
DOI 10.1140/epje/i2015-15058-7

Regular Article

Eur. Phys. J. E (2015) 38: 58 THE EUROPEAN
PHYSICAL JOURNAL E

Nanorheology of adsorbed polymer chains immersed in pure
solvent

Fabrice Lapique1, Jean Pierre Montfort2, and Christophe Derail2,a

1 SINTEF, Pb. 124 Blindern, NO-0314 Oslo, Norway
2 Université de Pau et des Pays de l’Adour, IPREM UMR CNRS 5254, Equipe de Physique et Chimie des Polymères, 2, Avenue

du Président Angot, F-64053 Pau, France

Received 24 January 2015 and Received in final form 24 April 2015
Published online: 23 June 2015 – c© EDP Sciences / Società Italiana di Fisica / Springer-Verlag 2015

Abstract. Long linear chains of polybutadiene are adsorbed on the two surfaces of a surface force apparatus
and immersed in pure tetradecane. The hydrodynamic force was measured by drainage experiments and
by frequency sweeps at constant distances. We related the hydrodynamic thickness to the chain dimension.
The complex modulus encompasses the shear modulus and, at distances lower than the hydrodynamic
thickness, a compression modulus. The compression term was related to the static force which appears
when the two adsorbed layers are overlapped. The complex shear modulus was interpreted by a two-
components hydrodynamic model proposed by P. Sens et al. We first complemented the theoretical model.
Then, our experimental data fit the proposed viscoelastic expressions in the entire range of distances. The
storage modulus is supposed to be affected by a residue of free chains and by the dispersion of the loop
lengths.

1 Introduction

The interest of measuring the forces acting between solid
surfaces coated with polymers originates from the com-
prehension of colloidal stability and rheology. Numerous
static and dynamic force measurements have been con-
ducted with surface force apparatuses [1–11]. Some of
them deal with a spectroscopy in a large range of frequen-
cies able to explore simultaneously various components of
the hydrodynamic forces. The main findings are: a static
repulsive force at short distances, a drainage force vari-
ation which determines a hydrodynamic thickness of the
polymer layers —both characteristic distances are of the
order of 4 to 10 times the radius of gyration of the free
chains— and a compression term in the complex elastic
modulus arising at the same distances. The hydrodynamic
component of the complex modulus shows an increase of
viscosity and average relaxation time with the degree of
confinement.

Some authors attempt to interpret experimental data
in the framework of a continuous description of the vis-
coelastic polymer layers. For melts, Montfort [12] extends
the expression of the lubrication force exerted by a ho-
mogeneous viscous fluid to a viscoelastic heterogeneous
one. No relation was made locally between the viscoelastic
behaviour and the conformation of the adsorbed chains.
Experimental data were found to be consistent with a
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description in terms of multiple uniform layers [10]. For
end-grafted chains immersed in a good solvent, Fredrick-
son and Pincus [13] assimilate the network created by the
polymer layer with a porous medium. Therefore, the drag
of the solvent through that network is approximated by
a Brinkman equation [14]. The mesh size of the porous
medium is replaced by a local correlation length which de-
pends on the monomer concentration profile. The authors
establish the expression of the hydrodynamic force when
the monomer concentration is constant within the poly-
mer layer. A more realistic parabolic profile [15,16] could
be used but we do not know about more recent work on
that field.

For irreversibly adsorbed polymer layers, Sens, Mar-
ques and Joanny [17] adopt the same view as Fredrickson
and Pincus. The main difference comes from the expres-
sion of the correlation length. They use the scaling picture
introduced by de Gennes [18] where an adsorbed layer is
described as a self-similar grid. Therefore, the correlation
length varies linearly with the distance z from the sur-
face. The monomer concentration profile does not impact
directly the permeability term of the Brinkman equation.

This paper deals with an experimental study of ad-
sorbed polybutadiene (PB) layers immersed in tetrade-
cane which is a good solvent of PB. First, the paper from
Sens et al. is complemented. Then, we present the sur-
face force apparatus and the samples. The experimental
data and the theoretical predictions are compared and
discussed.
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2 Theoretical aspects

We summarize the main contribution of a theoretical
study of the viscoelasticity of adsorbed polymer layers
conducted by P. Sens et al. [17]. In that paper, some re-
sults are presented by graphics without the related ana-
lytical expressions. Some others expressions are only valid
at large separations h0. Therefore, we are presenting a
complete version of the expressions of the complex shear
modulus of adsorbed and confined polymer layers.

The viscoelastic properties of the confined solution are
described within the framework of a two-components hy-
drodynamic model. The two components are the solvent
and the polymer loops. Hydrodynamically, the solvent is
viewed as a Newtonian fluid and the elastic network of the
loops experiences a friction force coming from the relative
motion of the solvent. The drag of the solvent through the
network creates a viscous dissipation and an elastic strain
on the polymer. The drag is described by the Brinkman
equation which approximates the adsorbed polymer layers
by a porous medium with a local permeability μ(z) pro-
portional to η/ξ2(z). As the local correlation length ξ(z)
scales as the distance z to the wall, Sens et al. define a
dimensionless number l such as μ(z) = l(l − 1)η/z2. The
number l measures the friction between the solvent and
the polymer and is larger than unity. The friction van-
ishes when l = 1. Therefore, the hydrodynamic equation
for the solvent flow inside the layers is

η∇2vl − μ(z)
(
vl −

•
u
)
−∇P = 0, (1)

where v is the solvent velocity field and u is the polymer
displacement field.

The behaviour of the pure solvent between the layers
is given by a Stokes equation

η∇2vs −∇P = 0. (2)

The equation of motion of the polymer expresses the
balance between the elastic stress of the network and the
friction with the solvent:

∇(E(z)∇u) + μ(z)
(
v − •

u
)

= 0, (3)

where E(z) is the local Young modulus. In a scaling ap-
proach, the elastic modulus is proportional to the osmotic
pressure, that is to say E(z) ∼= αkBT/z3 with α being a
numerical factor.

Within the Derjaguin approximation, the above equa-
tions reduce to

η∂2
zvpr − η

l(l − 1)
z2

(
vpr −

•
ur

)
− ∂rP = 0, (4)

η∂2
zvsr − ∂rP = 0, (5)

∂z

(
αkBT

z3
∂zur

)
+ η

l(l − 1)
z2

(
vpr −

•
ur

)
= 0. (6)

Therefore, the solvent velocity and the polymer displace-
ment fields are deduced from the above coupled equations
as a function of the pressure gradient.

The solvent incompressibility equation can be written
as ∇v = 0 or ∂zvz − (1/r)∂r(rvr) = 0. The integration
over r leads to the relation 2vr = −r∂zvz. A second inte-
gration over the gap gives

2
∫ h

0

vr dz = −rV (t). (7)

The resolution of the four above equations lead to an ex-
pression of the pressure gradient as a function of the upper
surface velocity V (t). The hydrodynamic normal force is
obtained by integration of the stress tensor over the sur-
face:

F =
∫ ∞

0

2πr [P (r) − P∞ − η(∂zvz)z=0] dr

= 2πR

∫ ∞

h0

[P (h) − η(∂zvz)z=0] dh. (8)

As it is assumed that no sliding motion occurs on the
surfaces, the expression of the hydrodynamic force is

F = 2πR

∫ ∞

h0

P (h)dh. (9)

We are going to concentrate the analysis on harmonic dis-
placements of the upper surface which allows us to deal
with complex quantities. If we state that the imposed dis-
placement of the upper surface is U∗(t) = U exp(iωt), the
complex amplitude of the hydrodynamic force F ∗(ω) is
related to the complex shear modulus by [4]:

F ∗(ω) = 6πR2 U

h0
G∗(ω). (10)

Therefore, the complex shear modulus will be expressed
by

G∗(ω) =
h0

3RU

∫ ∞

h0

P ∗(h)dh. (11)

Sens et al. suggest to calculate the velocity field by a per-
turbation method relatively to ω; the lowest order allows
the calculation of the loss modulus G′′ and the first cor-
rection that of the storage modulus G′.

The related complex equations are

η∂2
zv∗

pr − η
l(l − 1)

z2
(v∗pr − iωu) − ∂rP

∗ = 0, (12)

η∂2
zv∗

sr − ∂rP
∗ = 0, (13)

∂z

(
αkBT

z3
∂zu

)
+ η

l(l − 1)
z2

v′′
pr = 0, (14)

4
∫ h/2

0

v∗
r dz = −iωrU. (15)

Equations (12), (14), (15) give the complex velocity and
pressure gradient fields. The polymer displacement field is
deduced from eq. (14). The complex shear modulus will
be deduced from the pressure field by eq. (11).
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The solutions of the above equations need to know
various boundary conditions. Two situations have to be
considered:

1) The two layers are separated by the pure solvent
when the separation of the two surfaces h0 is higher than
twice the thickness of each layer RF (h0 > 2RF ). Assum-
ing a no-slip condition of the polymer on the solid surfaces,
the polymer network is not deformed (u(z = 0) = 0) and
there is no elastic stress at the edge of the layers (∂zu(z =
RF ) = 0). At the edge of the layers, the velocity and the
stress are continuous (v∗

pr = v∗
sr; ∂zv

∗
pr = ∂zv

∗
sr for

z = RF ). For symmetry reasons, ∂v∗
sr = 0 at the mid-

plane (z = h/2).
2) The two layers are overlapped (h0 < 2RF ) in the

central region of the gap. The boundary conditions are
identical in the outer region (h > 2RF ). In the central
part (h0 < h < 2RF ), the conditions at z = RF have to
be replaced by the same conditions at z = h/2.

The velocity fields are given in Sens paper (with a mi-
nor error in eq. (29) therein). In appendix A, we give the
expressions of the various pressure gradient fields. We de-
duce the complex shear modulus for overlapped and non-
overlapped layers from eq. (11).

2.1 Non-overlapping layers

The loss modulus is expressed by

G′′
no = 2ηωx0

∫ ∞

x0

(x − x0)f(x)dx (16)

with x = h/RF and x0 = h0/RF .
The storage modulus is given by

G′
no =

3η2ω2x0R
3
F

αkBT

(l − 1)2

(l + 1)(l + 3)

∫ ∞

x0

(x − x0)f(x)g(x)dx

(17)
with f(x) and g(x) given in appendix A.

Sens et al. [17] express the storage and loss modulus
respectively in the asymptotic form (x0 � 1) in agreement
with the above expressions:

G′(ω) ≈ (l − 1)2

4αkBT (l + 1)(l + 3)
ω2η2 R4

F

h0
,

G′′(ω) ≈ ωη

(
1 +

2(l − 1)
l

RF

h0

)
.

The second term of the loss modulus G′′
2 = ωη 2(l−1)

l
RF

h0

stands for the polymer contribution. Therefore Sens de-
fines a relaxation time τ such as

τ =
G′

ωG′′
2

∝ ηR3
F

kBT
, (18)

which scales as the relaxation time of the large loops with a
size of the order of RF . This simple argument emphasizes
the fact that, at low frequency, the contribution of the
polymer to the viscoelasticity of the fluid is dominated by
the large loops.

Fig. 1. Diagram of the SFA equipment.

2.2 Overlapping layers

The two polymer layers are overlapped at distances h0

lower than hl = 2RF or x0 ≤ 2.
Within the outer region (h > 2RF ), the velocity, pres-

sure gradient and polymer displacement fields are the
same as in a non-overlapping gap. The velocity profile
within the inner region (h < 2RF ) is obtained by replacing
the boundary condition at z = RF by a symmetry con-
dition at the midplane. The expressions of the pressure
gradient are given in appendix A.

The loss modulus is written as:

G′′
ov =ωη

[
2x0

∫ ∞

2

(x−x0)f(x)dx+
l(l + 1)2

4(l + 3)
(x0−2)2

]
.

(19)
The storage modulus is

G′
ov =

3ω2η2x0R
3
F

αkBT

(l − 1)2

(l + 1)(l + 3)

×
[∫ ∞

2

(x − x0)f(x)g(x)dx + k(l)(x0 − 2)2
]

,

(20)

with k(l) defined in appendix A.
In each expression, the first term accounts for the con-

tribution of the outer part of the gap (x0 ≥ 2) and the
second term accounts for the contribution of the inner part
(x0 ≤ 2). Both expressions respect the continuity with the
non-overlapping expressions at x0 = 2.

3 Experimental

3.1 Technique

We have used a surface force apparatus as a dynamic
rheometer by applying an oscillating strain to the sam-
ple, which is confined between a plate and a sphere. The
sphere of radius R is vibrating in the vertical direction
from a ground position at distance h0 from the horizontal
plate.

As sketched in fig. 1, the geometry of surface force
machines is a space between plane and sphere with a sep-
aration h0 much lower than the radius R of the sphere
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(Derjaguin’s approximation). Therefore, the local separa-
tion h at distance r from the axis satisfies:

h ≈ h0 + r2/2R. (21)

An axial motion imposed to the sphere with a veloc-
ity V (t)-and displacement U(t)-induces a normal force
F (R, h0, V ) on the plane, via the confined fluid. The plane
is supposed fixed and no slippage occurs between the
fluid and the non-deformable surfaces. As the flow will
primarily occur in the radial direction, some approxima-
tions can be made on the velocity field inside the fluid:
vr � vz, vr(r, z, t) and vz(z, t) and it is justified to con-
sider ∂z � ∂r. The pressure gradient is essentially radial,
∇P ≈ ∂rP .

Both substrates are made of fused silica (Young’s
modulus E = 73GPa, Poisson ratio ν = 0.17) cov-
ered by a 60 nm thick layer of cobalt (Young’s modulus
E = 209GPa, Poisson ratio ν = 0.3). The radius R of the
sphere is of the order of 1mm. The roughness is below
1 nm RMS and considered as negligible in our measure-
ments.

The distance h0 between the sphere and the plate will
vary from about 30 nm to 200 nm. The amplitude U of the
sphere oscillation is of the order of 1 to 2 nm so as to assure
a linear response of the sample throughout the distance
and frequency sweep. The experiments have been con-
ducted at room temperature. The plate-sphere separation
depends strongly on temperature. Therefore, the SFA has
been confined in a home-made box which exhibits a tem-
perature stability of about 0.01 ◦C at room temperature.

The raw mechanical impedance is a combination of the
transfer function of the apparatus (response of the trans-
ducers and of the cantilever), of the stiffness of the stand,
of the elastic deformation of the surfaces and of the vis-
coelastic behavior of the sample. A calibration of the two
first components as been conducted systematically pre-
vious to each experiment. A study of the impact of the
elastic deformation of the surfaces has been recently con-
ducted by Leroy and Charlaix [19]. They define a critical
distance Dk, below which a major perturbation appears.
It is given by

Dk = 8R

[
(1 − ν2)ηω

E

] 2
3

. (22)

In our experiments, the order of magnitude of Dk is given
by Dk ∼ 0.01ω2/3 by considering the substrates made
of pure silica and a solvent viscosity of 3.3mPa s. The
highest value of frequency is 4000 s−1 which gives for Dk

a largest value of 2.5 nm. All our experiments are con-
ducted at distances much larger than Dk, especially at
low frequencies. Far above Dk, Leroy and Charlaix pre-
dict an elastic component of the hydrodynamic response
of the force due to the deformation of the substrates. The
expression of the related storage modulus is

G′ =
9π2

512
ηω

(
Dk

h0

)3/2

, (23)
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Fig. 2. Hydrodynamic force (N) versus distance plate/sphere
(nm) obtained from a drainage experiments.

which gives
G′

ω2
≈ 2 · 10−7h

−3/2
0 , (24)

with h0 expressed in nm. We will see later than the dis-
tance dependence and the order of magnitude of G′/ω2 in
our experiments do not fit the above expression.

3.2 Samples

The polymer is a narrow polybutadiene from Polymer
Laboratories (Mw = 120 000 g mol−1, polydispersity index
lower than 1.1, radius of gyration Rg = 6.9 nm). It was di-
luted in tetradecane with a concentration far below the
critical concentration. With the type of SFA we used [20],
the two surfaces cannot be immerged in the solution. A
droplet of solution was introduced in the gap and incu-
bated during one day. The concentration was adjusted in
order to allow the polymer chains to adsorb on both sur-
faces as a monolayer separated by pure solvent. The vari-
ous parameters which have to be controlled are: the poly-
mer concentration, which was obtained after several dilu-
tions, the volume of the droplet and the gap height which
determine the area covered by the polymer. We adopted
that strategy because it is not possible to use a concen-
trate solution and to extract in situ the free solution to be
replaced by pure solvent. Not either, pre-coated surfaces
can be introduced in the machine as the determination of
the contact position needs bare surfaces.

A way of checking whether the middle of the gap is
free of polymer at large distances (h0 ∼ Rg) is to compare
the viscosity for the pure solvent and for the solvent in
presence of polymer layers. That was be done by drainage
experiments (fig. 2). The hydrodynamic force was mea-
sured at a frequency of 38Hz and at distances ranging
from 13 nm to 170 nm. Several cycles were performed and
showed a good reproducibility. Therefore, the adsorbance
of the polymer chains is stable. The slope of the linear part
(above 90 nm) gives a viscosity of 3.3mPa s, which is twice
the value of the pure tetradecane viscosity (1.7mPa s).
That means that a small amount of free chains are diluted
in the solvent. We estimate the ratio of concentration c/c∗
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(c∗ ≈ Rg
3 is the limit concentration for dilute solutions)

from a Rouse behaviour of the dilute solution of polymer.
The viscosity law is

η − ηs = c
NζR2

g

6π2

∞∑
1

1
p2

,

which leads to

c

c∗
≈ 103 Rg(η − ηs)

Nζ
.

The monomeric friction coefficient ζ has been estimated
of the order of 10−6 g s−1 [21]. Therefore, the ratio c/c∗ is
of the order of 10−2 which means that the concentration
of free chains is very low.

As tetradecane is a good solvent of polybutadiene, we
assume the free chains not interact strongly with the loops
and tails of the adsorbed chains. Furthermore, the extrap-
olation of the straight line at zero force defines a hydrody-
namic thickness of the layers. The value of 29 nm is about
four times the radius of gyration of melted chains. The gap
may come from the good solvent which swells the chains
and also from the presence of a small amount of free chains
connected with the large loops of the adsorbed chains.

3.3 Experiments

At various distances ranging from 36 to 192 nm, a fre-
quency sweep is performed in a range of 0.06 to 4000 s−1.
The distance scan begins at the largest distances. A delay
of some ten minutes is applied in order to reach an equi-
librium. At the end of the frequency sweep, we checked
the reproducibility for one frequency. The complex shear
modulus G∗(ω) is deduced from the hydrodynamic force
according to eq. (11). Two typical diagrams are presented
hereafter (fig. 3).

At distances larger than the hydrodynamic thickness,
the complex shear modulus is typical of a viscoelastic be-
haviour in the terminal zone of relaxation (G′ ∝ ω2 and
G′′ ∝ ω). The value of the viscosity η = G′′/ω is higher
than the solvent viscosity. The value of G′/ω2 is higher of
3 · 10−7 which is three orders of magnitude higher than
the value expected for the signature of an elastic defor-
mation of the substrates (eq. (24)). The accuracy of the
storage modulus is poor, due to the low level of the elastic
response.

At distances lower than the hydrodynamic thickness,
the hydrodynamic complex shear modulus shows a better
determination of the elastic component. At low frequen-
cies, the storage modulus levels off. That additional mod-
ulus Gc, much higher than the hydrodynamic part in the
low frequency range, comes from the compression of the
overlapped polymer layers. As the distance is decreasing,
Gc increases and will overcome the storage shear modulus
in the whole range of frequencies.

The compression modulus Gc can be related to the
static force (fig. 4) which appears when the two layers are
overlapped. Sens et al. [17] express the static force from
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Fig. 3. Complex shear modulus (Pa) at two distances plate/
sphere: 91.1 nm (a) and 46.1 nm (b). The sphere oscillates at
fixed distance (G′: square, G′′: triangle).
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Fig. 4. Experimental static force (mN m−1) versus distance
and fit with eq. (25).

the osmotic pressure of the polymer solution at the middle
of the gap:

Fs ∝ 2πR

∫ 2RF

h0

πosm(h/2)dh

= K8πRkBT

(
1
h2

0

− 1
4R2

F

)
. (25)

Our data fit the above expression at T = 296K with RF =
31.5 nm and a prefactor K ≈ 4.

The value of the layer thickness is very close to the
hydrodynamic one. It allows us to calculate the order of
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Fig. 6. Fit of the adimensional loss modulus with a value of
l = 6.7 (eqs. (16), (19)).

magnitude of the loop relaxation time (eq. (18)) which is
10−5 s. Then the frequency range is such as ωτ < 1.

The variation of the compression modulus is deduced
from the variation of the static force [6] by

Gc =
h0

6πR2

dFs

dh0
. (26)

The fit is correct as seen in fig. 5.
We are going to explore a weakly overlapping config-

uration where the storage modulus comes from the defor-
mation of the polymer network due to the solvent flow.
The range of distances encompasses both the overlapped
and non-overlapped situations.

The adimensional loss modulus G′′/ωη is well de-
scribed by equations (16) and (19) for a factor l = 6.7±0.8
(fig. 6). The factor l is a measure of the degree of friction
between the polymer and the solvent. We know only that
there is no friction when l = 1.

The adimensional storage modulus G′αkBT/ω2η2R3
F

depends on the prefactor α which accounts for the ra-
tio between the osmotic pressure and the local polymer
elasticity. According to the experimental data, that factor
should range between 1 and 3 (fig. 7). At large distances,
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Fig. 7. Fit of the adimensional storage modulus with a value
of l = 6.7 (eqs. (17), (20)).
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Fig. 8. Scaling law of G′/ω2 with the distance plate/sphere.

the data are rather scattered, therefore the determination
of G′/ω2 is not accurate.

We come back to the possible artefact in the values of
the storage modulus due to the deformation of the sub-
strate. Equation (24) expresses the contribution of the de-
formation of the substrate. It predicts its value and a −3/2
power law dependence with the distance. Figure 8 shows
that the experimental exponent (−5/2) is different from
the predicted one. Moreover, the experimental values are
higher by more than three orders of magnitude. We can
conclude that, in our experiments, the deformation of the
substrate does not affect the hydrodynamic modulus of
the sample.

As a conclusion, the model proposed by Sens et al.
seems to be relevant for describing the rheology of irre-
versibly adsorbed polymer layers separated by pure sol-
vent. The agreement is good for the viscous part and less
accurate for the elasticity. One reason may come from a
scattering of the size of the large loops. It is well known
that the steady-state compliance J0

e = G′

G′′2 at low fre-
quency varies dramatically with the molecular-weight dis-
tribution in polydisperse polymer melts [22]. The viscos-
ity of narrow and broad linear polymer melts with a same
average weight is comparable but it is not true for the
storage modulus. For adsorbed chains, the distribution of
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loop and tail length is comparable with a dispersion of
chain length in a linear melt. Some recent experiments on
the hysteresis of compression of adsorbed polymer layers
also show that the repulsive force is sensitive to the de-
tails of the structure [9]. Furthermore, the variation of the
degree of overlapping of the large loops with distance mod-
ify the contribution of the non-overlapping loops, there-
fore it modifies the overall dispersity. The presence of a
small amount of free chains can also contribute to overall
elasticity.

4 Conclusion

We have conducted steady and oscillatory squeezing ex-
periments of irreversibly adsorbed polybutadiene layers
immersed in good solvent. The picture of their viscoelastic
behavior proposed by Sens et al. seems to be validated by
our experiments. The chains are considered as an elastic
porous medium through which the solvent flows. The fric-
tion between the solvent and the polymer induces an extra
viscous dissipation and an elastic deformation of the net-
work formed by the polymer chains. When the two layers
overlap each other, an extra finite elastic modulus appears.
When that plateau modulus is subtracted from the elas-
tic response, the complex shear modulus exhibits at low
frequency a Maxwell-like behavior. The models works well
for describing the loss modulus. It is less precise for the
storage modulus. One reason could be a dispersity of the
loop and tail sizes which induces a dispersion of the local
layer thickness. That hypothesis can be tested by using
end-grafted monodisperse chains which lead to a steper
profile of the loops density. Another interesting point is
the behavior at high frequency. Sens et al. propose to use
a blob model. The blob size depends on the frequency and
it is defined from the Zimm relaxation time. At distances
lower than the blob size, the self-similar profile is valid. At
distances higher than the blob size, the layer is equivalent
to a solution of blobs. The authors use scaling arguments
to predict frequency scaling laws of the storage and loss
moduli. For our samples, the high frequency zone starts
at ω ∼ 105 s−1. As the highest frequency is of the order of
103 to 104 s−1, exploring the high frequency zone means to
be able to build polymer layers ticker than 100 to 200 nm
or to use solvents of higher viscosity.

Appendix A.

Equations (12) to (15) give the velocity, polymer displace-
ment and pressure gradient fields.

The expressions of the velocity field for non-overlap-
ping layers are given by Sens et al. as a function of the
gradient pressure field:

v′
pr relation (15) of [17]

v′
sr relation (16) of [17]

v′′
pr relation (30) of [17]

v′′
sr relation (29) of [17]

(the factor l− 2 in the denominator has to be replaced by
l+3). We add the expression of the polymer displacement
and the pressure gradient fields:

u =
∂rP

′′

αkT

l(l − 1)
(l + 1)(l − 2)

[
1
5
z5 +

1
(l − 1)(l + 3)

×
(

(1 − l)R2−l
F − (l + 1)(2 − l)

2l
hR1−l

F

)
zl+3

− (l + 1)(2 − l)
8l(l − 1)

hz4

]
, (A.1)

∂rP
′′ = 6ηωrU

1

h3 − 6 l−1
l RF h2 + 12 l−1

l+1R2
F h − 8 l(l−1)

(l+1)2 R3
F

= 6ηωrU f(h), (A.2)

∂rP
′ =

9η2ω2rU

αkT

(l − 1)2R4
F

(l + 1)(l + 3)
f(h)g(h), (A.3)

with

g(h) =
h2 − 8l(2l+7)

5(l+1)(l+4)RF h + 8l2(l+3)
3(l+1)2(l+4)R

2
F

h3 − 6 l−1
l RF h2 + 62l2−2l−1

l(l+1) R2
F h − 8 l(l−1)

(l+1)2 R3
F

.

(A.4)
Inside the overlapped layers, the velocity field is deduced
from the above expressions by replacing RF by h/2.

The expression of the complex pressure gradient is

∂rP
′′ = 6ηωrU

l(l + 1)2

h3(l + 3)
, (A.5)

∂rP
′ =

6η2ω2rU

αkT

l2(l − 1)2(l + 1)(l3 + 12l2 + 51l + 60)
160(l + 3)2(l + 4)

=
6η2ω2rU

αkT
k(l). (A.6)
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