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Abstract. The effect of small-amplitude high-frequency longitudinal vibrations on the stability of a hor-
izontal layer of ternary fluid is studied in the framework of average approach. Long-wave instability is
studied analytically and instability to the perturbations with finite wave numbers is studied numerically.
It is found that, similar to the case when vibrations are absent, for ternary fluids there exist monotonic and
oscillatory long-wave instability modes. The calculations show that the vibrations lead to destabilization in
the case of heating from below and to stabilization in the case of heating from above. Additionally, vibra-
tions influence on the parameter range where long-wave instability is most dangerous. New, vibrational,
instability modes are found which leads to the existence of convection in zero-gravity conditions.

1 Introduction

It is known that vibrations are able to make significant
effect on a stability of equilibrium states and to create
new equilibrium states. The simplest example of this is
the Kapitza pendulum. It was found that vertical high-
frequency vibrations of the suspension point can stabilize
the state with the inverted bob position, i.e. the state
with the bob above the point of suspension and horizontal
high frequency vibrations of the suspension point create
new stable equilibrium states with the inclined position
of the pendulum [1, 2]. Similar effects were observed for
hydrodynamical systems in [3]: vertical high-frequency vi-
brations were able to stabilize the equilibrium state of a
two-layer system subjected to gravity in which a denser
fluid is located above a less dense one, preventing the de-
velopment of the Rayleigh-Taylor instability and horizon-
tal high-frequency vibrations created a new stable equi-
librium states with an inclined fluid interface.

As shown for the first time in [4], vibrations can gener-
ate time-average flows even in the absence of other mecha-
nisms inducing flows. The comprehensive review of works
on this phenomenon called thermal vibrational convection
can be found in [5]. The effect of small-amplitude high-
frequency vibrations of different orientations on the onset
of the Soret-driven convection in a horizontal layer of bi-
nary fluid was studied theoretically, in the framework of
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average approach in [6, 7]. Stability boundaries to mono-
tonic long-wave perturbations and monotonic and oscilla-
tory short-wave perturbations are obtained. In [8] exper-
imental investigation of the effect of controlled vibrations
on the diffusion and thermodiffusion processes in water-
ethanol binary mixtures of different concentrations in mi-
crogravity conditions was performed using the SODI (Se-
lectable Optical Diagnostics Instrument) instrument on
board the International Space Station. The preparation
of this experiment and the first experimental results are
discussed in [9–14].

The behaviour of multicomponent fluids is more com-
plex. As shown in [15], in the case of horizontal layer of
multicomponent fluid, additionally to the monotonic long-
wave instability there exists an oscillatory long-wave in-
stability mode. The goal of the present paper is to study
the effect of small-amplitude high-frequency vibrations on
the onset of the Soret-driven convection in a horizontal
layer of ternary fluid.

2 Problem formulation. Governing equations

Let us consider Soret-driven convection of multicompo-
nent fluid in a horizontal layer subjected to gravity field
and vertical temperature gradient. We assume that the
density of the mixture is linear function of temperature
and component concentrations:

ρ = ρ0(1 − βT (T − T0) − I · B(C − C0)). (1)

Here T is the temperature, C = (C1, . . . , Cn−1)T is the
vector of concentrations, ρ0, C0 and T0 are the refer-
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ence density, vector of concentrations and temperature of
the mixture respectively, βT = − 1

ρ0

∂ρ
∂T

∣
∣
Ci,i=1,...,n−1

is the

thermal expansion coefficient, B = diag{βC1 , . . . , βCn−1}
is the diagonal matrix of solutal expansion coefficients
βCi

= − 1
ρ0

∂ρ
∂Ci

∣
∣
T,Cj ,j=1,...,n−1,j �=i

, I = (1, . . . , 1).
Equations for the Soret-driven convection of multicom-

ponent mixture in an effective gravity field consisting of
the gravitational and vibrational fields in Boussinesq ap-
proximation are

∂v
∂t

+ v · ∇v = −1
ρ
∇p + ν∇2v

−ge [βT (T − T0)+I · B(C − C0)] , (2)
∂T

∂t
+ v · ∇T = χ∇2T, (3)

∂C

∂t
+ v · ∇C = D∇2C + DT∇2T, (4)

∇ · v = 0, ge = g − aω2f̈(τ)n. (5)

Here g is the gravitational acceleration, ν is the mixture
viscosity, D is the molecular diffusion coefficient matrix,
DT is the vector of thermal diffusion coefficients, τ = ωt,
the function f(τ) is normalized by the condition ḟ2 = 1/2,
the other notations are conventional.

The cross diffusion terms in eqs. (2)-(5) can be elimi-
nated by diagonalizing the molecular diffusion coefficient
matrix, which reduces the number of governing parame-
ters. Such transformation can be written as [16]

C = MQ−1Ĉ, DT = MQ−1D̂T , (6)

where M is a matrix whose columns are the eigenvectors
mi = (mi,1, . . . ,mi,n−1)T of the diffusion matrix D; Q =
diag{q1, . . . , qn−1}, qi = β−1

Ci

∑n−1
j=1 βCj

mij .
Applying transformations (6) to the state equation, we

obtain

ρ(T, Ĉ) = ρ0(1 − βT (T − T0) − I · B(Ĉ − Ĉ0)) (7)

and eqs. (2)-(5) are transformed to

∂v
∂t

+ v · ∇v = −1
ρ
∇p + ν∇2v

−ge

[

βT (T − T0)+I · B(Ĉ − Ĉ0)
]

, (8)
∂T

∂t
+ v · ∇T = χ∇2T, (9)

∂Ĉ

∂t
+ v · ∇Ĉ = D̂∇2Ĉ + D̂T∇2T, (10)

∇ · v = 0. (11)

Here D̂, D̂T are new molecular diffusion and thermal dif-
fusion coefficients respectively.

We consider the effect of small-amplitude high-
frequency vibrations. Namely, the vibration amplitude is
assumed to be small as compared to the ratio of the char-
acteristic size to the Boussinesq parameter:

a �
{

L

βT ΔT
,

L

βCi
ΔCi

}

(12)

and the vibration period is assumed to be small in com-
parison with all hydrodynamical time scales:

T �
{

L2

ν
,
L2

χ
,

L2

Dij

}

. (13)

At the same time vibrations are considered as non-
acoustic L/c � T , i.e. compressibility effects are ne-
glected. Here L is the characteristic size, c is the sound
velocity.

If the restrictions (12) and (13) are satisfied, it is
convenient to decompose all hydrodynamical fields into
the sums of slowly varying (average) and quickly oscil-
lating (pulsational) components and to obtain equations
for the pulsational and average components by introduc-
ing hierarchy of time scales and applying multiple-scale
method [17]. Restrictions (12) and (13) allow to neglect
non-linear and viscous terms in the equations for pulsa-
tional fields.

Equations for the Soret-driven convection of multi-
component fluid subjected to the gravity field and high-
frequency small-amplitude vibrations obtained in the way
described above in the dimensionless form are:

∂u

∂t
+ u · ∇u = −∇p + ∇2u + Pr−1 Ra(T + I · C)e

+Pr−1 Rav (V · ∇) [(T + I · C)n − V ] ,
(14)

∂T

∂t
+ u · ∇T = Pr−1∇2T, (15)

∂C

∂t
+ u · ∇C = SC

(

∇2C − ψ∇2T
)

, (16)

div u = 0, div V = 0,

curl V = ∇(T + I · C) × n. (17)

Here u, T and C are average velocity, temperature and
vector of concentrations, V is the pulsational velocity am-
plitude, e is the unit vector directed vertically upward, n
is the unit vector in the direction of vibrations. Further
below the hat for the transformed variable C is omitted.
Equations are written in the dimensionless form. The fol-
lowing quantities are introduced as the scales: L for the
length, ν/L for the velocity, L2/ν for the time, ρ0ν

2/L2

for the pressure, ΔT for the temperature, βT ΔTB−1 for
the concentration, βT ΔT for the pulsational velocity am-
plitude; the same notations are kept for the dimensionless
variables.

Equations (14)-(17) contain the following dimension-
less parameters: ψ = −β−1

T BD̂−1D̂T is the vector of sep-
aration ratios having the dimension n − 1, Pr = ν/χ
is the Prandtl number, Ra = gβT ΔTL3/(νχ) is the
Rayleigh number, Rav = (aωβT ΔTL)2/(2νχ) is the vibra-
tional Rayleigh number and SC = ν−1BD̂B−1, {SC}ij =
βCi

βCj
Sc−1

ij , i, j = 1, . . . , n − 1, where Scij = ν/D̂ij are the

Schmidt numbers.
Let us consider a Soret-driven convection of multicom-

ponent fluid in an infinite horizontal layer bounded by
two parallel rigid plates z = 0 and z = L maintained
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at constant different temperatures T = ±ΔT/2 (the case
ΔT > 0 (Ra > 0) corresponds to the heating from be-
low and the case ΔT < 0 (Ra < 0) to the heating from
above). The axis x of the Cartesian coordinate system is
directed along the layer and the axis z is perpendicular to
the boundaries. The layer is subjected to the gravity field
and high-frequency small-amplitude vibrations in the di-
rection of the x-axis.

Equations (14)-(17) should be completed with bound-
ary conditions. For the problem under consideration these
conditions in the dimensionless form are

z = 0, 1 : u = 0, T = ±1/2,

∂C

∂z
− ψ

∂T

∂z
= 0, Vz = 0. (18)

The problem (14)-(18) has a solution which corre-
sponds to the quasi-equilibrium state with zero average
velocity:

u0 = 0, T0 = T0(z), C0 = C0(z),

V0x = V0(z), V0y = 0, V0z = 0. (19)

3 Linear stability problem

Let us consider the stability of quasi-equilibrium states to
small plane perturbations. Linearizing the equations with
respect to small perturbations, eliminating the perturba-
tions of pressure and horizontal components of the velocity
and introducing the normal-mode perturbations

(u′
z, T

′,C′, V ′
z ) =

[w(z), ϑ(z), ξ(z),W (z)] exp(−λt + ikx), (20)

and introducing the new variables by the relations η =
ξ − ψϑ and W = ikW̃ , we obtain the equations for w, ϑ,
η, W̃ in the form

−λ∇2w = ∇4w − Pr−1k2 (Ra +(1 + Ψ)Rav)
× ((1 + Ψ)ϑ + I · η)

−Pr−1k2(1 + Ψ)Rav W̃ ′, (21)

−λϑ = Pr−1∇2ϑ + w, (22)

−λ (η + ψϑ) = SC ∇2η + ψw, (23)

∇2W̃ = − [(1 + Ψ)ϑ′ + I · η′] , (24)

where ∇2 = ∂zz − k2, prime stands for ∂z, Ψ = ψ1 + . . . +
ψn−1.

The boundary conditions for perturbations are

z = 0, 1 : w = w′ = W̃ = ϑ = η′ = 0. (25)

4 Long-wave instability

We consider the case of ternary mixture. The linear stabil-
ity of quasi-equilibrium states to the long-wave perturba-
tions was studied analytically by the expansion of all hy-
drodynamical fields and Rayleigh numbers into the power

Fig. 1. Long-wave instability boundaries for ψ1 = 0: solid
lines Rav = 1000, dashed line Rav = 0; the form of the neutral
curves for Rav = 1000 is shown qualitatively in the fragments.

series with respect to the wave number:

(w, ϑ,η, W̃ ,Ra,Rav, ω) =
∞∑

n=0

(wn, ϑn,ηn, W̃n,Ran,Ravn, ωn) k2n. (26)

It is found that, as well as in the case when vibrations
are absent (see [15]), two long-wave instability modes ex-
ist: monotonic and oscillatory. The formulas for mono-
tonic and oscillatory instability boundaries and for the
frequency of critical perturbations obtained from the solv-
ability conditions of the first order of expansion are as
follows:

Ram +(1 + Ψ)Ravm =
720Pr

ψ1 Sc1 +ψ2 Sc2
, (27)

Raos +(1 + Ψ) Ravos =
720Pr (Sc1 + Sc2)

Sc1 Sc2 Ψ
, (28)

ω2 = −ψ1 Sc2
1 +ψ2 Sc2

2

Ψ Sc2
1 Sc2

2

. (29)

At Rav = 0 the formulas (27)-(29) are reduced to
the formulas obtained in [15] for the long-wave instability
boundaries for ternary fluid in the absence of vibrations
and at ψ1 = 0 or ψ2 = 0 to the formulas obtained in [6] for
the long-wave monotonic instability boundary for binary
fluid subjected to the high-frequency small-amplitude lon-
gitudinal vibrations (the oscillatory instability mode does
not exist for the case considered in [6]).

Long-wave instability boundaries for ψ1 = 0 (binary
fluid) are presented in fig. 1. In the absence of vibrations,
the monotonic long-wave instability boundary consists of
two branches: the first branch corresponds to the heating
from below (the instability domain is located above the
curve) and the second branch to the heating from above
(the instability domain is located below the curve). The
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Fig. 2. Long-wave instability boundaries for ψ1 = −0.4: solid
lines Rav = 1000, dashed line Rav = 0.

oscillatory long-wave instability does not exist for binary
fluids (ω2 < 0 if ψ1 = 0 or ψ2 = 0).

It follows from (29) that the vibrations do not change
the frequency of critical perturbations (to leading order),
therefore, similar to the case when the vibrations are ab-
sent, in the presence of vibrations the long-wave oscilla-
tory instability does not exist for ψ1 = 0. The monotonic
long-wave instability boundaries, as one sees from fig. 1,
are shifted downwards under vibrations. Thus, taking into
account the location of instability domains, we may con-
clude that the vibrations make a destabilizing effect on
the monotonic long-wave instability branch which corre-
sponds to the heating from below and a stabilizing effect
on monotonic long-wave instability branch which corre-
sponds to the heating from above. A destabilizing effect
of vibrations on the first branch leads to the existence of
a monotonic long-wave instability at Ra = 0.

Figure 2 shows the long-wave instability boundaries for
ternary fluids with ψ1 = −0.4. In this case, in the absence
of vibrations, the monotonic long-wave instability exists
at Ψ > −0.36 in the case of heating from below and at
Ψ < −0.36 in the case of heating from above. For heat-
ing from above, additionally to the monotonic long-wave
instability there exists the oscillatory long-wave instabil-
ity. At −0.396 < Ψ < 0 this instability mode is the most
dangerous at Ra < 0. Vibrations make destabilizing effect
on monotonic long-wave instability branch which corre-
sponds to the heating from below and stabilizing effect
on both monotonic and oscillatory long-wave instability
branches which corresponds to the heating from above.
As well as in the case ψ1 = 0, destabilizing effect of vi-
brations on monotonic long-wave instability branch which
corresponds to the heating from below leads to the exis-
tence of monotonic long-wave instability at Ra = 0.

Figure 3 shows the long-wave instability boundaries for
ternary fluids with ψ1 = 0.4. In this case, in the absence of
vibrations, the monotonic long-wave instability exists at

Fig. 3. Long-wave instability boundaries for ψ1 = 0.4: solid
lines Rav = 1000, dashed line Rav = 0.

Ψ > 0.36 for heating from below and at Ψ < 0.36 for heat-
ing from above. For heating from below, additionally to
the monotonic long-wave instability there exists the oscil-
latory long-wave instability. At 0 < Ψ < 0.396 this insta-
bility mode is the most dangerous at Ra > 0. The desta-
bilizing effect of vibrations on this mode results in the
existence of oscillatory long-wave instability at Ra = 0.

5 Instability to the perturbations with finite
wave numbers. Full linear stability maps

The instability boundaries to the perturbations with finite
wave numbers were obtained numerically by the shooting
method [18]. Additionally, by the analysis of the second or-
der of expansion with respect to k2, the parameter ranges
where long-wave perturbations are most dangerous were
identified.

Full stability maps in the parameter plane Ψ -Ra for
the binary fluid with Pr = 10, Sc1 = 100, Sc2 = 1000,
ψ1 = 0 at Rav = 0 and Rav = 1000 are presented in fig. 4.
As one can see, in the absence of vibrations (fig. 4, dashed
lines) the long-wave monotonic instability mode remains
the most dangerous at positive net separation ratios larger
than 0.04; in the range 0 < Ψ < 0.04 the monotonic per-
turbations with finite wave numbers are responsible for
the instability and at Ψ < 0, Ra > 0 the oscillatory per-
turbations with finite wave numbers. At Ψ < 0, Ra < 0 the
monotonic long-wave instability remains the most danger-
ous at any Ψ (in the considered parameter range).

Vibration effect on the short-wave instability is similar
to that on the long-wave instability: it is stabilizing in the
case of heating from above and destabiliting in the case of
heating from below. Additionally, vibrations change the
parameter range where the monotonic long-wave instabil-
ity is most dangerous.

Vibration effect on the long-wave and short-wave
monotonic and oscillatory instability modes for ternary
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Fig. 4. Full stability map in the parameter plane Ψ -Ra for
ψ1 = 0: solid lines Rav = 1000, dashed line Rav = 0; notations
near the boundaries are: lw, m long-wave monotonic instabil-
ity, sw, m: short-wave monotonic instability, lw, os: long-wave
oscillatory instability, sw, os short-wave oscillatory instability.
The points where the instability mode changes are marked by
filled circles.

fluid is illustrated by fig. 5, where the full stability map is
plotted for Pr = 10, Sc1 = 100, Sc2 = 1000, ψ1 = −0.4.

We also analyzed the instability conditions for real
ternary fluid dodecane-isobutilbensene-tetralin with equal
fractions of the components. The Prandtl number for this
fluid is 15.3; the transformation (6) gives the following
values of the parameters: ψ1 = 0.109, ψ2 = 0.341 and
Sc1 = 1.39 · 103, Sc2 = 2.24 · 103. As the calculations
show, in the case when vibrations are absent, at these pa-
rameter values there exists a monotonic long-wave insta-
bility at heating from below and the critical value of the
Rayleigh number approximately equals 12.0. Under vibra-
tions the critical Rayleigh decreases according to the law
Ra = 12.0 − 1.45Rav, thus for Rav > 8.28 the instability
exists not only at heating from below but also at heating
from above.

6 Vibrational instability

Thus, the destabilizing effect of vibrations results in the
existence of instability in zero gravity conditions (at Ra =
0). To study this vibrational instability mode, we carried
out calculations at Ra = 0 and different values of the
separation ratios. In fig. 6 the stability boundaries in the
parameter plane Ψ − Rav are plotted for Pr = 10, Sc1 =
100, Sc2 = 1000 at ψ1 = −0.4, ψ1 = 0 and ψ1 = 0.4.

Let us discuss the structure of critical perturbations
for the vibrational instability mode. In the first order of
expansion in series of k2, the long-wave analysis gives the
following expressions for the dependences of vertical com-
ponent of average velocity and average temperature on

Fig. 5. Full stability map in the parameter plane Ψ -Ra for
ψ1 = −0.4: solid lines Rav = 1000, dashed line Rav = 0;
notations near the boundaries are: lw, m: long-wave mono-
tonic instability, sw, m: short-wave monotonic instability, lw,
os: long-wave oscillatory instability, sw, os: short-wave oscilla-
tory instability. The points where the instability mode changes
are marked by filled circles.

Fig. 6. The boundary of the vibrational instability (Ra = 0)
for ψ1 = −0.4, ψ1 = 0 and ψ1 = 0.4; notations for the curves
are the same as in figs. 4 and 5. The points where the instability
mode changes are marked by filled circles.

vertical coordinate:

w1 =
Ra + Rav(1 + Ψ)

24Pr
(z4 − 2z3 + z2)I · η0,

ϑ1 =
Ra+Rav(1 + Ψ)

1440
(−2z6+6z5−5z4+z)I · η0, (30)
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where η0 is the constant vector which corresponds to the
neutral perturbations of concentrational type in zeroth or-
der of expansion. It is seen from (30) that the dependences
of w1 and ϑ1 on z for the vibrational instability mode are
the same as that for the Soret-induced convective mode
(the same conclusion is valid for concentrations).

7 Conclusions

The effect of small-amplitude high-frequency longitudi-
nal vibrations on the stability of the horizontal layer of
a ternary fluid is studied in the framework of average ap-
proach. Long-wave instability is studied analytically by
the expansion into the power series with respect to wave
number. It is found that, similar to the case when vibra-
tions are absent, there exist monotonic and oscillatory
long-wave instability modes. The analytical expressions
are obtained for instability boundaries of both types and
for the frequency of critical perturbations. The bound-
aries of the domains where the long-wave perturbations
are most dangerous are determined in the second order
of expansion. The instability to the perturbations with fi-
nite wave numbers has been studied numerically by the
shooting method.

The calculations show that the vibrations leads to
destabilization in the case of heating from below and to
stabilization in the case of heating from above. Addition-
ally, vibrations make influence on the parameter range
where long-wave instability is most dangerous.

The critical conditions for real ternary mixture are an-
alyzed.

New, vibrational, instability modes are found which
lead to the existence of convection in zero gravity condi-
tions.

The work was supported by Russian Scientific Foundation
(grant N 14-21-00090).
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