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Abstract. We show that the fragility m, the steepness of the viscosity and relaxation time close to the
vitrification, increases with the degree of elastic softening, i.e. the decrease of the elastic modulus with
increasing temperature, in a universal way. This provides a novel connection between the thermodynamics,
via the modulus, and the kinetics. The finding is evidenced by numerical simulations and comparison with
the experimental data of glassformers with widely different fragilities (33 ≤ m ≤ 115), leading to a fragility-
independent elastic master curve extending over eighteen decades in viscosity and relaxation time. The
master curve is accounted for by a cavity model pointing out the roles of both the available free volume and
the cage softness. A major implication of our findings is that ultraslow relaxations, hardly characterised
experimentally, become predictable by linear elasticity. As an example, the viscosity of supercooled silica
is derived over about fifteen decades with no adjustable parameters.

1 Introduction

Glassformers are classified in terms of their kinetic
fragility, as quantified by the fragility index m ≡ ∂ log τα/
∂(Tg/T )|Tg/T=1, where τα and Tg denote the structural
relaxation time and the glass transition temperature, re-
spectively [1]. Fragility is a measure of the degree of depar-
ture from the Arrhenius scaled temperature dependence,
which is weak for “strong” glassformers and quite appar-
ent for “fragile” ones [2, 3]. It is worth noting that the
terminology “strong” and “fragile” was introduced in re-
lation to the evolution of the short-range order close to
Tg [4]. Different, often controversial, viewpoints concern-
ing the link of fragility with structure, thermodynamics
and dynamics have been reported [3–12].

Here, we argue that the fragility is related to the me-
chanical properties of the liquid, and the structural re-
laxation time τα (or viscosity η) is a universal function
of the linear elastic modulus Gp, irrespective of the ki-
netic fragility. Then, different fragilities just reflect differ-
ent degrees of elastic softening, i.e. the decrease of the
elastic modulus with increasing temperature, being weak
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for strong glassformers and more marked for fragile ones.
This provides a connection between the thermodynamics,
via Gp, and the kinetics.

The present paper contributes to the living discus-
sion on the role of elasticity and internal stresses in
the structural relaxation of supercooled liquids. It has
been proposed that structural relaxation in deeply super-
cooled liquids proceeds via the accumulation of Eshelby
events, i.e. local rearrangements that create long-ranged
and anisotropic stresses in the surrounding medium [13].
Fragility and elastic softening have been correlated [14]
in the framework of the interstitialcy [15] and the con-
ventional elastic [16, 17] models of the glass transition.
Theoretical work supports the conclusion that glass elas-
ticity affects the fragility of supercooled liquids [18], see
also [19, 20]. An elastically collective nonlinear Langevin
equation has been derived and successfully compared to
van der Waals liquids by mapping real molecules to an ef-
fective hard sphere fluid [21–23]. The approach has dimin-
ished quantitative accuracy when the fragility decreases.
Recently, quantitative relations between cooperative mo-
tion, elasticity, and free volume have been found in model
polymeric glassformers [24].

Universal aspects of the caging effects in viscous liq-
uids are central to the present results. Close to the glass
transition, particles tend to be trapped in transient cages
formed by their nearest neighbours with subsequent slow-
ing down of their mean square displacement 〈r2(t)〉 within
time t [4]. The particles rattle about in the cage on picosec-
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ond time scales with mean square amplitude 〈u2〉 and are
later released with average escape time τα. Structural re-
laxation and cage rattling are correlated and one finds the
universal master curve [25]

log τα = α + β
1

〈u2〉 + γ
1

〈u2〉2 , (1)

where α, β and γ are suitable constants independent of
the kinetic fragility. Equation (1) has been tested on ex-
perimental data [25–29] and numerical models of poly-
mers [25, 30–32], colloids [33] and atomic liquids [30, 34].
The fast rattling motion of particles during the trapping
periods in liquids has strong analogies with the oscilla-
tory elastic behaviour of particles in crystalline and amor-
phous solids, a major difference being that liquids exhibit
transient elasticity terminated by the structural relax-
ation [35].

In this paper we first characterize polymer melts
with different fragilities by extensive Molecular-Dynamics
(MD) simulations. We evidence that, irrespective of the
fragility, the relaxation time exhibits the same scaling
with the elastic modulus

log τα = Υ0 + Υ1

(
Gp

T

)
+ Υ2

(
Gp

T

)2

, (2)

where Υ0, Υ1 and Υ2 are constants independent of the
fragility. We show that the MD results do not support
the assumption that the kinetic unit is embedded in an
elastic continuum (EC) and develop a novel elastic model
combining packing effects with elasticity. Furthermore, we
reveal the elastic scaling in glassformers with intermediate
and high fragilities (33 ≤ m ≤ 115) and collapse the ex-
perimental relaxation times (or viscosity) over about eigh-
teen decades on a universal master curve given by eq. (2)
recast in terms of the reduced quantity:

X =
GpTg

GpgT
, (3)

where Gpg ≡ Gp(Tg). Finally, to test the robustness of the
scaling, we predict the viscosity of the strong glassformer
SiO2 (m = 20) by its linear elasticity with no adjustable
parameters. We find excellent agreement over a range
spanning about fifteen orders of magnitude where the vis-
cosity exhibit deviations from the Arrhenius behaviour.

We compare our findings to the conventional elastic
models of the glass transition [16,17]. Their main result is:

log
τα

τα0
= GpV

�/kBT, (4)

where τα0 and V � are adjustable parameters. With re-
spect to these models, we provide totally new insight (the
fragility-independent scaling), fix known problems with
fragile liquids [36,37] and improve the agreement with the
paradigmatic strong liquid SiO2 without any adjustable
parameter.
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Fig. 1. Reduced temperature dependence of the relaxation
time of trimers (M = 3) with different forms of the interacting
potential between non-bonded monomers (insert). Tr is the
temperature where τα = 104. The number density is ρ = 1.033.

2 MD simulations

We perform extensive molecular-dynamics (MD) simula-
tions of a melt of fully flexible linear chains of M soft
spheres (monomers, N � 2000 in total). The interacting
potential between non-bonded monomers has the form

Vp,q(r) =
ε

(q − p)

[
p

(
σ�

r

)q

− q

(
σ�

r

)p ]
, (5)

with σ� = 21/6σ. Changing the p and q parameters does
not affect the position r = σ� and the depth ε of the po-
tential minimum but only the steepness of the repulsive
and the attractive wings (see fig. 1 and Supplementary
Information (SI)). The potential Vp,q(r) has adjustable
anharmonicity which, according to studies on atomic liq-
uids [38], is able to tune the kinetic fragility. Figure 1
shows that this occurs for the polymer melt too. All quan-
tities are in reduced units (Boltzmann constant kB = 1):
length in units of σ, temperature in units of ε/kB , and
time in units of σ

√
m/ε, where m is the monomer mass.

The potential is cut and shifted to zero by Ucut at r = 2.5.
The bond length is b = 0.97. For each form of the potential
Vp,q(r) several physical states are collected by changing
the temperature T , the number density ρ and the num-
ber of monomers per chain M . Further details about the
MD simulation are given in SI where all the states char-
acterised by their elasticity (∼ 100) are also listed.

The collective elastic dynamics is described by the
transient elastic modulus of a volume V , G(t), being ex-
pressed by the correlation function [35]

G(t) =
V

kBT
〈σxy(t0)σxy(t0 + t)〉. (6)

σxy is the off-diagonal component of the stress tensor

σxy =
1
V

(
N∑

i=1

[
mvxivyi +

1
2

∑
j �=i

rxijFyij

])
, (7)
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where vαk, Fαkl, rαkl are the α components of the veloc-
ity of the k-th monomer with mass m, the force between
the k-th and the l-th monomer and their separation, re-
spectively. The symbol 〈· · · 〉 represents the canonical av-
erage. The monomer mean square displacement is defined
as 〈r2(t)〉 = N−1

〈 ∑N
j=1[rj(t) − rj(0)]2

〉
, where rj(t) is

the position of the j-th monomer at time t, the sum runs
over the total number of N monomers. At t� � 1.023
early detrapping of the monomers from their cages occurs
and the quantity ∂ log〈r2(t)〉/∂ log t shows a well-defined
minimum (t� is independent of the physical state in the
present model) [25,30–32,34]. We define the mean square
amplitude of the position fluctuations of the monomers in
the cage as [25,30–34]

〈u2〉 ≡ 〈r2(t�)〉. (8)

One finds [35] that in a time t� mechanical equilibra-
tion is reached, the total force on each particle vanishes,
and the off-diagonal stress correlation function G(t) has
reached the intermediate-time plateau setting the linear
shear modulus

Gp ≡ G(t�). (9)

The incoherent intermediate scattering functionFs(qmax, t)
is defined as Fs(q, t) = N−1

〈 ∑N
j=1 exp{−iq · [rj(t) −

rj(0)]}
〉
, qmax being the q-vector of the maximum of the

static structure factor [39–42]. The structural relaxation
time τα is defined by the relation Fs(qmax, τα) = 1/e.

3 Results

3.1 Elastic scaling in simulations of a polymer melt

First, we investigate the relation between the mean square
amplitude of the cage rattling 〈u2〉 and the elasticity in
polymer systems with different fragility. It is known that
〈u2〉 does sense the fragility [43]. Figure 2 (top) sum-
marises the results and evidences a fragility-independent
master curve

1
〈u2〉 =

1
ζ2

+
Gp 

kBT
. (10)

The two length scales  and ζ are nearly constant, most
probably due to the limited changes of the local struc-
tures in virtue of the high packing of the investigated
states [44–48]. This means that  and ζ depend on
the density and the interacting potential —both affect-
ing the fragility [38, 49]— and the temperature in much
weaker way than the elastic modulus. This suggests that
the fragility dependence of 〈u2〉 occurs mainly via the
elasticity.

Figure 2 (bottom) shows that the elastic scaling also
collapses the relaxation time of polymer melts with dif-
ferent fragilities, e.g. see fig. 1, on a fragility-independent
master curve. The insert shows that the scaling holds also
under isothermal conditions and exposes the wide range
of elastic moduli under consideration. The master curve in
fig. 2 (bottom) has the form of eq. (2) and is achieved by
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Fig. 2. Correlation between the mean square rattling ampli-
tude of the monomer in the cage 〈u2〉 (top) and the relaxation
time τα (bottom) with the ratio Gp/T from MD simulations.
The dashed line in the top panel is eq. (10) with best-fit pa-
rameters � = 0.77(2) and ζ2 = 0.192(4). The solid line in the
bottom panel is eq. (2) with Υ0 = −0.191(8), Υ1 = 0.048(3),
Υ2 = 0.0020(1), as obtained by the combination of eq. (1)
(α = −0.424(1), β = 2.7(1) · 10−2, γ = 3.41(3) · 10−3 [25])
with eq. (10). No adjustable parameters are allowed. The in-
sert shows that the scaling holds for isothermal data as well
(the solid line is the same of the main panel).

combining the best fit of eq. (10) with eq. (1) without ad-
justment. Note that the master curve is not a straight line,
namely it differs from the prediction of the conventional
elastic models, eq. (4), confirming —as reported [36,37]—
that they face problems when dealing with fragile glass-
formers like the present simulated ones, see fig. 1.

Equation (10), cannot be rationalised within the pic-
ture of a particle embedded in an elastic continuum (EC).
In fact, a particle embedded in EC with shear modulus
Gp undergoes position fluctuations with mean square am-
plitude 〈u2

EC〉 given by [16,50–53]

〈u2
EC〉 =

kBT

Gp EC
, (11)
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where EC is comparable with the particle size. Figure 2
(top) shows that eq. (11) is inadequate if applied to a par-
ticle trapped in a discrete environment. The disagreement
is anticipated since eq. (11) relies on the affinity of the
microscopic and the macroscopic displacements, a feature
which breaks down in discrete systems [54–57]. We present
in sect. 3.2 a theoretical treatment which includes the mi-
croscopic discreteness of the system and correct eq. (11)
to yield eq. (10). Before starting, it is worth noting that
discreteness is apparent in the elastic response of the par-
ticle position if the elasticity is weak and 〈u2〉 is large. In-
stead, if the rigidity increases and 〈u2〉 tends to vanish, say
〈u2〉 � 0.1, eq. (10) reduces to eq. (11). From this respect,
we are in harmony with the microscopic single-particle
barrier hopping theory of glassy dynamics which in the
same limit, dubbed “ultralocal”, also derives eq. (11) (see
ref. [58] and footnote1).

3.2 Elastic cavity model

The inverse of the mean square rattling amplitude of the
monomer in the cage 1/〈u2〉 is a measure of the average
activation free-energy barrier ΔF † for structural relax-
ation [16,44]

1
〈u2〉 =

2
3 kBT r2

0

ΔF †, (12)

where r0 is the average distance to get to the transition
state (for the present polymer model 3r2

0/2 = β ln 10 �
0.061, where the β parameter is taken from ref. [25]). We
interpret the barrier ΔF † as the reversible work W (0 →
R†) to bring about a local expansion and create a cavity
with radius R† [16]

ΔF † = W (0 → R†). (13)

It must be noted that, while the expansion occurs in any
EC site with equal probability, the cavity nucleates only
outside the particles in a discrete ensemble. This results
in an entropic barrier which adds to the elastic one.

To estimate the effect, we consider the simplest dis-
crete ensemble of particles, i.e. a liquid of hard spheres.
In this case the work W (0 → r) has been evaluated by
Reiss et al. in the framework of the so-called scaled par-
ticle theory (SPT) [59,60]. SPT defines a cavity of radius
r as an empty domain being able to exclude the centers
of other particles from a region of radius r, see fig. 3. The
insertion of a sphere of radius b in a liquid of molecules
with radius a is equivalent to the creation of a cavity of
radius r = a+ b [60]. W (0 → r) is conveniently written as

W (0 → r) = W (0 → a) + W (a → r), r ≥ a, (14)

where W (x → y) is the work to expand the cavity radius
from x to y. The term W (0 → a) is written by SPT as [59,
60]

W SPT(0 → a) = −kBT ln
[
1 − 4

3
πρa3

]
, (15)

1 The ultralocal limit is expected to hold if the localisation
length of the theory rL �

√
3/kc ∼ (1.4σ)

√
3/2π [22,58]. Since

r2
L = 〈u2〉, this implies 〈u2〉 � 0.15.

Fig. 3. Mimicking the spontaneous local expansion of a liquid
by particle insertion. A particle of radius b (white) inserted in
a liquid of particles with radius a (blue) creates a “cavity” of
radius r = a + b, excluding the centers of the blue particles.
The small white particle on the right has radius b† = 0.17a.
According to the elastic cavity model, the expansion following
its insertion is enough for the relaxation of the liquid. That
expansion is too small to be dealt with by the elastic continuum
limit, which requires b 	 a.

where ρ is the number density. The argument of the log-
arithm expresses the probability that the center of the
cavity is located in the available space between the parti-
cles. For r ≥ a, SPT writes the term W (a → r) of eq. (14)
as (see eq. (1.8) of ref. [60])

W SPT(a → r) = k1(r−a)+ k2(r−a)2 + k3(r−a)3, (16)

where k1, k2 are constants being set by requiring that the
first and second derivatives of W (0 → r) are continuous
at r = a (note that W (0 → r) = −kBT ln[1−4/3πρr3] for
r ≤ a, see eq. (1.4) of ref. [60]), whereas k3 is related to the
external hydrostatic pressure. By neglecting the volume
work against the external hydrostatic pressure (k3 = 0), a
safe assumption for liquids under normal conditions, SPT
expresses the limit form of W SPT(a → r) for large cavities
in terms of the surface work as [59,60]

W SPT(a → r) = 4πr2γ

(
1 − 2δ

r

)
, r � a, (17)

where γ is a planar surface free-energy, i.e. the interfacial
tension between the bulk liquid and the cavity in the limit
of infinite radius. The factor (1−2δ/r) corrects the surface
free-energy for the finite curvature of the interface, where δ
is the Tolman length which is of the order of the thickness
of the layer near the interface.

We propose to write the term W (a → r) in eq. (14) as:

W (a → r) = 8πGpa(r − a)2, r ≥ a (18)

The term on the right hand side accounts for the elas-
tic energy if the expansion is performed preserving local
mechanical equilibrium [61]. Mechanical equilibration is
completed in our polymer model in times shorter than t�,
the time scale where the modulus Gp and the position
fluctuations 〈u2〉 are evaluated, see sect. 2. Equation (18)
has the form of eq. (16) with k1 = k3 = 0 and for large
cavity, r � a, recovers eq. (17) with γ = 2Gpa and δ = a.
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By plugging eq. (15) and eq. (18) into eq. (14) and
resorting to eqs. (12) and (13), one recovers eq. (10) with

1
ζ2

≡ 2
3r2

0

ln
[

1
1 − 4

3πρa3

]
, (19)

 ≡ 2
3r2

0

8πa(R† − a)2. (20)

The EC limit is reached by setting a � b†, ρ−1/3 (b† ≡
R† − a). In this case one approximates ΔF † = W (0 →
R†) � W (a → R†) ∝ Gp and eq. (11) is recovered.

The cavity model fits with the MD results far from
the EC limit. To check this, we notice that the best-fit
values of eq. (10) to the MD results (fig. 2 top) corre-
spond to R† � 1.17 a and a � 0.4 by taking ρ = 1.05 as
typical density (the a radius compares well with the ef-
fective monomer radius ∼ 0.48 estimated as in ref. [45]).
Then, the local expansion involved in the relaxation, b† =
(R† − a) � 0.17a, is too small to be dealt with by the
continuum picture (a � b, ρ−1/3), see fig. 3.

Interestingly, the characteristic length , eq. (20), has
been derived as [62]

′ =
5

3
√

πρσ2
, (21)

with ρ = 1.05 and σ ∼ 2a ∼ 1 one finds ′ � 0.85, to be
compared with our best-fit value  = 0.77.

The cavity model interprets, via eq. (19), the charac-
teristic length scale ζ as due to packing effects, so that
the mean square rattling amplitude in the cage 〈u2〉 is
seen to be affected by both the local free volume and the
cage softness. This remark suggests a simplified version
of the cavity model. Suppose that the particle of radius
a is located in a cavity of radius R � 2a (R must not be
confused with the radius r of the cavity involved in the
local expansion, see fig. 1). The centre of the atom traces
out a free volume vf ∝ (R− 2a)3 [45,63,64]. One expects
that the rattling amplitude in the cage is proportional to
v
2/3
f [24, 44,45]

〈u2〉R = C(R − 2a)2, (22)

where C is a constant and the subscript reminds that the
average has to be intended at fixed R. We take the cav-
ity radius as a quantity elastically fluctuating around the
average size R on much slower time scale than the time
needed by the trapped particle to rattle in the allowed
free volume. Then, 〈u2〉 is a weighted average over the
distribution of the cavity size

〈u2〉 =
1
N

∫ 2a(1+ε)

2a

C(R − 2a)2e−βWcR2dR, (23)

where N =
∫ 2a(1+ε)

2a
exp[−βWc]R2dR and Wc is the elas-

tic energy of a cavity with radius R, Wc = 8πGpR(R −
R)2 [61]. Equation (23) takes into account that the fluc-
tuations of the cavity size occur between the particle di-
ameter 2a and a quantity slightly larger, 2a(1 + ε), due
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Fig. 4. Comparison of the best-fit line of the MD results in
fig. 2 (top) and eq. (23) with ε = 0.13, R = 1.018, a = 0.5.
The C parameter is adjusted to ensure coincidence of the two
curves at Gp/T = 10.

to high packing. Figure 4 compares the simplified model
with the best-fit line of the MD results. The best-fit val-
ues of the model parameter comply with some expected
constraints, namely ε ∼ b†/a = 0.17 and the inequalities
2a ≤ R ≤ 2a(1 + ε).

The two models that we discussed are rather different
from each other but they share the common assumption
that the mean square rattling amplitude 〈u2〉 is affected
by both the available free volume and the softness of the
surroundings. The fact that both models consistently sup-
port eq. (10) suggests the robustness of this hypothesis
and strengthen their interpretation of the characteristic
length scale  appearing in eq. (10) as a free-volume effect
not accounted for by the EC description.

3.3 Experimental evidence of the elastic scaling

We recast the MD master curve, eq. (2), in a scaled form
by considering the reduced variable X defined in eq. (3)
(Tg is defined by the familiar relations τα(Tg) = 100 s
or η(Tg) = 1012 Pa corresponding to τα = 1013.5 in MD
units [25]). We obtain

log
τα

τ0
= Υ̃0 + Υ̃1X + Υ̃2X

2, (24)

where Υ̃1 and Υ̃2 are deemed to be universal constants and
τ0 = 1. Υ̃1 and Υ̃2 are derived as follows. From the best fit
of eq. (10) to the MD data (fig. 2 top), and reminding that
〈u2(Tg)〉 = 0.0166 in MD units [25], one finds Gpg/Tg =
71.3 in MD units. Then, one finds with τ0 = 1, Υ̃0 =
−11.70(1), Υ̃1 = Υ1Gpg/Tg = 3.4(2), Υ̃2 = Υ2(Gpg/Tg)2 =
10.3(8). Υ1 and Υ2 are taken from fig. 2. The Υ̃0 parameter
is set so as to get log τα = 2 at Tg.

Figure 5 shows the elastic scaling and the compari-
son with the fragility-independent master curve, eq. (24),
for several glassformers spanning a wide range of fragili-
ties (33 ≤ m ≤ 115, sources in SI). Note that the most
fragile glassformer, decaline, has m ∼ 145–147 [65]. The
effectiveness of the elastic scaling reveals that, as happens
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Fig. 5. Scaling of the structural relaxation time and viscos-
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Simulation data concerning atomic (2D-BM) and ionic (LiCl-
6H2O) glassformers are also included. All data sources are
listed in the Supplementary information (SI). Note that the
set of glassformers under consideration widely differs from the
one assessing eq. (1) [34]. The black solid line is the master
curve given by eq. (24) with errors bounded by the magenta
lines. The experimental data concerning the relaxation time
and the viscosity are adjusted to fit with eq. (24) by the ver-
tical shifts log τ0 and log η0, respectively, which are both less
than 0.4 in magnitude. No other adjustment is done. The MD
data are shifted by log τ0 = 11.5, to be interpreted as the
(fixed) conversion factor between MD and SI time units [25].
All the vertical shifts are listed in SI. The elastic moduli mea-
sured at frequency ω are considered only in the temperature
region where ω > max{0.1/τα, 2π · 1 kHz}. The green straight
line is the best fit with eq. (4) written in terms of X and having
adjusted two parameters: the slope V � Tg/Gpg and τα0.

in MD simulations, the temperature dependence of log τ
and log η is highly correlated with the one of the elastic
modulus.

Figure 5 compares the results also with the prediction
of the conventional elastic models [16,17], eq. (4). It is seen
that eq. (4) fits the scaled data around the glass transition
(−6 ≤ log τα ≤ 6) but departs when relaxation is faster in
spite of two adjustable parameters (the slope V � Tg/Gpg

and τα0).

3.4 Prediction of the silica viscosity

To assess the predictability of eq. (24), we evaluate the
viscosity of the strong glassformer SiO2 (fragility index
m = 20) on the basis of the sole elasticity data [36].
Then, we compare the result with the recommended vis-
cosity values measured over a wide range of temperatures
from the glassy state up to the equilibrium where the non-
Arrhenius dependence becomes apparent [66]. The test is
severe in that, up to now, both MD simulations and exper-
imental data concern liquids with high and intermediate
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Fig. 6. Predicted viscosity of SiO2 (Tg = 1463K) in the tem-
perature range 1273–2773K. The vertical dashed lines mark
the melting temperature 
 1950 K and Tg, separating the
whole range in the equilibrium, supercooled and glass regions.
The grey points are the most reliable viscosity data from 1273
to 2773 K [66]. The black solid curve is the combination of the
elastic parameter X(T ) from ref. [36] and eq. (24) vertically
shifted by +10 to cross the point log η = 12 at Tg. No other
adjustment is done. The dashed line is the best fit of the ex-
perimental data provided by eq. (4) having adjusted both τα0

(to cross the point log η(Tg) = 12) and V �. At log η 
 16.4 the
structural relaxation time is about 1 month.

fragility, whereas silica is extremely strong. The results are
in fig. 6. Apart from adding a vertical shift to eq. (24) by
+10 to ensure log η(Tg) = 12, no adjustment is done. We
find excellent agreement over about fifteen decades from
below Tg up to liquid states. It is known that the conven-
tional elastic models work well for strong glassformers [36].
However, in spite of the adjustable parameter V � (τα0 is
set by the constraint log η(Tg) = 12), eq. (4) is unable to
account for the non-Arrhenius dependence and exhibits
larger deviations than our prediction.

4 Conclusions

Simulation results compared with relaxation data cover-
ing eighteen decades in glassformers with widely different
fragilities (33 ≤ m ≤ 115) show that relaxation and lin-
ear elasticity scale to a fragility-independent master curve.
The scaling allows to derive the viscosity of supercooled
silica (m = 20) over about fifteen decades with no ad-
justable parameters. The elastic scaling is related to the
previously reported scaling between the fast mobility and
the structural relaxation by a cavity model interpreting
the rattling motion of a particle in the cage of the first
neighbours as affected by both the available free volume
and the softness of the cage. This picture appears to be
robust.

The paper strongly suggests that the kinetic fragility
just reflects the degree of elastic softening, i.e. the decrease
of the elastic modulus with increasing temperature. This
provides a connection between the thermodynamics, via
Gp, and the kinetics.
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