between the two phases characterized by
a positive surface tension σ.

For the DV case, we consider the reversed case, where
the FENE-P constitutive equations are integrated in the
dispersed phase (i.e. (1)-(2) with c → d), while only the
NS equations are considered in the continuous phase (i.e.
(3) with d → c).

As for the geometry used, the T-junction is embedded
in a rectangular parallelepiped with size Lx×Ly×Lz, and
channels have a square cross-section with edge H = Lz.
The square cross-section is resolved with H×H = 32×32
grid points. The main channel and the side channel lengths
are resolved with a variable number of grid points (see also
table 1), depending on the characteristic regime analyzed
and the characteristic size of the droplet after break-up.

Besides the geometrical parameters, the Newtonian
problem is described by six parameters characterizing the
flow and material properties of the fluids. These parame-
ters are the mean speeds of the continuous and dispersed
phases, vc and vd, respectively; the viscosities of the two
fluids ηc and ηd of eqs. (1) and (3), the interfacial ten-
sion σ, and the total density ρc = ρd = ρ (the same
for the dispersed and continuous phases). We will assume
perfect wetting for the continuous phase, while the dis-
persed fluid does not wet the walls. Wetting properties
are introduced at the boundaries declaring the stress of
the density fields [46, 47]. We then choose the following
groups [9, 11, 12]: the Capillary number calculated for the
continuous phase,

Ca =
(ηtot,c)vc

σ
(4)

the Reynolds number Re = ρvcH/(ηtot,c), the viscosity
ratio λ, and the flow rate ratio

Q =
vd

vc
=

Qd

Qc
, (5)

where Qd = vdH
2 and Qc = vcH

2 are the flow rates at
the two inlets. For the flow regimes under consideration,
the Reynolds number is small (Re ≈ 0.01–0.1), and does
not influence the droplet size, which leaves us with the
three governing parameters: Ca, λ and Q. Notice that
the total viscosity in the continuous phase ηtot,c is ei-
ther ηtot,c = ηc + ηP (for MV) or ηtot,c = ηc (for DV).

In the outlet, we impose pressure boundary conditions
and use Neumann boundary conditions for the velocity
field. A Dirichlet boundary condition is imposed at the in-
lets by specifying the pressure gradient that is compatible
with the analytical solution of a Stokes flow in a square
duct [31]. As for the polymer boundary conditions, we
impose a Dirichlet type boundary conditions by linearly
extrapolating the conformation tensor at the boundaries.

Our numerical approach offers the possibility to tune
the viscosity ratio of the two Newtonian phases [42, 43].
This will allow us to work with unitary viscosity ratio, de-
fined in terms of the total (fluid + polymer) shear viscosity
λ = ηd/(ηc+ηP ) = 1.0 for MV and λ = (ηd+ηP )/ηc = 1.0
for DV. Consistently, we will compare the non-Newtonian
simulations with the corresponding Newtonian case at
λ = ηd/ηc = 1.0. The ratio between the polymer viscosity
and the total viscosity is set to ηP /(ηc,d + ηP ) ≈ 0.265.
Similarly to problems involving single droplet deformation
and dynamics [48–52], we choose to quantify the degree of
viscoelasticity with the Deborah number that we define
as De = N1H

2σ

(
σ

(ηd,c+ηP )Hγ̇

)2, where N1 is the first normal

stress difference which develops in the viscoelastic phase
in presence of a homogeneous steady shear [25, 26]. In the
definition of the Deborah number, the viscosity is obvi-
ously indicated in the viscoelastic phase, either ηc +ηP for
MV or ηd + ηP for DV. The shear rheology of the model
can be quantitatively verified in the numerical simulations.
There are indeed exact analytical results one can get by
solving the constitutive equations for the hydrodynami-
cal problem of steady shear flow, ux = γ̇y, uy = uz = 0:
both the polymer shear stress and the first normal stress
difference N1 for the FENE-P model [25, 26] follow

ηP

τP
f(rP )Cxy =

2ηP

τP

(
L2

6

)1/2

× sinh
(

1
3

arcsinh
(

γ̇τP L2

4

(
L2

6

)−3/2))
,

(6)

N1 =
ηP

τP
f(rP )(Cxx − Cyy) = 8

ηP

τP

(
L2

6

)

× sinh2

(
1
3

arcsinh
(

τP γ̇L2

4

(
L2

6

)−3/2))
.

(7)

The validity of both eqs. (6) and (7) is benchmarked
in fig. 1: numerical simulations have been carried out in
three-dimensional domains with H×H×H = 20×20×20
cells. Periodic boundary conditions are applied in the
stream-flow (x) and in the transverse-flow (z) directions
while two walls are located at y = 0 and y = H. The linear
shear flow ux = γ̇y, uy = uz = 0 is imposed in the numer-
ics by applying two opposite velocities in the stream-flow
direction (ux(x, y = 0, z) = −ux(x, y = H, z) = Uw) at
the upper (y = H) and lower wall (y = 0) with the bounce-
back rule [53]. We next change the shear in the range
10−6 ≤ 2Uw/H ≤ 10−2 lbu (lattice Boltzmann units) and



Page 4 of 16 Eur. Phys. J. E (2016) 39: 6

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001  0.01  0.1  1  10  100  1000

f(
r P

) 
C

xy

Λ

L2=5 x 10, numerics
L2=5 x 102

L2=5 x 103

L2=5 x 10, theory
L=5 x 102

L=5 x 103

(a) Polymer shear stress

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 0.001  0.01  0.1  1  10  100  1000

f(
r P

) 
(C

xx
-C

yy
)

Λ

L2=5 x 10, numerics
L2= 5 x 102

L2=5 x 103

L2=5 x 10, theory
L=5 x 102

L=5 x 103

(b) Polymer first normal stress difference

 0.01

 0.1

 1

 10

 0.001  0.01  0.1  1  10  100  1000

f(
r P

) 
C

xy
/Λ

Λ

L2=5 x 10, numerics
L2=5 x 102

L2=5 x 103

L2=5 x 10, theory
L=5 x 102

L=5 x 103

(c) Polymer shear viscosity

 0.001

 0.01

 0.1

 1

 10

 0.001  0.01  0.1  1  10  100  1000

Ψ
1=

f(
r P

) 
(C

xx
-C

yy
) 

/ Λ
2

Λ

L2=5 x 10, numerics
L2=5 x 102

L2=5 x 103

L2=10, theory
L=5 x 102

L=5 x 103
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Fig. 1. Polymer shear rheology. Panels (a)-(b): we plot the polymer shear stress and the first normal stress difference (both scaled
to the polymer viscosity ηP and polymer relaxation time τP , see (6)-(7) and text for details) as a function of the dimensionless
shear Λ = τP γ̇ in a steady shear flow with intensity γ̇. Symbols are the results of the numerical simulations [42, 43] with different
imposed shears, different τP and different L2. All the numerical results collapse on different master curves, dependently on the
value of L2: L2 = 5 × 10 (squares), L2 = 5 × 102 (circles), L2 = 5 × 103 (triangles). The lines are the theoretical predictions
based on eqs. (6) and (7). Panels (c)-(d): we plot the dimensionless polymer shear viscosity and the first normal stress coefficient
extracted from data in the top panels.

the polymer relaxation time in the range 101 ≤ τP ≤
105 lbu for different values of the finite extensibility pa-
rameter ranging in the interval L2 = 5 × 10–5 × 103, and
fixed ηP . The various quantities are made dimensionless
with the viscosity ηP and the relaxation time τP , and
they are plotted as a function of the dimensionless shear
Λ = τP γ̇. The values of the conformation tensor are taken
when the simulation has reached the steady state. As we
can see from the figures, all the numerical simulations col-
lapse on different master curves, dependently on the value
of L2. In particular, both the stress (6) and first normal
stress difference (7) increase at large Λ to exhibit variable
levels depending on L2, and consistently with the theoret-
ical predictions [25–27]. The dependence from L2 reflects
in thinning effects visible in the dimensionless polymer
shear viscosity, f(rP )Cxy/Λ, and first normal stress coef-
ficient, Ψ1 = f(rP )(Cxx − Cyy)/Λ2, which are analyzed
in the bottom panel of fig. 1. Overall, the numerical sim-

ulations performed to quantify the shear rheology reveal
a very good agreement with the theoretical predictions
both in the polymer shear viscosity and in the first nor-
mal stress difference. Similar analysis can be performed
for extensional flows, showing that the increase of the ex-
tensional viscosity predicted by the theory [25–27] is in-
deed found in the numerical simulations [42]. The coupling
between normal stresses and single droplet dynamics un-
der simple shear has also been extensively verified in the
numerical simulations. In particular, in [42] we provided
evidence that the model proposed captures quantitatively
single droplet orientation and deformation in presence of
viscoelastic stresses.

In the limit of Hookean dumbbells (Oldroyd-B limit,
L2 � 1) we can use the asymptotic expansion of the hy-
perbolic functions and we get N1 ≈ 2τP ηP γ̇2, so that

De =
τP

τH

ηP

ηd,c + ηP
. (8)
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Table 1. Parameters for the numerical simulations: Ca is the Capillary number (see eq. (4)), Q = Qd/Qc is the flow-rate
ratio between the dispersed (d) and continuous (c) phase. The T-junction is embedded in a rectangular parallelepiped with size
Lx ×Ly ×Lz, and channels have a square cross-section with edge H = Lz. ηd is the dynamic viscosity of the Newtonian solvent
inside the dispersed phase, ηc is the dynamic viscosity of the Newtonian solvent inside the continuous phase, ηP is the polymer
viscosity, τP is the polymer relaxation time, De is Deborah number based on definition (8).

Ca Q Lx × Ly × Lz ηd ηc ηP τP De L2

cells lbu lbu lbu lbu

0.002–0.02 1.0 640 × 128 × 32 0.49 0.49 0.00

0.002–0.02 1.0 896 × 128 × 32 0.36 0.49 0.13 2–45 × 102 0.3–7.0 102, 103, 104

0.002–0.02 1.0 896 × 128 × 32 0.49 0.36 0.13 2–45 × 102 0.3–7.0 102, 103, 104

0.002 0.25–1.0 640 × 128 × 32 0.49 0.49 0.00

0.002 0.25–1.0 896 × 128 × 32 0.36 0.49 0.13 2–45 × 102 0.3–7.0 102, 103, 104

0.002 0.25–1.0 896 × 128 × 32 0.49 0.36 0.13 2–45 × 102 0.3–7.0 102, 103, 104

Equation (8) shows that De is clearly dependent on the
ratio between the polymer relaxation time τP and the time
τH defined as

τH =
H(ηd,c + ηP )

σ
, (9)

which represents the relaxation time of a droplet with
characteristic size H, determined by viscous and capil-
lary forces. Clearly, definition (8) is dependent on rheol-
ogy and geometry. The values of L2 we use in the numer-
ical simulations of the confined T-junctions are such that
L2 ≥ 102, ruling out important thinning effects for the
shears achieved in our simulations. We therefore choose
to report results based on the definition of the Deborah
number (8) together with the finite extensibility param-
eter L2. All the various parameters are summarized in
table 1. An interesting point of discussion emerges from
the attempt of connecting results from numerical simula-
tions with experimental data, and in particular how ap-
propriate is the choice of the parameters ηP , τP and L2.
Some of these information are available from the literature
(see [15, 18] and references therein). Arratia et al. [15, 18]
performed experiments on filament thinning and break-up
of viscoelastic fluids in microchannels: for a viscoelastic
fluid made by adding 100 ppm of polyacrylamide (PAA)
with MW (molecular weight) of 105, a concentration of
ηP /(ηd,c + ηP ) ≈ 10−1, a finite extensibility parameter
L2 ≈ 103 and fluid relaxation time τP = 0.05 s are found
to best fit the experimental rheological data. The poly-
mer relaxation time decreases at decreasing the molec-
ular weight, down to τP ≈ 10−3 s, for MW of 1 × 103.
In the present study, we choose to use different L2, so
as to study the enhancement of viscoelastic effects up to
the value above cited. As for the polymer relaxation time
τP , we notice that a Newtonian droplet with character-
istic size of the order of 10−4 m would result in a τH

(ηd ≈ 0.2Pa s and σ = 10−2 N/m [15, 18]) of the order
of τH = ηdH/σ ≈ 10−3 s, hence τP /τH ranges from 1 to
a few tens. Such a range can actually be explored in the
numerics by tuning τP in the range 250–4000 lbu (τP /τH

in the range 1–25).

3 Results and discussions

In fig. 2 we report 3D snapshots illustrating geometry
mediated break-up in various scenarios depending on Ca.
These snapshots allow us to identify the various regimes
which are known from the literature on droplet forma-
tion in confined T-junctions (see [9, 11, 12] and references
therein): these will be used as “reference” Newtonian
scenarios to quantify the importance of viscoelasticity.
Notice that we have used the characteristic shear time
τshear = H/vc as a unit of time. At low Ca (panels (a)-(d)
of fig. 2), the incoming thread tends to occupy and ob-
struct the entire cross-section of the main channel, with
the break-up occurring at the junction (panel (d) in fig. 2).
By increasing Ca, a dripping scenario is entered (Panels
(e)-(h) in fig. 2) in which the obstruction of the cross-
section in the main channel is less visible and viscous shear
forces start to influence the droplet break-up process im-
mediately after the droplet enters into the main channel
(panel (f) in fig. 2). As a result of the combined effect
of surface tension and viscous forces, smaller droplets are
formed downstream of the T-junction (see panels (g)-(h)
in fig. 2). By further increasing Ca, a critical value [9] ex-
ists above which the dispersed phase develops a thread
entering the main channel and the droplet detachment
point gradually moves downstream, until a jet is formed.
The length of the jet is obviously limited by the size of the
computational domain and simulations with large resolu-
tion are indeed necessary (see table 1) to make sure that
the finite simulation domain does not play a role in the
droplet formation inside the junction. A quantitative anal-
ysis on the influence of viscosity ratio and channel geome-
tries on the above described physical scenarios has already
been provided in the literature [9, 11, 12]. Here, instead, we
aim to illustrate the effects of viscoelasticity. As already
stressed in sect. 2, our numerical approach offers the pos-
sibility to tune the viscosity ratio of the two Newtonian
phases [42, 43]. By fixing the polymer viscosity ηP , we can
use such flexibility to achieve unitary viscosity ratio, de-
fined in terms of the total (fluid + polymer) shear viscosity
λ = ηd/(ηc+ηP ) = 1.0 for MV and λ = (ηd+ηP )/ηc = 1.0
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Fig. 2. Droplet formation in T-junction geometries for a Newtonian case with viscosity ratio λ = 1.0. Panels (a)-(d): we
illustrate the squeezing regime at Ca = 0.0026 and flow-rate ratio Q = 0.5: the fluid thread enters and obstructs the main
channel and break-up is mainly driven by the pressure build-up upstream of the emerging thread [9]. Both the dynamics of
break-up and the scaling of the sizes of droplets are influenced weakly by viscous forces [9, 10]. Panels (e)-(h) show typical
features of the dripping regime at Ca = 0.013 and Q = 1.0: the break-up process starts to be influenced by the shear forces,
although the thread still occupy a significant portion of the main channel. This results in smaller droplets formed downstream of
the T-junction. Panels (i)-(l) report snapshots from the jetting regime at larger Capillary number, Ca = 0.026, and Q = 1.0: the
dispersed phase develops a thread entering the main channel and the droplet detachment point gradually moves downstream,
until a jet is formed. To better highlight the jetting regime, the associated figures display a larger portion of the main channel
of the T-junction. In all cases we have used the characteristic shear time τshear = H/vc as a unit of time, while t0 is a reference
time (the same for all simulations).

for DV. This will allow us to compare the non-Newtonian
simulations with the corresponding Newtonian case at the
same (unitary) viscosity ratio. We will explore systemati-
cally both the effects of the finite extensibility parameter
L2 and the polymer relaxation time τP .

3.1 Squeezing regime

To go deeper and be more quantitative on the characteri-
zation of the various regimes, we start by investigating the
droplet size as a function of the flow-rate ratio Q in the
squeezing regime. The characteristic droplet size Ld in the
squeezing regime is only weekly affected by the viscosity
ratio and mainly determined by the ratio of the volumetric
flow-rates of the two immiscible fluids as

Ld = α1 + α2
Qd

Qc
= α1 + α2Q. (10)

The constants α1 and α2, which are of the order one,
are determined by the channel geometry [12]. The lin-
ear scaling law (10) has already been verified in exper-
iments [3, 6, 14] and also in numerical simulations [9, 11,
12, 54]. Our Newtonian data in the squeezing regime are

quantitatively analyzed in fig. 3, where we report the di-
mensionless droplet volume V/H3 = Ld/H. The linear
behaviour of eq. (10) is indeed reproduced by our simu-
lations (α1 = 1 and α2 = 2) which are well in agreement
with other existing numerical data in the literature, ob-
tained with phase field numerical simulations [9] and LBM
simulations [54]. Notice that the numerical simulations of
Bower and Lee [54] are performed with a viscosity ratio
λ = 0.02. Nevertheless, their results agree with the oth-
ers (including ours), which is a distinctive feature of the
squeezing regime, where the droplet size is greatly affected
by Q and little effect is expected from a change in the fluid
properties (i.e. change in the viscosity ratio λ).

To proceed further, we compute the droplet size for
the two distinct cases of MV and DV. Panel (a) in fig. 4
refers to a case with MV, with flow-rate ratio and finite ex-
tensibility parameter ranging in the interval Q = 0.2–1.0
and L2 = 102–103, respectively. For the non-Newtonian
cases, the polymer relaxation time has been kept fixed to
τP = 4000 lbu: this is a value at which the characteristic
Deborah number (8) is of order 1 and viscoelastic effects
are clearly visible. Panel (b) of fig. 4 reports the same
quantities as panel (a) for a case with DV. The scaling
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Fig. 3. Panels (a)-(c): Effect of the flow-rate ratio Q in the squeezing regime with Ca = 0.0026 and λ = 1.0. In panel (d) we
report the dimensionless droplet volume as a function of the flow-rate ratio Q. Our data are compared with the phase field
numerical simulations of De Menech et al. [9] and the LBM simulations of Bower and Lee [54]. Superimposed we report the
linear fit predicted by Garstecki et al. [14] (see eq. (10)), based on the assumption that the droplet size is greatly determined by
the ratio of the volumetric flow-rates of the two immiscible fluids. Notice that the numerical simulations of Bower and Lee [54]
are performed with a viscosity ratio λ = 0.02 which differs from ours. However, in the squeezing regime good agreement is still
found, since the droplet size is greatly affected by Q and little effect is expected from a change in the fluid properties (i.e. change
in λ). To test the robustness of our findings at changing the channel dimensionality, we repeated the numerical simulations in
a 2d channel with viscosity ratio λ = 0.05 (see also sect. 3.2 for discussions).
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Fig. 4. Quantitative analysis of the break-up process in the squeezing regime at Ca = 0.0026. We report the dimensionless
droplet volume V/H3 soon after break-up for a case with matrix viscoelasticity (MV) and droplet viscoelasticity (DV). We
choose the flow-rate ratio Q and finite extensibility parameter L2 ranging in the interval Q = 0.2–1.0 and L2 = 102–103,
respectively. For the non-Newtonian cases, the polymer relaxation time has been kept fixed to τP = 4000 lbu, corresponding to
a Deborah number De = 5.7, based on definition (8). Data for different τP at fixed flow-rate ratio Q = 1.0 are reported in fig. 5.

relation (10), which is peculiar of the Newtonian cases, is
a result of continuity. The analysis of the droplet size as a
function of the flow-rate ratio Q reveals that such relation
needs to be modified to account for the effects of viscoelas-
ticity: for increasing finite extensibility parameters, the
droplet size is manifestly decreased by matrix viscoelas-
ticity. Overall, fig. 4 conveys the message that viscoelastic
effects are more pronounced in the case of MV, whereas
cases with DV only show smaller deviation with respect
to the Newtonian reference case. This is not surprising, in

view of the fact that the break-up process in the squeezing
regime is driven by the action of the flow upstream of the
emerging thread. More quantitatively, the linear scaling
law (10) is the result of two distinct physical processes:
first, the dispersed phase grows until it effectively blocks
the cross-section of the main channel and obstructs the
flow of the continuous fluid (see also panel (a) in fig. 2).
At this particular moment, the “blocking length” Lblock is
of the order of the channel width, say α1H (with α1 a con-
stant of order unity). Afterwards, the increased pressure
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Fig. 5. Quantitative analysis of the break-up process in the
squeezing regime at Ca = 0.0026. We report the dimensionless
droplet volume V/VNewt soon after break-up for a case with ma-
trix viscoelasticity (MV). The droplet volume has been made
dimensionless with respect to the Newtonian volume (VNewt)
for the same Ca. The finite extensibility parameter L2 and
the polymer relaxation time τP are ranging in the interval
L2 = 102–103 and τP = 250–4000 lbu, respectively. Corre-
spondingly, the Deborah number (8) is reported. In all cases,
the flow-rate ratio Q and the viscosity ratio between the two
fluids have been kept fixed to Q = λ = 1.0.

in the continuous phase begins to squeeze the neck of
dispersed phase (see also panels (b)-(d) in fig. 2). For a
neck with a characteristic width α2H (α2 is a constant,
again, of order unity) and squeezing at a rate approxi-
mately equal to the average velocity (Qc/H2), it takes a
time τsqueeze ≈ α2HH2/Qc to complete the squeezing pro-
cess. During this time, the thread continues to elongate at
rate Qd/H2. The resulting “squeezing length” is therefore
Lsqueeze ≈ τsqueezeQd/H2 = α2HQd/Qc. Consequently,
the final dimensionless size Ld/H of the droplet can be
expressed as Ld/H ≈ α1 + α2Q. Panel (a) of fig. 4 actu-
ally reveals a change in the slope at increasing L2: while
the slope at L2 = 100 is still almost same to that of the
Newtonian case, the slope at L2 = 1000 is visibly differ-
ent. This points to the fact that the largest elastic effects
may effectively perturb the region of the fluid upstream
of the junction.

To better complement the results of fig. 4, in fig. 5 we
study the droplet size for the same values of L2 analyzed
in fig. 4 and different values of τP ranging in the interval
τP = 250–4000 lbu, resulting in a Deborah number rang-
ing in the interval De = 0.4–6.2. For the all L2 studied, the
droplet size shows a decreasing behaviour at increasing the
Deborah number, which is more pronounced at larger L2.
Consistently with the expectations, when De → 0 we ob-
serve minor deviations with respect to the Newtonian case.
We notice that the same analysis (data not shown) for DV
reveals only a minor effect of non-Newtonian rheology in
the dispersed phase, stressing once more the fact that vis-
coelastic effects in the upstream of the emerging thread
are more efficient in perturbing the break-up process.

That viscoelastic effects are more pronounced in pres-
ence of larger L2 is qualitatively understood because, by
increasing L2, the polymer dumbbell becomes more ex-
tensible and the maximum level of stress attainable is in-
creased [26, 27]. Consistently, we expect an increased effect
of the polymer feedback stresses on the Newtonian solvent.
However, results of figs. 4-5 only support this statement
indirectly, i.e. without any information on the distribu-
tion of polymer feedback stresses and their action on the
droplet formation process. To go deeper into this point, in
fig. 6 we report a simultaneous view of the droplet shape
just before break-up and the polymer feedback stress that
develops in the non-Newtonian phase. In particular, we
focus on the polymer feedback stress in the stream-flow
direction

Txx =
ηP

τP
f(rP )Cxx. (11)

We observe that Txx is enhanced in the region upstream
of the emerging thread, providing extra viscoelastic forces
which combine to change the droplet break-up process.

To make progress, we have monitored the time evolu-
tion of the pressure in the continuous fluid immediately
upstream of the T-junction. In panels (a)-(b) of fig. 7 we
report the pressure as a function of time for Ca = 0.0026,
with L2 = 100 (panel (a)), L2 = 1000 (panel (b)), and
different De. It is evident that the obstruction of the
main channel leads to an increase of the pressure up-
stream of the T-junction. As the dispersed phase enters
the junction, the pressure rises gradually until the channel
is blocked. The presence of viscoelasticity actually proves
instrumental to enhance the pressure build-up and the ef-
fect is more pronounced at increasing both De and L2.
One may attempt to explain the observed behaviour by
arguing that the obstruction provided by the thread forces
the viscoelastic matrix fluid to “converge” and flow into
a constriction, hence to develop a high extensional vis-
cosity [26, 27]. This viscous response increases the dissipa-
tion and hence the pressure drop. This interpretation is
actually supported by a direct observation of the velocity
streamlines in the moment of the obstruction as reported
in fig. 8. Moreover, we have analyzed the force balance
in the whole region upstream of the emerging thread. In
particular, we have defined an effective force (Feff) as [43]

Feff =
ηP

τP
∇ · [f(rP )C]−∇

(
ηP (∇uc + (∇uc)T )

)
. (12)

Indeed, we remark that viscoelastic forces provide a con-
tribution to the shear forces. This happens in simple shear
flows and also for weak viscoelasticity [26, 27], where we
expect that the viscoelastic stresses closely follow the
viscous stresses, i.e. ηP

τP
∇ · [f(rP )C] ≈ ∇ · (ηP (∇uc +

(∇uc)T )). Obviously, this cannot be the case when vis-
coelasticity is enhanced and the Deborah number is above
unity. Since all our simulations are performed with the
same shear viscosity, the effective force gives an idea of
how much the viscoelastic system differs from the corre-
sponding Newtonian system with the same viscosity. If
present (Feff �= 0), this change is attributed to viscoelas-
ticity. For a case with L2 = 5×103, we analyze the effective
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Fig. 6. Panels (a)-(c): density contours of the dispersed phase overlaid on the polymer feedback stress in the stream-flow
direction (see eqs. (1) and (11)) for a case with matrix viscoelasticity (MV) with three different L2: L2 = 102 (panel (a)),
L2 = 5 × 102 (panel (b)) and L2 = 103 (panel (c)). All the other parameters are kept fixed: De = 5.7, Ca = 0.0026, λ = 1.0
and Q = 1.0. As L2 is increased, we see that the flow in the continuous phase develops enhanced polymer feedback stresses
upstream of the emerging thread. In all cases we have used the characteristic shear time τshear = H/vc as a unit of time, while
t0 is a reference time (the same for all simulations). Notice that the colorbar of the feedback stress (11) is the same.

force in the xy-plane at z = Lz/2 in the moment when the
thread obstructs the main channel. Results are reported
in fig. 9, where we show two distinct plots for the x and y
component of Feff . Upstream of the emerging thread, and
close to the bottom wall, we indeed observe a resistance
force which opposes to the flowing through the constric-
tion, and we believe is responsible for the build-up in the
pressure.

The tendency of viscoelastic stresses to promote a
smaller droplet volume soon after break-up may be pro-
visionally thought of as an anticipation of the dripping
regime, thus echoing the work by Derzsi et al. [13] in the
flow-focusing geometry, where the authors found that the
viscoelasticity leads to transitions between various regimes
at lower ratios of flow and at lower values of the Capillary
numbers in comparison to the Newtonian focusing liquids.
However, upon entering the dripping regime, viscous shear

forces will become relevant and since the shear viscosity
is kept the same in all the simulations, one should expect
to find a less pronounced effect of viscoelasticity at larger
Capillary numbers. These expectations are indeed borne
out by numerical simulations in the next section.

3.2 Dripping and jetting regimes

The analysis in the squeezing regime has evidenced the
non-trivial role of the polymer feedback stresses in chang-
ing the dynamics and break-up properties in a situation
where Ca is moderately small. Consequently, an interest-
ing point of discussion emerges on the role of viscoelas-
ticity on scenarios which are different from the squeezing
regime. As we have seen in fig. 2, by increasing Ca at fixed
flow-rate ratio we move from the squeezing regime to the
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Fig. 7. Analysis of the pressure (P ) versus time in the squeezing regime. The pressure is computed upstream of the T-junction
and P0 is a constant reference pressure computed in the static case. Panel (a): we report the normalized pressure versus time
with fixed Ca = 0.0026 for the Newtonian case (black squares) and two cases with matrix viscoelasticity (MV) at fixed L2 = 100:
De = 1.43 (red circles) and De = 5.7 (blue triangles). Panel (b): same as panel (a) with L2 = 103. In all cases we have used the
characteristic shear time τshear = H/vc as a unit of time, while tobs is the time when the thread starts to obstruct the channel.

Fig. 8. Left panel: Velocity streamlines (black lines) overlaid on the polymer feedback stress in the streamflow direction (see
eqs. (1) and (11)) for a case with matrix viscoelasticity (MV). The obstruction provided by the thread forces the flow to converge
into the gap, hence triggering an extensional response in the fluid region upstream of the emerging thread. Right panel: a top
view of the polymer feedback stress at a distance ≈ H/6 from the bottom wall of the main channel.

Fig. 9. Panels (a)-(b): x and y component of the effective force Feff (see eq. (12)) for a matrix viscoelasticity (MV) case at
t = t0 + 3.4τshear, De = 3.1, L2 = 5 × 103, Ca = 0.0026, λ = 1.0 and Q = 1.0. We have used the characteristic shear time
τshear = H/vc as a unit of time, while t0 is a reference time (the same for all simulations).
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Fig. 10. Analysis of the pressure (P ) versus time for different Ca. The pressure is computed upstream of the T-junction and
P0 is a constant reference pressure computed in the static case. Panel (a): we report the normalized pressure versus time with
fixed Ca = 0.0026 for the Newtonian case (black squares) and two cases with matrix viscoelasticity (MV) at fixed De = 5.7
and different L2: L2 = 100 (red circles) and L2 = 1000 (blue triangles). Panel (b): same as panel (a) for Ca = 0.0052. In all
cases we have used the characteristic shear time τshear = H/vc as a unit of time, while tobs is the time when the thread starts
to obstruct the channel.
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Fig. 11. Quantitative analysis of the break-up process for different Ca. Panel (a): we report the dimensionless droplet volume
V/H3 soon after break-up for a case with matrix viscoelasticity (MV). We choose the polymer relaxation time τP and the
finite extensibility parameter L2 ranging in the interval τP = 2000–4000 lbu (De = 2.85–5.71 based on (8)) and L2 = 102–103,
respectively. The flow rate ratio is kept fixed to Q = 1.0 and the Capillary number is changed in the range Ca = 0.001–0.03.
Panel (b): we report the break-up time τb normalized to the break-up time of the corresponding Newtonian case τNewt

b .

dripping and jetting regimes. Also, as already stressed be-
fore, the effect of MV is more pronounced with respect to
the effect of DV, a conclusion that still holds for the Ca
and flow parameters used in both the dripping and jet-
ting regime. We therefore choose to report on the effects
of viscoelasticity in the transition from squeezing to drip-
ping/jetting by reporting data only for the case of MV.

In fig. 10 we report the analysis for the pressure up-
stream of the emerging thread for two different Capillary
numbers: while for the smaller Capillary number the pres-
sure build-up is clearly influenced by viscoelasticity (see
also fig. 7), by increasing the Capillary number, this effect

is less pronounced. We remark that the shear viscosity is
kept the same in all the simulations, so one actually ex-
pects to find a less pronounced effect of viscoelasticity at
larger Capillary numbers, where the viscous shear forces
start to influence the droplet break-up process (see also
fig. 2). This is also quantitatively supported by the results
of panel (a) of fig. 11, where we report the dimensionless
droplet volume V/H3 as a function of Ca for the same val-
ues of L2 considered in the previous figures. The flow-rate
ratio is kept fixed to Q = 1.0 and Ca is changed in the
range Ca = 0.001–0.03. The Deborah number is ranging
in the interval De = 2.85–5.71 (τP = 2000–4000 lbu). At
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Fig. 12. Panels (a)-(b): density contours of dispersed phase overlaid on the polymer feedback stress in the stream-flow direction
(see eqs. (1) and (11)) for a case with matrix viscoelasticity (MV) with L2 = 103 and two different values of De: De = 1.42
(panel (a)) and De = 7.14 (panel (b)). The other parameters are kept fixed to Ca = 0.013, λ = 1.0, Q = 1.0. In all cases we have
used the characteristic shear time τshear = H/vc as a unit of time, while t0 is a reference time (the same for all simulations).
Notice that the colorbar of the feedback stress (11) is the same.

Fig. 13. Panels (a)-(b): x and y component of effective force Feff (see eq. (12)) for a matrix viscoelasticity (MV) case at
t = t0 + 8.8τshear, De = 7.14, L2 = 103, Ca = 0.013, λ = 1.0 and Q = 1.0. At the break-up point we see that there is a net
effective force which forces the necking process towards the boundary. We have used the characteristic shear time τshear = H/vc

as a unit of time, while t0 is a reference time (the same for all simulations).

increasing the Capillary number, we observe that the ten-
dency of viscoelastic stresses to promote a smaller volume
soon after break-up is somehow less evident. This is also
complemented by the results in panel (b) of fig. 11, where
we report the break-up time τb normalized to the break-
up time of the corresponding Newtonian case τNewt

b . Other
non-trivial effects, however, are present in the morphology
of break-up: while for small De we observe that the detach-
ment point shifts downstream of the junction (panel (a)
of fig. 12), the increase of the Deborah number favors a
stabilization of the break-up point closer to the junction
(panel (b) of fig. 12). Another interesting feature found
is that viscoelasticity favors the necking process to take
place closer to the channels walls (see panel (b) in fig. 12).
To go deeper into this point, similarly to what we have
done in fig. 9 for the squeezing regime, in fig. 13 we ana-
lyze the effective force (12) in the xy-plane at z = Lz/2 for
a case with L2 = 5×103 and Ca = 0.013. Again, an “elas-
tic” region upstream of the emerging thread is observed.
The straining of the fluid upstream of the emerging thread
causes a storing of elastic energy which is released with
an elastic expansion downstream of the emerging thread
(negative y component of the effective force in panel (b)
of fig. 13). This release of elastic energy forces the necking
process towards the boundary.

We notice that in the plot of the normalized break-up
time (panel (b) of fig. 11), a Capillary number of the order
of Ca = Cacr ≈ 10−2 exists, above which the normalized

break-up time is very close to unity and does not sensibly
change with De and/or L2. We attribute this behaviour
to the emergence of the jetting regime. The correspond-
ing Newtonian dynamics for such Capillary numbers (see
fig. 2) indeed reveals that the dripping regime is not stable
and the droplet detachment point gradually moves down-
stream, until a jet is formed [9, 11]. Similarly to fig. 12,
density contours of the dispersed phase overlaid on the
polymer feedback stresses at these larger Capillary num-
bers are reported in fig. 14. Panel (a) of fig. 14 reports the
liquid thread just before break-up for a slightly viscoelas-
tic case, corresponding to De = 1.42. The break-up point
actually detaches from the wall as it moves progressively
downstream (see also fig. 2). Panel (b) of fig. 14 reports
a case with increased Deborah number De = 7.14: we ob-
serve that due to the presence of the feedback stresses,
the break-up point shows a slight tendency to move to-
wards the wall, which echoes the effects already found in
the dripping regime. Notice that due to the increase of the
Capillary number (Ca = 0.026), the feedback stresses are
more intense than situations at smaller Ca.

The small effects on droplet size observed at the higher
Capillary numbers in our simulations somehow echo the
numerical work by Shonibare et al. [55] on T-junctions
with viscoelastic phases. In particular, Shonibare et al.
used 2d numerical simulations, using the Volume of Fluid
(VOF) method, to predict the size and detachment point
of a viscoelastic droplet in a Newtonian Matrix. The au-
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Fig. 14. Panels (a)-(b): density contours of dispersed phase overlaid on the polymer feedback stress in the stream-flow direction
(see eqs. (1) and (11)) for a case with matrix viscoelasticity (MV) with L2 = 103 and two different values of De: De = 1.42
(panel (a)) and De = 7.14 (panel (b)). The other parameters are kept fixed to Ca = 0.026, λ = 1.0, Q = 1.0. In all cases we have
used the characteristic shear time τshear = H/vc as a unit of time, while t0 is a reference time (the same for all simulations).
Notice that the colorbar of the feedback stress (11) is the same.

thors explored both pressure driven flows as well as plane
Couette flows in the continuous phase: for the Newtonian
problem they report smaller droplet sizes when the cross
shear rate is increased, also in agreement with experimen-
tal work [16]. However, the introduction of viscoelasticity
was found to have minimal effects on the droplet size.
In comparison to our work, some issues are worth being
mentioned and discussed. Our numerical simulations on
droplet viscoelasticity (data only partially shown, see also
sect. 3.1) acknowledge a small effect on the droplet size as
well. As already stressed earlier, we find that the elastic
effects are more pronounced with matrix viscoelasticity
and sensibly perturb the droplet size when the dispersed
phase obstructs the main channel. Even if we were dealing
with matrix viscoelasticity in the geometry of Shonibare
et al. [55], we believe that the elastic effects that we dis-
cussed in section 3.1 would be sensibly reduced as well,
since the geometry of Shonibare et al. [55] does not allow
a considerable obstruction of the main channel, but rather
trigger droplet detachment and pinch-off based on forces
generated by the cross-shear rate.

Another point to be discussed is the importance of the
dimensionality in our numerical simulations. In need of an
extensive study to quantify the importance of the various
model parameters, we preliminarly explored the possibil-
ity to use two-dimensional numerical simulations. In some
situations, when the viscosity ratio λ is smaller than one
and moderate flow rate ratios are considered, 2d break-
up is actually found to quantitatively well compare with
3d break-up (see also fig. 3). However, other 2d numerical
simulations with viscosity ratio of order 1 did not capture
the underlying physics quantitatively: when the squeez-
ing process is about to conclude, long filaments may be
stabilized at the detachment point where the side chan-
nel meets the main channel, thus producing a break-up
dynamics which is quantitatively different in 2d and 3d.
This is a pathology of the 2d model, possibly related to the
stability of filaments in 2d which would be absent in a 3d
simulation. Other studies [11] based on LBM in 2d do not
report on droplet break-up with those parameters where
we observe such pathology. These facts said, and not to
spoil the correctness of the 3d case, we decided to carry
out simulations in 3d, while leaving a detailed compari-
son between the 2d and 3d simulations to a future study,
possibly to identify the correct range of parameters where
both can be matched.

4 Conclusions

Microfluidic technologies offer the possibility to generate
small fluid volumes of dispersed phases (droplets) in con-
tinuous phases. One of the most common droplet genera-
tor is represented by T-junction geometries [9, 10], where
the dispersed phase is injected perpendicularly into the
main channel and the break-up process is induced by
forces created by the cross-flowing continuous phase. The
confinement that naturally accompanies these devices has
an impact on droplet deformation and break-up, which are
significantly different from those of unbounded droplets.
The situation is further complicated by the complex prop-
erties of the bulk phases, whenever constituents have a
viscoelastic —rather than Newtonian— nature. In this pa-
per we have investigated the effects of viscoelasticity on
the dynamics and break-up of droplets in microfluidic T-
junctions using numerical simulations of dilute polymer
solutions at small Capillary numbers up to Ca ≈ 3×10−2

and moderate flow-rate ratios Q ≈ O(1). Our numeri-
cal model builds upon our previous studies [42, 43] and is
based on a Navier-Stokes (NS) description of the solvent
based on the lattice Boltzmann models (LBM) coupled
to constitutive equations for finite extensible non-linear
elastic dumbbells with the closure proposed by Peterlin
(FENE-P model). We have used three-dimensional simu-
lations to characterize the various characteristic mecha-
nisms of break-up in the confined T-junction. Moreover,
the various model parameters of the FENE-P constitutive
equations, including the polymer relaxation time τP and
the finite extensibility parameter L2, have been changed
to provide quantitative details on how the dynamics and
break-up properties are affected by viscoelasticity, in cases
where the viscoelastic properties are confined in the dis-
persed (d) phase (Droplet Viscoelasticity, DV), as well
as cases where the viscoelastic properties are confined in
the continuous (c) phase (Matrix Viscoelasticity, MV). At
fixed flow conditions (i.e. the same Ca and Q) we find
that the effects of viscoelasticity are more pronounced in
the case with MV, which is quantitatively attributed to
the fact that the flow driving the break-up process up-
stream of the emerging thread can be sensibly perturbed
by the polymer feedback stresses. This has been evidenced
by the analysis of simultaneous view of the droplet shape
just before break-up and the polymer feedback stresses
that develop in the non-Newtonian phase. In particular,
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the numerical simulations are crucial to elucidate the rel-
ative importance of the free parameters in the FENE-P
model, and to visualize the distribution of the polymer
feedback stresses. Thanks to these insights, it was pos-
sible to correlate the distribution of the stresses to the
corresponding break-up morphology. We also tried some
preliminary numerical simulations with viscoelastic be-
haviour simultaneously present in both the continuous
and dispersed phase, and these seem to produce simi-
lar effects as the matrix viscoelasticity case, at least for
the geometry and parameters that we explored in our
simulations.

For future investigations, it is surely warranted a com-
plementary study to highlight the role of viscoelasticity
on the break-up properties of confined droplets in flow-
focusing geometries [13, 15, 18]. Complementing the avail-
able experimental results with the help of numerical sim-
ulations would be of extreme interest. Simulations can
indeed be used to perform in-silico comparative stud-
ies, at changing the model parameters, to shed lights on
the complex properties of viscoelastic flows in confined
geometries.
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Appendix A. Hybrid Lattice Boltzmann
Models (LBM) - Finite Difference scheme for
dilute polymer solutions

In this appendix we report the essential details of the nu-
merical scheme used. We refer the interested reader to a
dedicated paper [43] where more extensive technical de-
tails are reported, together with benchmarks on the rhe-
ology of dilute homogeneous solutions (including steady
shear flow, elongational flows, transient shear and oscil-
latory flows) and viscoelastic droplet deformation in con-
fined geometries. We use a hybrid algorithm combining
a multicomponent Lattice-Boltzmann model (LBM) with
Finite Differences (FD) schemes, the former used to model
the macroscopic hydrodynamic equations, and the latter
used to model the polymer dynamics. The LBM equations
evolve in time the discretized probability density function
fαi(r, t) to find at position r and time t a fluid particle
of component α = A,B with velocity ci. The dispersed
(d) and the continuous (c) Newtonian phases in eqs. (1)
and (3) are characterized by a majority of one of the two
components, i.e. majority of A (B) in the dispersed (con-
tinuous) phase. The LBM evolution scheme with a unitary

time-step reads as follows [56]:

fαi(r + ci, t + 1) − fαi(r, t) =
∑

j

Lij(fαj − f
(eq)
αj ) + Δg

αi.

(A.1)
The collisional operator on the rhs of eq. (A.1) is linear
and expresses the relaxation of fαi towards the local equi-
librium f

(eq)
αi . We use the D3Q19 model with 19 velocities

ci =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(0, 0, 0), i = 0,

(±1, 0, 0), (0,±1, 0), (0, 0,±1), i = 1 . . . 6,

(±1,±1, 0), (±1, 0,±1), (0,±1,±1), i = 7 . . . 18.

(A.2)

The expression for the equilibrium distribution is a result
of the projection onto orthogonal polynomials [57, 58]

f
(eq)
αi = wiρα

[
1 +

u · ci

c2
s

+
uu : (cici − �)

2c4
s

]
(A.3)

and the weights wi are

wi =

⎧
⎪⎪⎨

⎪⎪⎩

1/3, i = 0,

1/18, i = 1 . . . 6,

1/36, i = 7 . . . 18,

(A.4)

where cs is the isothermal speed of sound (a constant in
the model) and u is the fluid velocity. The operator Lij

in eq. (A.1) is the same for both components and is char-
acterized by a diagonal representation in the mode space:
the basis vectors Hk (k = 0, . . . , 18) of such mode space
are constructed by orthogonalizing polynomials of the di-
mensionless velocity vectors [57–60]. The basis vectors are
used to calculate a complete set of moments, the so-called
“modes” mαk =

∑
i Hkifαi (k = 0, . . . , 18). The lowest

order modes are related to the hydrodynamic variables, in
particular the density (of both components and the total
one), ρα = mα0 =

∑
i fαi, ρ =

∑
α mα0 =

∑
α ρα, while

the next three moments m̃α = (mα1,mα2,mα3), are re-
lated to the velocity of the mixture

u ≡ 1
ρ

∑

α

m̃α +
g

2ρ
=

1
ρ

∑

α

∑

i

fαici +
g

2ρ
. (A.5)

The higher order modes refer to the shear and bulk modes
in the viscous stress tensor, and also other modes (the so-
called “ghost modes”) which do not appear at the level
of hydrodynamic equations. The operator Lij possesses
a diagonal representation in mode space, hence the col-
lisional term describes a linear relaxation of the modes,
mpost

αk = (1 + λk)mαk + mg
αk, where the “post” indicates

the post-collisional mode and where the relaxation fre-
quencies −λk are related to the transport coefficients of
the modes. The term mg

αk is the k-th moment of the forc-
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ing source Δg
αi which embeds the effects of a forcing term

with density gα [57, 59]. The term g =
∑

α gα in eq. (A.5)
is the total (internal+external) force. Forces transfer an
amount gα of total momentum to the fluid in one time
step. The forcing term is determined in such a way that
the hydrodynamic eqs. (A.8)-(A.9) are obtained [61]

Δg
αi =

wi

c2
s

(
2 + λM

2

)
gα · ci

+
wi

c2
s

[
1

2c2
s

G : (cici − c2
s�)

]
, (A.6)

G =
2 + λs

2

(
ug + (ug)T − 2

3
�(u · g)

)

+
2 + λb

3
�(u · g), (A.7)

where the relaxation frequencies of the momentum (−λM ),
bulk (−λb) and shear (−λs) modes appear. LBM is able to
reproduce the continuity equations and the NS equations
for the total momentum [57, 59, 60]

∂tρα + ∇ · (ραu) = ∇ · Dα, (A.8)

ρ [∂tu + (u · ∇)u] = −∇p

+∇
[
ηs

(
∇u+(∇u)T − 2

3
�(∇ · u)

)

+ηb�(∇ · u)
]

+ g, (A.9)

where we have indicated with ηs, ηb the shear and bulk vis-
cosities, respectively. In eq. (A.9), p =

∑
α pα =

∑
α c2

sρα

represents the internal (ideal) pressure of the mixture. The
quantity Dα represents the inter-diffusion flux

Dα = μ

[(
∇pα − ρα

ρ
∇p

)
−

(
gα − ρα

ρ
g

)]
, (A.10)

with μ a mobility parameter. As for the internal forces,
we will use the “Shan-Chen” model [44, 62, 63] for multi-
component fluids

gα(r) =

−gABρα(r)
∑

i

∑

α′ �=α

wiρα′(r + ci)ci α, α′ = A,B,

(A.11)

where gAB is a parameter that regulates the interactions
between the two components. When gAB is sufficiently
large, the model can describe stable interfaces with a pos-
itive surface tension. The effect of interaction forces is
to introduce an “interaction” pressure tensor P (int) [64],
which modifies the internal pressure, i.e. P = p �+ P (int)

P (int)(r) =
1
2
gABρA(r)

∑

i

wiρB(r + ci)cici

+
1
2
gABρB(r)

∑

i

wiρA(r + ci)cici. (A.12)

A tuning of the density in contact with the wall allows for
the modelling of the wetting properties [46, 47].

With regard to the transport coefficients of hydrody-
namics, the relaxation frequencies of the momentum is
related to the mobility coefficient

μ = −
(

1
λM

+
1
2

)
, (A.13)

while the relaxation frequencies of the bulk and shear
modes in (A.1) are related to the viscosity coefficients as

ηs = −ρc2
s

(
1
λs

+
1
2

)
; ηb = −2

3
ρc2

s

(
1
λb

+
1
2

)
.

(A.14)
The numerical simulations presented feature gAB = 1.5
lbu in (A.11), corresponding to a surface tension σ =
0.1 lbu and associated bulk densities ρA = 2.0 lbu and
ρB = 0.1 lbu in the A-rich phase. The relaxation frequen-
cies in (A.14) are set to λM = −1.0 lbu and λs = λb,
thus reproducing the viscous stress tensor given in eqs. (1)
and (3). The viscosity ratio of the LBM fluid is changed
by allowing λs to depend on space

−ρc2
s

(
1
λs

+
1
2

)
= ηs = ηd(f+(φ)) + ηc(f−(φ)), (A.15)

where φ = φ(r) = (ρA(r)−ρB(r))
(ρA(r)+ρB(r)) . The functions f±(φ) are

chosen as

f±(φ) =
(

1 ± tanh(φ/ξ)
2

)
, (A.16)

which allows to recover the Newtonian part of the NS
equations reported in eqs. (1) and (3) with shear vis-
cosities ηd and ηc. The smoothing parameter ξ is cho-
sen sufficiently small so as to match analytical predictions
on droplet deformation in presence of viscoelastic stresses
(see [43] for all details).

As for the polymer evolution given in eq. (2), we fol-
low the two refs. [65, 66] to solve the FENE-P equation.
The polymer stress f(rP )C is computed from the FENE-
P evolution equation and used to change the shear modes
of the LBM [43, 57, 58]. The feedback of the polymers is
modulated [36] in space with the functions f±(φ)

ρ [∂tu + (u · ∇)u] =

−∇P + ∇
[
(ηdf+(φ) + ηcf−(φ))(∇u + (∇u)T )

]

+
ηP

τP
∇[f(rP )Cf±(φ)]. (A.17)

By using f−(φ), we recover a case where the viscoelastic
properties are confined in the continuous (c) phase, while
the use of the function f+(φ) allows to recover a case where
the viscoelastic properties are confined in the dispersed (d)
phase.
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