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Abstract. We show that phase separation can occur in a one-component liquid outside its coexistence curve
(CX) with addition of a small amount of a solute. The solute concentration at the transition decreases
with increasing the difference of the solvation chemical potential between liquid and gas. As a typical
bubble-forming solute, we consider O2 in ambient liquid water, which exhibits mild hydrophobicity and
its critical temperature is lower than that of water. Such a solute can be expelled from the liquid to form
gaseous domains while the surrounding liquid pressure is higher than the saturated vapor pressure pcx.
This solute-induced bubble formation is a first-order transition in bulk and on a partially dried wall, while
a gas film grows continuously on a completely dried wall. We set up a bubble free energy ΔG for bulk and
surface bubbles with a small volume fraction φ. It becomes a function of the bubble radius R under the
Laplace pressure balance. Then, for sufficiently large solute densities above a threshold, ΔG exhibits a local
maximum at a critical radius and a minimum at an equilibrium radius. We also examine solute-induced
nucleation taking place outside CX, where bubbles larger than the critical radius grow until attainment of
equilibrium.

1 Introduction

Recently, much attention has been paid to the formation
of small bubbles, sometimes called nanobubbles, in wa-
ter [1–3]. They have been observed with a dissolved gas on
hydrophobic surfaces [1–12] and in bulk [13–18] in ambient
conditions (around 300K and 1 atm), where the pressure
in the bulk liquid region is larger than the saturated vapor
pressure pcx or outside the coexisting curve (CX). Their
typical radius R is of order 10–100 nm and their life time is
very long. The interior pressure is given by 2σ/R ∼ 30 atm
for a bubble with R = 50nm from the Laplace law, where
σ is the surface tension equal to 72 erg/cm2. Strong attrac-
tive forces have also been measured between hydrophobic
walls in water due to bubble bridging [2,4–7,9,14]. These
effects are important in various applications, but the un-
derlying physics has not yet been well understood.

In this paper, we ascribe the origin of bubble forma-
tion to a hydrophobic interaction between water and so-
lute [19–24]. In our theory, the solute-induced phase sepa-
ration generally occurs in equilibrium when the solvent is
in a liquid state outside CX and the solute-solvent interac-
tion is repulsive. Most crucial in our theory is the solvation
chemical potential of the solute μs(n, T ) depending on the
solvent density n and the temperature T . With increasing
such a repulsion, its difference Δμs between the liquid and
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gas phases can be considerably larger than the thermal
energy kBT (per solute particle). In this situation, the
solute molecules are repelled from the liquid to form do-
mains of a new phase (in gas, liquid, or solid). Supposing
bubbles with a small volume fraction φ, we set up a free
energy ΔG accounting for considerably large Δμs/kBT .
Then, its minimization with respect to φ and the interior
solute density n′

I yields the equilibrium conditions of bub-
bles in liquid (those of chemical equilibrium and pressure
balance).

As a bubble-forming solute in water, we treat O2,
which is mildly hydrophobic with Δμs/kBT ∼= 3.44 on
CX at T = 300K. Furthermore, the critical tempera-
ture and pressure of water and O2 are given by (647.3K,
22.12MPa) and (154.6K, 5.043MPa), respectively. Notice
that the critical temperature of water is much higher than
that of O2 (and than those of N2, H2, and Ar etc.) due
to the hydrogen bonding in water. As a result, no gas-
liquid phase transition takes place within bubbles com-
posed mostly of O2 in liquid water in ambient condi-
tions. In contrast, strongly hydrophobic solutes usually
form solid aggregates in liquid water except for very small
solute densities [19–24].

In our theory, solute-induced bubbles can appear out-
side CX only when the solute density exceeds a thresh-
old density, where the threshold tends to zero as the
liquid pressure approaches pcx. In particular, above the
threshold density, a surface bubble (a gas film) appears
on a hydrophobic wall in the temperature range T < TD
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(T > TD). As is well known, this is possible only on CX
without solute (in one-component fluids). Here, TD is the
drying temperature [25,26] determined by the solvent-wall
interaction, so it is insensitive to a small amount of solute
with mild Δμs. With a solute below the threshold density,
we predict only a microsopically depleted layer outside CX
(as in one-component fluids). Indeed, some groups [27–29]
detected only microscopic depletion layers on a hydropho-
bic wall with a dissolved gas, while other groups observed
surface bubbles [1–12].

On the other hand, to prepare stable bulk bubbles,
macroscopic gas bubbles composed of O2 etc. have been
fragmented by stirring in liquid water [15–18]. In such
measurements, Ohgaki et al. [15] realized bubbles with
R ∼ 50 nm in quasi-steady states, where the bubble den-
sity was nb ∼ 19μm−3 and the bubble volume fraction
was φ ∼ 0.01. We shall see that the nucleation barrier of
creating solute-induced bulk bubbles in quiescent states is
too high for nucleation experiments for a gas such as O2

except for very high liquid pressures.
As a similar bulk phenomenon, long-lived hetero-

geneities have also been observed in one-phase states of
aqueous mixtures with addition of a salt or a hydropho-
bic solute [30–32]. Dynamic light scattering experiments
indicated that their typical size is of order 100 nm. Theo-
retically, such a phase separation can occur if the solute-
solvent interaction is highly preferential between the two
solvent components [31,32].

This paper is organized as follows. In sect. 2, we will
present a thermodynamic theory of bubbles induced by a
small amount of solute, where the liquid pressure and the
total solvent and solute numbers are fixed. In sect. 3, we
will set up a bubble free energy ΔG. In sect. 4, we will ex-
amine solute-induced nucleation. In addition, in sect. 3.1
and appendix A, we will briefly examine bubble formation
at fixed chemical potentials and at fixed cell volume.

2 Equilibrium bubbles with hydrophobic
solute

We consider a one-component solvent, called water, in a
liquid state outside the coexistence curve (CX). We then
add a small amount of a neutral, hydrophobic solute (im-
purities). The total solvent and solute numbers are fixed at
N = V n̄ and NI = V n̄I, respectively, with n̄ and n̄I being
the initial water and solute densities. Here, n̄ is larger than
the liquid density n�

cx on CX before bubble formation. We
keep the pressure in the liquid region at the initial value p̄
larger than the saturated vapor (coexistence) pressure pcx

by attaching a pressure valve to the cell, as illustrated in
fig. 1. We do not assume the presence of surfactants and
ions (see remarks in sect. 4.1).

2.1 Solvation chemical potential and Henry’s law

We assume that the molecular volume of solute vI is of the
same order as that of solvent vw, since large hydrophobic

fixed

Bubbles in bulk Bubbles on surface

fixed

Fig. 1. (Color online) Illustration of the experimental setup
with a pressure valve realizing a constant liquid pressure p̄
(outside bubbles) larger than pcx, where the total solvent and
solute numbers are fixed. The cell contains bubbles in bulk
(left) or those on a wall (right). The volume of the cell is V
and that of the valve region is Vb, where Vb is nearly equal to
φV for small bubble volume fraction φ in the cell.

impurities tend to form solid precipitates [21, 23, 24]. We
then consider the Helmholtz free energy density f depend-
ing on the water density n and the solute density nI in the
dilute limit of solute. In this paper, we neglect the solute-
solute interaction to obtain

f(n, nI) = fw(n) + kBTnI[ln(nIvI) − 1 + νs(n)], (1)

where fw(n) is the Helmholtz free energy density of pure
water and νs(n) is related to the solvation chemical po-
tential μs(n) in the limit of small nI by

νs(n) = μs(n)/kBT. (2)

Hereafter, the T -dependence of the physical quantities will
not be written explicitly.

Note that the combination ln[vI/λ3
I ] + νs can be de-

termined unambiguously in thermodynamics in the limit
nI → 0, where λI is the thermal de Broglie length (∝
T−1/2). Thus, vI may be chosen to be independent of n
without loss of generality. It is known that the entropic
contribution to νs is crucial for nonpolar impurities in liq-
uid water [21–23].

From eq. (1) we calculate the chemical potential of
water μ and that of solute μI as

μ = ∂fw/∂n + kBTnIgs(n), (3)
μI = kBT [ln(nIvI) + νs(n)], (4)

where we define

gs(n) =
∂νs

∂n
=

1
kBT

∂μI

∂n
. (5)

The pressure p = nμ + nIμI − f is written as

p = [n∂fw/∂n − fw] + kBTnI[1 + ngs(n)], (6)
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where the first term is the contribution from the solvent
and the second term from the solute. The typical size of
gs(n) is of the order of the solute molecular volume vI. In
the presence of bubbles, μ and μI take common values in
gas and liquid, while the pressure in the bubbles is higher
than that in the liquid by 2σ/R.

First, the homogeneity of μI in equilibrium yields

nI = n0
I exp[−νs(n)], (7)

as a function of n in two-phase states, where n0
I =

exp(μI/kBT )/vI is a constant. In the gas-liquid coexis-
tence, let the water and solute densities be n′ and n′

I in
gas and be n̂ and n̂I in liquid, respectively. Then, eq. (7)
gives

n̂I/n′
I = exp[−Δνs], (8)

where the Δνs = νs(n̂)−νs(n′). This density ratio is called
the Ostwald coefficient, which represents solubility of a
gas [19, 20, 22]. It is much smaller than unity for large
Δνs. Near CX, we may approximate Δνs by its value on
CX expressed as

Δνs = νs(n�
cx) − νs(ng

cx), (9)

where n�
cx and ng

cx are the liquid and gas densities on CX
of pure water.

It is worth noting that Δνs in eq. (9) is related to the
Henry constant kH [33, 34]. From partitioning of a solute
between coexisting gas and liquid, it is defined by

kH = kBTn′
I/x̂ = kBTn�

cx exp(Δνs), (10)

where kBTn′
I is the solute partial pressure in gas and x̂ =

n̂I/n�
cx is the solute molar fraction in liquid. In water in

the ambient conditions, Δνs is 3.44 for O2, 4.12 for N2,
and 0.18 for CO2, where CO2 is highly soluble in liquid
water. Thus, our theory is not applicable to CO2.

However, there are a variety of solutes with stronger
hydrophobicity [33]. For example, Δνs = 10.2 for penta-
cosane. In addition, from numerical simulations, a neu-
tral hard-sphere particle deforms the surrounding hydro-
gen bonding; as a result, Δνs ∝ a3 for a � 1 nm and
Δνs ∼ 4πσa2/kBT for a > 1 nm with varying the particle
radius a [21–24]. This gives Δνs ∼ 180 for a ∼ 1 nm. As
hydrophobic assembly, such strongly hydrophobic solutes
aggregate in liquid water.

2.2 Chemical equilibrim and pressure balance

We consider bubbles in bulk or on a wall at a small volume
fraction φ in the cell. For simplicity, we assume no bubble
in the valve region in fig. 1. If the water density inside the
bubbles n′ is much smaller than n̄, the valve volume Vb is
given by

Vb = V φ. (11)

Since the total solvent and solute numbers are fixed, the
densities in the liquid are given by

n̂ = n̄ − φn′ ∼= n̄, (12)

n̂I = n̄I − φn′
I. (13)

Hereafter, we set n̂ = n̄. We also have φ < n̄I/n′
I � 1 from

n̂I > 0. Thus, the chemical equilibrium condition (8) and
the conservation relation (13) give

n′
I = n̄I/[φ + exp(−Δνs)], (14)

n̂I = n̄I/[1 + φ exp(Δνs)]. (15)

The fraction of the solute in the bubbles is given by

α = φn′
I/n̄I = φ/[φ + exp(−Δνs)], (16)

which tends to 1 for φ � exp(−Δνs).
We write the value of the water chemical potential μ

in eq. (3) in the gas as μ′ and that in the liquid as μ̂,
where μ′ = μ̂ in equilibrium. Since p̄ is close to pcx, it is
convenient to measure them from the chemical potential
μcx on CX for pure water. Here, n′ is small in the gas
and use can be made of the Gibbs-Duhem relation in the
liquid. Then, we obtain

μ′ = μcx + kBT [ln(n′/ng
cx) + n′

Igs(n′)], (17)

μ̂ = μ̄ = μcx + (p̄ − pcx)/n�
cx, (18)

where μ̂ remains equal to the initial value μ̄. To linear
order in the deviation n′ − ng

cx in eq. (17), the chemical
equilibrium condition μ′ = μ̂ yields

n′/ng
cx − 1 = (p̄ − pcx)/kBTn�

cx − n′
Igs(n′). (19)

On the right-hand side of eq. (19), we may neglect the
first term for p̂ − pcx � kBTn�

cx and the second term for
n′

IvI � 1 (see the sentence below eq. (6)). Then, we find

n′ = ng
cx = pcx/kBT. (20)

For one-component fluids [35], the pressure in a bubble
has been set equal to pcx from ng

cx/n�
cx � 1 far from the

critical point. In the present mixture case, the gas pressure
is p′ = kBTn′

I + pcx. With the aid of the Laplace law
p′ = p̄ + 2σ/R, we obtain the pressure balance equation,

kBTn′
I = p̄ − pcx + 2σ/R. (21)

Eliminating n′
I from eqs. (14) and (21), we may express

the volume fraction φ as

φ = kBT n̄I/(p̄ − pcx + 2σ/R) − e−Δνs . (22)

From eqs. (20) and (21), we find n′
I � n′ for p̄−pcx �

pcx or for R � 2σ/pcx, where the gas consists mostly of
the solute. For water at T = 300K, we have pcx = 3.6 kPa
and ng

cx = 0.86 × 1018/cm3, where n′
I � n′ holds for p̄ �

0.0036 atm or for R < 40μm. In addition, at p̄ = 1atm,
we have n′

I
∼= 2σ/kBTR for R � 1.4μm.

In the limit of φ → 0 and R → ∞, eq. (22) gives a
threshold solute density for gas film formation,

nc
I = e−Δνs(p̄ − pcx)/kBT, (23)

which vanishes as p̄ → pcx and is small for large Δνs. Here,
we introduce the following parameter:

γ = n̄I/nc
I − 1. (24)

A gas film can appear for γ > 0, but bubbles with R−1 > 0
can be stable for γ > γtr with γtr being a positive thresh-
old (see fig. 4). For O2 in water at T = 300K, we have
nc

I = 0.78×1018(p̄−pcx) cm−3 with pressures in atm. The
corresponding oxygen mole fraction is 2.3×10−5(p̄−pcx).
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2.3 Gas film at fixed pressure

We consider a gas film on a hydrophobic wall, where there
is no contact between the wall and the liquid phase Setting
R−1 = 0 in eq. (22), we obtain φ for γ > 0 as

φ = (n̄I − nc
I )kBT/(p̄ − pcx)

= γ exp(−Δνs). (25)

In this case, we have n̂I = n̄I/(1 + γ) from eq. (15). For
γ < 0, water is only microscopically depleted at the wall,
though the depletion layer itself can be influenced by the
solute [27]. In the present isobaric case, φ increases and
even approaches unity as p̄−pcx → 0, so we need to require
p̄ − pcx > kBT (n̄I − nc

I ). In contrast, at fixed cell volume,
φ remains small even for p̄ − pcx ≤ 0 (see appendix A).

2.4 Bubbles with a common radius at fixed pressure

We suppose bubbles with a common curvature R−1 out-
side CX. Using the relation kBT n̄I/(p̄ − pcx) = (γ +
1) exp(−Δνs), we rewrite eq. (22) as

φ =
kBT (n̄I − nc

I )
p̄ − pcx

· R − Rc

R + γRc
, (26)

which tends to eq. (25) in the limit R → ∞. Here, we
introduce the critical radius Rc defined by

Rc = 2σ/γ(p̄ − pcx). (27)

Here, Rc = 1.4/γ μm for ambient water (300K and 1 atm).
We need to require R > Rc outside CX since φ > 0. See
Rc for O2 in water in fig. 5(a). For bubble nucleation in
one-component fluids [35–37], the critical radius is given
by Rc = 2σ/(pcx − p̄) with p̄ < pcx.

We assume Nb bubbles in the cell neglecting bubble
coalescence. Then, we express φ as

φ = 4πR3G(θ)nb/3, (28)

where nb = Nb/V is the bubble density. For bulk bub-
bles we set G(θ) = 1. For surface bubbles it is given by
Turnbull’s formula [38,39],

G(θ) = (2 − 3 cos θ + cos3 θ)/4, (29)

where θ is the (gas-side) contact angle in the partial drying
condition determined by Young’s relation,

cos θ = (σ�
w − σg

w)/σ. (30)

where σ�
w and σg

w are the free energies per area between
the wall and the liquid and gas phases, respectively, and
we assume |σ�

w − σg
w| < σ. Here, 0 ≤ θ < π/2 for a hy-

drophobic wall and π/2 < θ ≤ π for a hydrophilic wall. As
θ → 0, we have the complete drying condition σ�

w−σg
w = σ

at T = TD on CX. As θ → π, the bubbles tend to be
detached from the wall, resulting in bulk bubbles. Exper-
imentally, θ for surface bubbles has been observed in a
range of 10–30◦ [3]. Note that eqs. (26) and (28) consti-
tute a closed set of equations determining the equilibrium
radius R for each given n̄I, θ, and nb.

3 Bubble free energy

3.1 Derivation using grandgrand potential density

In the geometry in fig. 1 with a pressure valve, we should
derive the equilibrium conditions of bubbles from mini-
mization of the Gibbs free energy written as

G = F + σS + (V + Vb)p̄

= Ḡ + ΔG, (31)

where F is the Helmholtz free energy (excluding the sur-
face contribution here) and S is the total interface area.
For a small volume change Vb → Vb + dVb of the valve,
the work exerted by the fluid to the valve is p̄dVb at fixed
pressure, so we should consider G in eq. (31). The second
line is the definition of the bubble free energy ΔG with
Ḡ = V f(n̄, n̄I) + V p̄ being the initial Gibbs free energy.

In terms of the Helmholtz free energy densities f ′ in
the gas and f̂ in the liquid, we have F = V (φf ′ + f̂)
for the total system including the valve region. Here, it is
convenient to introduce the grand potential density,

ω(n, nI) = f − μ̄n − μ̄InI + p̄

= (μ − μ̄)n + (μI − μ̄I)nI + p̄ − p, (32)

where μ̄ and μ̄I are the initial chemical potentials for water
and solute, respectively. Using eqs. (12) and (13) we obtain

F/V = φω′ + ω̂ − φp̄ + f̄ , (33)

where ω′ is the value of ω in the gas, ω̂ is that in the liquid,
and f̄ is the initial Helmholtz free energy density. Thus,
eq. (31) gives

ΔG = V [φω′ + ω̂] + σS. (34)

We note that ω(n, nI) vanishes in the initial state and
is second order with respect to the deviations n − n̄ and
nI−n̄I (see eqs. (12) and (13)). In the following we assume
that the bubbles have a common curvature R−1, where in
terms of G(θ) in eq. (29) S is given by [38,39],

S = 4πR2G(θ)nbV. (35)

We next calculate ω′ and ω̂ for small p̄− pcx assuming
eqs. (12) and (18). In the gas, we use ω′ = (μ′ − μ̄)n′ +
(μ′

I− μ̄I)n′
I + p̄−p′, where the first term on the right-hand

side is negligible from eqs. (17) and (18). Further we set
p′ = pcx + kBTn′

I from eq. (20) and use eq. (4) to find

ω′ = kBTn′
I[ln(n′

I/n̄I) − 1 − Δνs] + p̄ − pcx. (36)

In the liquid, n̂I is very small and we obtain

ω̂ = kBT [n̂I ln(n̂I/n̄I) + φn′
I], (37)

where n̂I = n̄I−φn′
I from eq. (13). Thus, if φ � n̄I/n′

I � 1,
the logarithm ln(n̂I/n̄I) can be expanded with respect to
φ, leading to ω̂ ∝ φ2. However, we are also interested in
the case φ ∼ n̄I/n′

I.
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In equilibrium, ΔG in eq. (34) is minimized with re-
spect to n′

I and φ, where R and S are functions of φ at
fixed θ and nb. Thus, let us change n′

I and φ infinitesi-
mally by δn′

I and δφ, respectively. From eqs. (34)–(37),
we calculate the incremental change of ΔG as

δ(ΔG) = V kBT [ln(n′
I/n̂I) − Δνs](n′

Iδφ + φδn′
I)

+V [p̄ − pcx + 2σ/R − kBTn′
I]δφ. (38)

Therefore, the equilibrium conditions (14) and (21) follow
from ∂(ΔG)/∂n′

I = ∂(ΔG)/∂φ = 0.
Furthermore, if we assume the pressure balance (21)

(without assuming eq. (14)), ΔG becomes a function of R
only under eqs. (28) and (35). Its derivative with respect
to R is calculated as

d(ΔG)
dR

= S

[
ln

(
n′

I

n̂I

)
− Δνs

][
p̄ − pcx +

4σ

3R

]
. (39)

The extremum condition d(ΔG)/dR = 0 gives n′
I =

n̂Ie
Δνs , leading to eqs. (14) and (15).

3.2 Local maximum and minimum of bubble free
energy at fixed pressure

In fig. 2, we plot ΔG/NbkBT vs. R for O2 for bulk and
surface bubbles in water under eq. (21), where T = 300K
and p̄−pcx = 1 or 300 atm. When we use O2 (in figs. 2, 3, 6,
and 7), we fix the bubble density at nb = Nb/V =
0.149/μm3. We recognize that ΔG assumes a local max-
imum at R = R1 and a negative minimum at R = R2

for sufficiently large n̄I. Therefore, bubbles can appear in
equilibrium at R = R2 with increasing n̄I. For the case
p̄ − pcx = 300 atm, the pressure in the bubble interior is
also nearly equal to 300 atm for R � 5 nm and the interior
oxygen density is n′

I = 7.2/nm3 from the ideal-gas formula
(p = nkBT ). Instead, if we use the van der Waals equa-
tion of state (p = nkBT/(1−n/3nc)− (9kBTc/8nc)n2) at
p = 300 atm and T = 300K, the density becomes 7.9/nm3,
where Tc = 154.6K and nc = 8.0 nm−3 for O2. Thus, the
van der Waals interaction among O2 molecules is smaller
than kBT (per molecule) even at p̄ − pcx = 300 atm.

To explain fig. 2, we treat ΔG as a function of R by
increasing n̄I or γ with the other parameters fixed. As will
be shown in appendix B, ΔG monotonically increases for
γ < γm and exhibits a local maximum ΔGmax at R = R1

and a local minimum ΔGmin at R = R2, where ΔGmin > 0
for γm < γ < γtr and ΔGmin < 0 for γ > γtr. Here, R2/R1

increases from 1 with increasing γ above γm. In each panel
in fig. 2, we set γm < γ < γtr for the upper curve, γ = γtr

for the middle curve, and γ > γtr for the lower curve.
Therefore, the two-phase states at R = R2 are metastable
for γm < γ < γtr and stable for γ ≥ γtr. In fig. 3, we plot
R1 and R2 for O2 in water for bulk and surface bubbles.

In appendix B, we shall see that γm and γtr depend
only on the following dimensionless parameter:

A = [2σ/(p̄ − pcx)][4πG(θ)nbeΔνs/3]1/3, (40)
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Fig. 2. (Color online) Normalized bubble free energy
ΔG/NbkBT vs. R for O2 in liquid water in the isobaric condi-
tion for bulk bubbles in (a) and (b) and for surface bubbles in
(c) and (d), where T = 300K and nb = Nb/V = 0.149/μm3.
The pressure difference Δp = p̄ − pcx is 1 atm in (a), (c),
and (d) and is 300 atm in (b). The contact angle θ is 15◦

in (c) and is 6◦ in (d). Then, (A, γm) = (3.86, 7.74) in (a),
(0.0129, 0.0680) in (b), (0.367, 0.945) in (c), and (0.109, 0.353)
in (d), while γtr

∼= 1.14γm for all the cases. In the equilib-
rium state at R = R2 with ΔGmin < 0 on lowest curve
in each panel, (γ, φ, R2) = (9.5, 4.25 × 10−2, 0.41) in (a),
(0.083, 1.45 × 10−3, 0.13) in (b), (1.2, 1.62 × 10−2, 3.1) in (c),
and (0.44, 7.00 × 10−3, 7.9) in (d) with R2 in μm.

 0

 100

 200

 300

 400

 500

 600

 700

 0  1  2  3  4  0

 2

 4

 6

 8

 10

 12

 14

 0  1  2  3  4

 bulk bubble surface bubble
(a) (b)

oxygen

Fig. 3. (Color online) Two radii R1 and R2 vs. γ/γm giving
the local maximum and minimum of ΔG for O2 in water at
T = 300 K in the isobaric condition. They are written in dotted
lines in the region γm < γ < γtr. As in fig. 2, displayed curves
are for bulk bubbles with Δp = p̄ − pcx being 1 or 300 atm
(left) or for surface bubbles with θ = 15◦ or 6◦ (right).

which diverges as p̄ → pcx and becomes small with in-
creasing p̄ − pcx and/or decreasing G(θ)nb. Using A, we
may rewrite eq. (26) in terms of u = R/Rc as

A3u3 = γ4(u − 1)/(u + γ), (41)
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minimum ΔGmin(γ, A) at R = R2 divided by ΔGm(γm, A) as
functions of γ/γm for A = 1. Here, ΔGmin < 0 for γ > γtr,
where R2 is the equilibrium bubble radius.

which holds for u = R1/Rc and R2/Rc. In fig. 4, we plot
γm and γtr vs. A in (a) and display ΔGmax and ΔGmin as
functions of γ/γm at A = 1 in (b). Here, γm ∼ A3/4 for
A � 1 and γm ∼ A for A � 1. For any A, we find

γtr/γm
∼= 1.14. (42)

For example, γm = 0.330, 2.23, and 19.4 for A = 0.1, 1,
and 10, respectively. The threshold of bubble formation
(γ > γtr) is thus approximately given by n̄I � nc

I for
A � 1 and by n̄I � Anc

I for A � 1.
In particular, with increasing the solute density, we

examine the case γ � γm ∼ γtr using eq. (41), where R2

is the equilibrium radius. Then, for any A, we find

R1/Rc
∼= 1 + A3(1 + γ)/γ4 + · · · ∼= 1. (43)

The ratio R1/Rc rapidly approaches 1 with increasing γ.
In fact, even at γ = γtr, we have R1/Rc = 1.091, 1.122,
and 1.150 for A = 0.1, 1, and 10, respectively. On the other
hand, supposing u = R2/Rc � 1, we obtain u2(u + γ) ∼=
γ4/A3 from eq. (41). For A � 1, we have

R2/Rc
∼= γ4/3/A � 1. (44)

For A � 1, there are two limiting cases:

R2/Rc
∼= (γ/A)3/2 � 1, (A � γ � A3), (45)
∼= γ4/3/A � γ, (γ � A3). (46)

In these limiting cases, we surely obtain R2 � Rc. See
fig. 10 in appendix B for the behaviors of R1 and R2 vs.
γ. On the other hand, for γ � γm, the solute fraction α
in bubbles in eq. (16) is much smaller than 1 at R = R1

and approaches 1 at R = R2 (see fig. 10(b)).

3.3 Bubble free energy at fixed chemical potentials

So far we have fixed the total particle numbers N = V (n̂+
φn′) and NI = V (n̂I + φn′

I) as well as the liquid pressure.

In this case, the water chemical potential μ̂ is nearly fixed
at the initial value μ̄ from eq. (18). As another boundary
condition, we may attach a solute reservoir to the cell to fix
the solute chemical potential at the initial value μ̄I, where
we still attach a pressure valve. In this grand canonical
case, we have n̂I = n̄I so that ω̂ = 0 from eq. (32). We
should minimize the grand potential,

Ω = G − μ̄N − μ̄INI

= V φω′ + σS, (47)

where G is defined in eq. (31), μ̄ and μ̄I are the initial
chemical potentials, and ω′ is given by eq. (36). To de-
rive the second line of eq. (47), we have used the relation
F/V = φω′ − (1 + φ)p̄ + μ̄(n̂ + φn′) + μ̄I(n̂I + φn′

I), where
N and NI are not fixed.

With respect to small changes n′
I → n′

I + δn′
I and φ →

φ + δφ, the incremental change of Ω is given by the right-
hand side of eq. (38) if n̂I is replaced by n̄I. Therefore,
the extremum conditions ∂Ω/∂n′

I = ∂Ω/∂φ = 0 yield
the pressure balance (21) and the chemical equilibrium
condition n′

I = n̄Ie
Δνs . If these extremum conditions are

assumed, we obtain

ω′ = −(p̄ − pcx)γ, (48)

which is negative for γ > 0 outside CX. Here, in the second
line of eq. (47), the first term is proportional to R3 and
the second term to R2, so the minimum of Ω decreases
monotonically with increasing R (for R > Rc), indicating
appearance of macroscopic bubbles.

4 Solute-induced nucleation

4.1 Experimental situations

We have shown that the bubble free energy ΔG(R) has
a local maximum at R = R1 and a minimum at R = R2

for γ > γtr (except for gas films). In such situations, the
initial homogeneous state is metastable and there can be
solute-induced bubble nucleation outside CX [37]. In con-
trast, in one-component fluids, bubble nucleation occurs
only inside CX (p̄ < pcx) [35–39]. In nucleation, crucial is
the free energy Fc needed to create a critical bubble with
R = Rc. We call it the nucleation barrier, since the nu-
cleation rate I of bubble formation is proportional to the
Boltzmann factor exp(−Fc/kBT ). Therefore, if Fc/kBT is
too large (say, 80), I becomes too small for experiments
on realistic timescales. In our case, Fc is reduced with in-
creasing p̄−pcx and/or γ = n̄I/nc

I −1. For surface bubbles,
it is also reduced with decreasing the contact angle θ.

We make some comments on experimental situations.
First, in the previous observations [15–18], bulk nanobub-
bles have been produced by breakup of large bubbles com-
posed of a gas such as O2, CH4, or Ar, where the typi-
cal flow-induced bubble size is of great interest [40]. Sec-
ond, a small amount of surfactants and/or ions are usu-
ally present in water, which increase the bubble stabil-
ity [3]. Indeed, surfactant molecules at the gas-liquid in-
terface reduce the surface tension, while electric charges
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Fig. 5. (Color online) (a) Critical radius Rc in eq. (27) vs.
oxygen density n̄I for bulk bubbles in water, where Δp = p̄ −
pcx = 0, 10, and 300 atom and T = 300 K. (b) ΔGone(R)/Fc in
eq. (51) vs. R/Rc for γ = 0.5, 4, and 49.

or electric double layers at the interface prevent bubble
coalescence [41–44]. For example, with addition of O2 and
a salt in water [16], the bubble-size distribution on long
timescales was found to have a peak at R ∼ 100 nm. Third,
on a non-smooth hydrophobic wall, there can be pre-
existing trapped bubbles on strongly hydrophobic spots.
In such cases, there should be no significant nucleation
barrier for the formation of surface bubbles with small
contact angles θ.

4.2 Critical radius and nucleation barrier

We consider a single bubble with curvature R−1 in bulk or
on a hydrophobic wall. In the early stage with small φ, we
may neglect ω̂ ∝ φ2 in eq. (34) to obtain the single-bubble
free energy in the standard form [35–39],

ΔGone(R) = G(θ)
[
4
3
πR3ω′ + 4πσR2

]
, (49)

where ω′ is given by eq. (36) and n′
I is related to R

by the pressure balance (21). Note that ω′ is usually a
negative constant in nucleation in metastable systems.
Here, d(ΔGone)/dR ∝ ln(n′

I/n̄I)−Δνs, which follows from
eq. (39) if n̂I is replaced by n̄I. Then, ΔGone(R) is max-
imized at the critical radius Rc in eq. (27). See fig. 5(a)
for Rc vs. n̄I for O2. Since ω′ = −2σ/Rc at R = Rc from
eq. (36), the nucleation barrier (= the maximum of ΔGone

at R = Rc) is written as

Fc = 4πG(θ)σR2
c/3 = 16πG(θ)σ3/[(p̄ − pcx)γ]2. (50)

For surface bubbles with small θ, we have G(θ) ∼= 3θ4/16
and Fc ∝ θ4. For bubble nucleation in one-component
fluids, Fc is given by the above form with γ = 1 and
p̄ < pcx. In terms of u = R/Rc, we may also express
ΔFone(R) simply as

ΔGone/Fc = 2u2(u/γ + 1) ln
(

1 + γ/u

1 + γ

)
+ u2. (51)

The right-hand side may be approximated by −2u3 + 3u2

for γ � 1 and by −2u2 ln u+u2 for γ � 1. In fig. 5(b), we
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Fig. 6. (Color online) Normalized nucleation barrier Fc/kBT
vs. γ for O2 in water, for (a) bulk and (b) surface bubbles.

plot the above scaling function. In addition, the nucleation
rate I is of the form [37]

I = Γcn
�
cx exp(−Fc/kBT ), (52)

where Γc is the growth rate of a critical bubble (see eq. (60)
in the next subsection).

For water at T = 300K, we have

Fc/kBT ∼= 73G(θ)R2
c , (53)

with R in nm. In fig. 6, we plot Fc/kBT vs. γ for O2

in water for bulk and surface bubbles. In homogeneous
bubble nucleation of pure water at T ∼ 300K [35, 36],
bubbles with R > Rc are detectable for Fc/kBT � 70 or
for Rc � 1 nm in experimental times and Rc can be of
order 1 nm only for negative p̄ of order −1000 atom. For
O2 in our case, Rc is decreased down to 1 nm, depending
on n̄I, p̄ − pcx, and θ in fig. 6.

4.3 Dynamics of bulk nucleation

We next examine nucleation dynamics of bulk bubbles for
γ > γtr. To describe attainment of the equilibrium radius
R2 in the simplest manner, we assume a common radius
R(t) for all the bubbles with a constant bubble density
nb. We also assume a time-dependent background solute
density in the liquid defined by

n̂I(t) = n̄I − φ(t)n′
I(t), (54)

where φ(t) is determined by eq. (28) with G(θ) = 1. Ex-
pressing φ(t) and n′

I(t) in terms of R(t), we may describe
saturation of φ(t) up to the equilibrium volume fraction.
After this stage, however, the bubble number decreases in
time in the presence of bubble coalescence (which can be
suppressed with addition of salt [41,42]).

For simplicity, we further assume that the solute dif-
fusion constant D is much smaller than the thermal dif-
fusion constant DT in the liquid. Then, we can neglect
temperature inhomogeneity around bubbles, which much
simplifies the calculation. In fact, for liquid water at
300K and 1 atom, we have DT ∼ 1.4 × 10−3 cm2/s and
D ∼ 2.0 × 10−5 cm2/s (� DT ) for O2.
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We focus our attention to a single bubble neglecting
its Brownian motion, where nI(r, t) slowly changes in time
t tending to n̂I(t) in eq. (54) far from it. We write the dis-
tance from the droplet center as r. In the bubble exterior
r > R, the solute obeys the diffusion equation,

∂nI

∂t
= D∇2nI. (55)

We assume the continuity of the solute chemical potential
μI at r = R + 0 and r = R − 0 across the interface. From
eq. (7), the solute density nR

I = nI(R + 0, t) immediately
outside the bubble is related to the interior density n′

I by

nR
I = n′

Ie
−Δνs . (56)

Therefore, in the quasi-static approximation [37], nI(r, t)
slightly outside the interface is written as

nI(r, t) = n̂I + (nR
I − n̂I)R/r. (57)

The flux to the bubble is given by D(n̂I − nR
I )/R, so the

conservation of the solute yields

(n′
I − nR

I )
dR

dt
=

D

R
(n̂I − nR

I ) (58)

Here, n̂I−nR
I = n̄I−n′

I(φ+e−Δνs) from eqs. (13) and (55),
so the right-hand side of eq. (58) vanishes at R = R2

from eq. (13). In accord with the equilibrium relation (27),
division of eq. (58) by n′

ID/R gives the desired equation,

(1 − e−Δνs)
R

D

dR

dt
=

(n̄I − nc
I )(1 − Rc/R)

(p̄ − pcx + 2σ/R)/kBT
− φ. (59)

For γ > γtr, the right-hand side of eq. (59) vanishes
for R = R1 and R2, where R1

∼= Rc. Here, bubbles with
R > R1 grow up to R2, while those with R < R1 shrink.
If the deviation δR = R − R1 is small, it obeys the linear
equation d(δR)/dt = ΓcδR, where Γc is the growth rate
of a critical bubble of the form,

Γc = DR−2
c γ/[(1 + γ)(eΔνs − 1)]. (60)

In terms of Γc and u = R/Rc, we may rewrite eq. (59) as

du

dt
= Γc

1 + γ

u

[
u − 1
u + γ

− A3

γ4
u3

]
, (61)

which is consistent with eq. (41).
In fig. 7, we display the growth of R(t) by setting D =

2×10−5 cm2/s for O2 in water at T = 300K, where p̄−pcx

is 1 atm in (a) and (a′) and 300 atm in (b) and (b′). As
the initial radius, we set R(0) = R1 + 0.3 Å, which yields
u(0)−R1/Rc ∼ 10−2 in eq. (61). The right panels indicate
the exponential growth,

R(t) = R(0) + (R(0) − R1)eΓct (62)

in the early stage. Numerically, Γc is 2.89ms−1 and
6.70ms−1 for γ = 10 and 15, respectively, in (a) and (a′),
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Fig. 7. (Color online) Growth of radius R(t) for bulk bubbles
in the isobaric condition for O2 in water at T = 300K, which
are obtained from eq. (59) for R(0) = R1 + 0.3 Å with D =
2 × 10−9 cm2/s. In (a) and (a′), γ = 10 and 15 with Δp = p̄ −
pcx = 1 atom. In (b) and (b′), γ = 2 and 7.5 with Δp =300 atm.
Curves are written on linear scales in (a) and (b) and on semi-
logarithmic scales in (a′) and (b′). Here, γtr = 8.80 and 0.0774
for Δp = 1 and 300 atm, respectively.

while it is 7.63μs−1 and 142μs−1 for γ = 2 and 7.5, respec-
tively, in (b) and (b′). These values agree with eq. (59).
In this calculation, we assume the pre-existence of bub-
bles with radii slightly exceeding R1. However, if we start
with the homogeneous initial state, the birth of such large
bubbles in the cell occurs as rare thermal activations on a
timescale of order,

1/V I ∼ exp(Fc/kBT )/V n�
cxΓc. (63)

5 Summary

We have investigated bubble formation in bulk and on
hydrophobic walls induced by accumulation of a small
amount of a neutral solute in liquid water outside the sol-
vent CX. We have used the fact that a gas such as O2

or N2 remains in gaseous states within phase-separated
domains in ambient liquid water, because it is mildly hy-
drophobic with a critical temperature much below 300K.
With this input, we have constructed a simple thermo-
dynamic theory for dilute binary mixtures including a
considerably large solvation chemical potential difference
Δμs = kBTΔνs. We have assumed fixed particle numbers
and a fixed liquid pressure (N -NI-p) in the text and in
appendix B, but we have also treated bubble formation
in the μ-μI-p ensemble in sect. 3.3 and in the N -NI-V
ensemble in appendices A and B,
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In particular, in sect. 2, we have found a threshold
solute density nc

I in eq. (23) for film formation on a com-
pletely dried wall at fixed pressure, which is very small for
large Δνs. The threshold density is increased to (γm+1)nc

I
for metastable bubbles and (γtr + 1)nc

I for stable bubbles
due to the surface tension, where γtr

∼= 1.14γm. Here, γm

and γtr are displayed in fig. 4(a) as functions of a pa-
rameter A in eq. (40). In sect. 3, we have also presented
a bubble free energy ΔG for a small gas fraction φ in
eqs. (34)–(37) for the isobaric case, whose minimization
yields the equilibrium conditions (14) and (21). In sect. 4,
we have calculated the critical radius Rc and the barrier
free energy Fc for solute-induced nucleation. The Fc/kBT
is very high for homogeneous nucleation except for high
liquid pressures, but it can be decreased for heterogeneous
nucleation with a small contact angle θ.

We make some critical remarks. i) First, we have as-
sumed gaseous domains. However, with increasing p̄− pcx

and/or Δνs, liquid or solid precipitates should be formed
in bulk and on walls, sensitively depending on their mutual
attractive interaction. Note that a large attractive interac-
tion arises even among large hard-sphere particles in wa-
ter due to deformations of the hydrogen bonding [21–24].
ii) Second, we should include the effects of surfactants
and ions in the discussion of the bubble size distribu-
tion [3,41–44]. In this paper, we have assumed a constant
bubble density nb in eqs. (28), (35), and (40). This as-
sumption can be justified only when bubble coalescence is
suppressed by the electrostatic interaction near the gas-
liquid interfaces. iii) Third, dynamics of bubble formation
and dissolution [45] should be studied in future, which can
be induced by a change in pressure, temperature, or solute
density.

Note added in proofs

We have noticed a molecular dynamics simulation
on helium nanobubbles in water by Yamamoto and
Ohnishi [47], where stable bubbles were realized at fixed
cell volume.

This work was supported by KAKENHI No. 25610122. RO
acknowledges support from the Grant-in-Aid for Scientific Re-
search on Innovative Areas “Fluctuation and Structure” from
the Ministry of Education, Culture, Sports, Science, and Tech-
nology of Japan.

Appendix A. Bubbles at fixed cell volume

Here, we consider two-phase coexistence outside CX, fix-
ing the particle numbers and the cell volume V without a
pressure valve. Some discussions were already made on at-
tainment of two-phase equilibrium in finite systems inside
CX (without impurities) [37,46].

In this case, while eqs. (14) and (15) are unchanged,
the liquid volume is decreased by φV for n′ � n̄ with
appearance of a gas region. As a result, the liquid density
n̂ is increased as

n̂ = (1 + φ)n̄. (A.1)

In terms of the isothermal compressibility KT of liquid wa-
ter, the pressure increase is given by φ/KT , so the pressure
balance relation (21) is changed as

kBTn′
I = p̄ − pcx + φ/KT + 2σ/R. (A.2)

Here, KT = 0.45× 10−3/MPa in ambient water near CX,
where even a very small φ gives rise to a large pressure.

The bubble free energy ΔF is defined as the increase
in the Helmholtz free energy as F = F̄ + ΔF due to ap-
pearance of bubbles. Some calculations give

ΔF = V [φω′ + (1 − φ)ω̂] + σS. (A.3)

Here, we may replace (1−φ)ω̂ by ω̂ for small φ. Then ΔF
assumes the form of eq. (34), but we need to change ω̂ in
eq. (37) as

ω̂ = T [n̂I ln(n̂I/n̄I) + φn′
I] + φ2/2KT , (A.4)

where the last term is due to the compression in the liq-
uid. From eq. (1), it is equal to f ′′

w(n̄)(n̂ − n̄)2/2, where
f ′′
w = ∂2fw/∂n2 = 1/n2KT . The counterpart of eq. (38)

for the increment δ(ΔF ) is obtained if p̄− pcx is replaced
by p̄− pcx +φ/KT . Minimization of ΔF with respect to φ
and n′

I thus yields eqs. (14) and (A.2). Furthermore, the
derivative d(ΔF )/dR is obtained if p̄ − pcx is replaced by
p̄ − pcx + 2φ/KT in the right-hand side of eq. (39).

The equilibrium equation for R or φ is given by eq. (22)
if p̄− pcx is replaced by p̄− pcx + φ/KT . In particular, for
a gas film (R−1 = 0), φ is explicitly calculated as

φ = e−Δνs

[√
(1 + h)2/4 + γh − 1 + h

2

]
, (A.5)

where we define

h = KT (p̄ − pcx)eΔνs . (A.6)

For O2 in ambient water, we have h = 1.4× 10−3(p̄− pcx)
with pressures in atm, so h � 1 for p̄ � 103 atm.

Here, we assume 1+h > 0. A film appears for γ > 0 as
in the isobaric case. In particular, for γ|h| � (1 + h)2/4,
we find the linear behavior ∝ γ as

φ ∼= γe−Δνsh/(1 + h)

∼= KT

1 + h

[
kBT n̄Ie

Δνs − p̄ + pcx

]
. (A.7)

From the first line, this formula tends to eq. (25) only for
h � 1. The second line can be used even for p̄ ≤ pcx,
where φ increases with increasing pcx − p̄ and/or n̄I. See
appendix B for more analysis for the case R−1 > 0.

Appendix B. Scaling of bubble free energy

Here, we examine the bubble free energy ΔF in eq. (34)
by scaling it in a dimensionless form, assuming a common
curvature R−1 for all the bubbles.
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Appendix B.1. Fixed pressure

At fixed pressure in fig. 1, we assume the pressure bal-
ance (21) and introduce scaling variables s and v by

s = φeΔνs = (4πG(θ)nb/3)eΔνsR3, (B.1)

v = [2σ/(p̄ − pcx)R] = As−1/3. (B.2)

where A is the parameter in eq. (40). From eq. (16) the
solute fraction in bubbles is α = s/(1 + s). As a scaled
bubble free energy, we define F as

F = eΔνsΔG/[V (p̄ − pcx)]. (B.3)

From eqs. (34)–(37), we express F in terms of s and v as

F = [γ + 1 − s(1 + v)] ln
[
1 − s

1 + v

1 + γ

]

+ s(1 + v) ln
[

1 + v

1 + γ

]
+

3
2
sv + s, (B.4)

where γ is given by eq. (24). With fixed γ and A, F is
a function of s only. From eq. (B.2) its derivative with
respect to s is calculated as

∂

∂s
F =

(
1 +

2
3
v

)
ln

[
1 + v

γ + 1 − s(1 + v)

]
. (B.5)

The extremum condition ∂F/∂s = 0 yields

γ = s + (1 + s)v = s + A(1 + s)s−1/3, (B.6)

which is equivalent to eqs. (21), (26), and (41). If eq. (B.6)
is assumed, we have F = (3v/2 + 1)s − (1 + γ) ln(1 + s)
as extremum values depending only on A. In fig. 8, we
display F(γ, s,A) in the γ-s plane at A = 1.

For each A, the right-hand side of eq. (B.6) is mini-
mized at s = sm(A) as a function of s, where sm satisfies

A = 3s4/3
m /(1 − 2sm). (B.7)
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(a) R1/Rm = (s1/sm)1/3 and R2/Rm = (s2/sm)1/3 vs. γ/γm

and (b) α1 = s1/(1+s1) and α2 = s2/(1+s2) vs. γ/γm, where

A = 0.1, 1, and 10. (c) R1/Rc−1 = s
1/3
1 γ/A−1 vs. γ/γm, which

is small even for vs. γ = γtr (see eq. (43)). (d) R2/[Rcγ
4/3/A]

for A = 0.1, 1, and 10 (bold lines) and R2/[Rc(γ/A)3/2] for
A = 10 (dotted line) as functions of γ/γm (see eqs. (44)–(46)).

The minimum of eq. (B.6) at s = sm is written as

γm = sm(4 + sm)/(1 − 2sm). (B.8)

As can be seen in fig. 9(a), if γ > γm, eq. (B.6) has
two solutions s1(γ,A) and s2(γ,A) with s1 ≤ s2, where
F(s, γ,A) exhibits a local maximum Fmax(γ,A) at s = s1

and a local minimum Fmin(γ,A) at s = s2. Further in-
creasing γ above γm, the local minimum Fmin decreases
and becomes negative for γ > γtr(A), where γtr and the
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corresponding s, written as str(A), are calculated from

A/(A + s
1/3
tr ) = 2(1 + s−1

tr ) ln(1 + str) − 2, (B.9)

γtr = str + A(1 + str)/s
1/3
tr . (B.10)

See fig. 4(a) for γm and γtr/γm(∼= 1.14) vs. A.
From eqs. (B.7)–(B.10), we seek the asymptotic behav-

iors for small and large A. For A � 1 we find

sm
∼= (A/3)3/4, str

∼= A3/4,

γm
∼= 4(A/3)3/4, γtr

∼= 2A3/4. (B.11)

On the other hand, for A � 1, we have

sm
∼= 1/2, str

∼= 1.401

γm
∼= (3/22/3)A, γtr

∼= 2.145A, (B.12)

where str and γtr are calculated numerically. If γ � γm,
we obtain eqs. (43)–(46).

For γ > γm, we consider the radii Rm, R1, and R2

corresponding to sm, s1, and s2. From eq. (B.2) we have

Rm

R0
= s1/3

m ,
R1

R0
= s

1/3
1 ,

R2

R0
= s

1/3
2 , (B.13)

where R0 = 2σ/[(p̄ − pcx)A] = Rcγ/A. In fig. 10, we plot
R1/Rm = (s1/sm)1/3 and R2/Rm = (s2/sm)1/3 vs. γ/γm

in (a) and α1 = s1/(1+s1) and α2 = s2/(1+s2) vs. γ/γm

in (b), where the latter are the solute fractions in bubbles
at R = R1 and R2. Furthermore, in (c), R1/Rc − 1 is
shown to be small for γ slightly larger γm in accord with
eq. (42). In (d), we divide R2/Rc by its asymptotic forms
for γ � γm to confirm eqs. (44)–(46).

Appendix B.2. Fixed volume

We next scale the bubble free energy ΔF in the fixed-
volume condition in appendix A. We assume the pres-
sure balance (A.2) and use ω̂ in eq. (A.4). Introducing the
scaled bubble free energy F as in eq. (B.3) (with replace-
ment ΔG → ΔF ), we express it in terms of s in eq. (B.1),
v in eq. (B.2), and

v̂ = (2σ/R + φ/KT )/(p̄ − pcx) = v + s/h, (B.14)

where h is defined in eq. (A.6). Replacing v by v̂ in the
first two terms in eq. (B.4), we obtain

F = [γ + 1 − s(1 + v̂)] ln
[
1 − s

1 + v̂

1 + γ

]

+ s(1 + v̂) ln
[

1 + v̂

1 + γ

]
+

3
2
sv + s +

s2

2h
, (B.15)

where the last term arises from the compression term in
eq. (A.4). As in eq. (B.5), the derivative of F with respect
to s is calculated as

∂

∂s
F =

(
1 +

2v

3
+

2s

h

)
ln

[
1 + v̂

γ + 1 − s(1 + v̂)

]
. (B.16)

The extremum condition ∂F/∂s = 0 yields

γ = s + (1 + s)v̂

= s + A(1 + s)s−1/3 + (s + s2)/h, (B.17)

As in the fixed pressure case, F(s, γ,A, h) exhibits a
local maximum at s = s1(γ,A, h) and a local minimum
at s = s2(γ,A, h) for γ > γm(A, h) and its local minimum
becomes negative for γ > γtr(A, h). Note that the right-
hand side of eq. (B.17) is minimized at s = sm(A, h),
where sm is determined by

A = 3s4/3
m [1 + (1 + 2sm)/h]/(1 − 2sm). (B.18)

The corresponding minimum of eq. (B.17) is written as

γm = [4 + sm + 4(1 + sm)2/h]sm/(1 − 2sm). (B.19)

Here, we assunme Ah � 1, where sm ∼ (Ah)3/4 � 1 from
eq. (B.18). In fact, for O2 in ambient water, we obtain
Ah = 0.010[nbG(θ)]1/3 with nb in units of μm−3, which
is independent of p̄ − pcx. Then, as in eq. (B.11), we find
the asymptotic behaviors,

sm
∼= (Ah/3)3/4, str

∼= (Ah)3/4

γm
∼= 4(A/3)3/4/h1/4, γtr

∼= 2A3/4/h1/4, (B.20)

where γtr/γm
∼= 1.14. As in eqs. (43) and (44), the radii

R1 and R2 behave for γ � γm as

R1
∼= Rc, R2

∼= Rcγ
4/3h1/3/A � Rc. (B.21)
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