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Abstract. In this paper we report on numerical studies of unsteady, gravity-driven flow of a subaqueous
erodible granular bed on an inclined plane. According to our simulations, the evolution of the flow can be
partitioned in three phases. In the first phase, due to the onset of an interfacial instability, the material
interface deforms into a series of long waves. In the second phase, these waves are transformed to skewed
vortex ripples that grow in time and eventually coalesce. The computed wavelengths of these ripples are
in good agreement with previously reported experimental measurements. In the third phase of the flow
evolution, the high fluid velocities wash out the vortex ripples and a layer of rapidly moving particles is
formed at the material interface. The predicted granular velocities comprise two segments: a concave one
at the vicinity of the material interface, where the maximum is attained, followed by a slightly convex one,
where they decrease monotonically to zero. The same trend has been reported in experimental results for
the corresponding steady flows. Finally, we investigate via a parametric study the effect of the configuration
stresses, which represent contact forces between grains. As it turns out, such stresses have a stabilizing
effect, in the sense that increasing their magnitude inhibits the formation of vortex ripples.

1 Introduction

Subaqueous debris flows and avalanches, sediment trans-
port and pyroclastic density currents are typical examples
of geophysical processes that involve gravity-driven flows
of particulate solids immersed in fluids. The occurrence of
such natural phenomena is usually associated with signif-
icant adverse effects. Consequently, advancing our under-
standing and predictive capacity of these flows is impor-
tant for the mitigation of the threats that they pose. It is,
therefore, not surprising that intense research efforts have
been devoted to their study, resulting in a large body of
scientific literature.

Such geophysical processes are typically of very large
scale and, as such, are difficult to reproduce in the labora-
tory or in numerical simulations. For this reason, the ma-
jority of research studies typically focuses on small-scale
flows which constitute idealized and simplified prototypes
but can still provide important information for the origi-
nal geophysical processes as well. As regards experimental
studies, three different configurations have been investi-
gated: rotating drums and circulatory and non-circulatory
flumes. For example, Courech du Pont et al. [1], system-
atically measured the duration and amplitude of granular
avalanches in rotating drums, for various densities, par-
ticle sizes and fluid viscosities. They additionally deter-
mined the scales of the flow based on the density ratio
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and the Stokes number, i.e. the ratio of grain inertia to
fluid viscosity. The pertinence of the Stokes number has
also been confirmed by Armanini et al. [2] who conducted
experiments on steady flows of PVC pellets immersed in
water. On the other hand, by investigating the steady flow
of steel beads immersed in three different fluids (air, water
and a glycerine-water mixture), Jain et al. [3] reported the
existence of striking similarities between the velocity pro-
files emerging in dry and in fluid-saturated granular flows.
Subsequently, the important results of Jain et al. [3] have
been corroborated by other experimental studies; see, for
example, Cassar et al. [4], Doppler et al. [5] and references
therein.

Alongside experimental studies, research efforts have
also been devoted to the numerical investigation of fluid-
saturated granular flows in the presence of gravity. To this
extent, emphasis has been placed on sediment transport
(both viscous and turbulent) and, in particular, on the
mechanisms that drive the erosion of sediment beds, the
migration and transport of particles and the formation
of patterns (e.g. dunes and ripples). As regards studies
that investigated numerically either turbulent or viscous
sediment transport in correlation with the ratio of the
phasial densities, we refer the reader to Durán et al. [6,7],
Schmeeckle [8] and Páhtz et al. [9]. On the other hand, as
regards the properties of aeolian particle transport, we re-
fer to the numerical studies of Carneiro et al. [10], Carneiro
et al. [11], Durán et al. [12] and references therein.
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All the aforementioned studies employ a Discrete El-
ement Method (DEM) for the modelling of the granu-
lar phase (solid particles) coupled with the Navier-Stokes
equations for the fluids, appropriately augmented to ac-
count for the interactions between the two phases in the
form of momentum exchange. An alternative approach
to modelling fluid-saturated granular flows is offered by
continuum two-phase models. According to these models,
both the fluid and the granular material are treated as
generalized continua; see, for example, Drew and Pass-
man [13] for a detailed exposition as well as next section.
This approach is advantageous in the dense regime, es-
pecially when the number of particles (per unit area and
globally) becomes disproportionably large.

However, numerical simulations of the flows of interest
based on two-phase models are quite scarce and remain a
challenging task to perform. The dearth of numerical re-
sults can be attributed mainly to the size and complexity
of these models. In fact, two-phase models contain bal-
ance equations for each phase. Therefore, the resulting
number of governing equations is significantly higher than
the ones for single-phase flows such as, for example, the
Navier-Stokes equations for simple fluids. Further, these
models contain expressions for the interactions between
the two phases in the form of momentum and energy ex-
change. Typically, these expressions consist of nonlinear
differential and relaxation terms which increase signifi-
cantly the complexity of the equations in hand. More-
over, the mathematical models have a multitude of length
and time scales associated with them; this is due to the
fact that fluid-saturated granular materials have a com-
plex micro-structure and do not exhibit scale segregation.
It should also not go unnoticed that these models incor-
porate several physical parameters whose values are not
always known precisely.

As a result of the above, the majority of available nu-
merical results for gravity-driven flows of fluid-saturated
granular materials, based on continuum two-phase models,
correspond to steady-state, one-dimensional flows, [14–
16]. However, it is well known that the flows of inter-
est have a rich phenomenology and are susceptible to
both long- and short-wave hydrodynamic instabilities.
Evidently, such phenomena cannot be captured by the
steady-state approximation. Instead, one has to consider
unsteady and multi-dimensional flows.

In this paper, we investigate the unsteady gravity-
driven flow of a subaqueous erodible granular bed, down
an inclined plane, via direct numerical simulations. We
consider large angles of inclination, namely a ≥ 30◦, so
as to ensure the triggering of hydrodynamic instabili-
ties. Our study is based on the mixture theory for fluid-
saturated granular materials previously developed in Pa-
palexandris [17]. The numerical treatment of the mathe-
matical model is performed via an algorithm for two-phase
continua, recently proposed in Varsakelis and Papalexan-
dris [18]. This is a projection-type numerical method,
suitably generalized for two-velocity–two-pressure models,
that is able to treat strong material interfaces associated
with steep gradients of particle concentration.

The objective of the present study is twofold. First,
to systematically study the properties of the flows of in-
terest and gain physical insight on the mechanisms that
drive their evolution. In this respect, emphasis is placed
on the deformation of the material interface between the
granular bed and the interstitial fluid lying above it. The
secondary objective of this study is to assess the predic-
tive capacity of the model in hand for the flows of interest.
For this reason, the numerically predicted flow quantities
are compared against experimental measurements, when-
ever the latter are available and to the extent that such a
comparison is feasible.

2 Mathematical model and numerical method

We consider an isotropic granular material, saturated by
a simple fluid, that occupies a domain Ω. Both phases are
assumed to have constant density. Further, we postulate
that dilatancy effects are negligible so that the motion
of the granular material can be approximated by that of
an incompressible, fluid-like body; for more information
concerning this assumption and its validity the reader is
referred to Málek and Rajagopal [19].

Papalexandris [17] proposed a two-phase flow model
for fluid-saturated granular materials based on the
mixture-theory approach. According to this formalism,
the mixture is treated as the union of two open sub-
systems that are allowed to interact with each other in the
form of momentum and energy exchanges. Each phase is
endowed with its own set of state variables and velocity
vector and it is required to satisfy the equations for the
balance of mass, linear momentum and energy, separately.

In the continuum theory of Papalexandris [17], for the
description of the state of the granular phase, the volume
fraction and its spatial gradient are introduced as addi-
tional thermodynamic variables. The rationale for aug-
menting the state vector of the granular phase by in-
cluding these particular variables goes back to Goodman
and Cowin [20]. It is based on the observation that the
available “useful” work that can be extracted from the
granular conglomerate is restricted by the configuration
of the grains in space. The adequate description of the
grain-configuration, in turn, is a geometric problem and
in the continuum level requires a measure for i) the volume
that the granular material occupies (volume fraction) and
ii) the intergranular area density (volume fraction gradi-
ent). Based on these arguments, Goodman and Cowin [20]
postulated that the Helmholtz free energy of the granular
material should explicitly depend on the volume fraction
and its spatial gradient which is equivalent to including
these quantities as additional thermodynamic variables
related to the miscrostructure of the granular material.
Although the theory of Goodman and Cowin [20] was
devised for dry granular flows, it has subsequently been
extended to fluid-saturated ones by Passman et al. [21],
Wang and Hutter [22], Massoudi and Mehrabadi [23], Pa-
palexandris [17] and others.

Once the state space of the granular and the fluid
phase have been fixed, constitutive expressions for the
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various terms that describe dissipative phenomena (e.g.
viscosity coefficients, interphasial drag, etc.) are derived
by exploiting the constrains imposed by the second ther-
modynamic axiom concerning the non-negativity of the
entropy production rate. Further, this procedure straight-
forwardly yields a rate equation for the volume fraction
usually referred to as the compaction equation. Impor-
tantly, as demonstrated by Baer and Nunziato [24], the
absence of such equation leads to underdeterminacy is-
sues. Also, due to the inclusion of the volume-fraction
gradient as a thermodynamic variable, an additional non-
dissipative component of the granular material’s stress
tensor emerges, the so-called configuration tensor, which
involves the volume-fraction gradients associated in a non-
Newtonian way. The properties of this tensor are discussed
in detailed below.

The derivation of continuum models for either dry
or fluid-saturated granular flows invokes the continuum
hypothesis. For the mixtures of interest, due to the mi-
crostructure of granular materials, this hypothesis asserts
that the validity of continuum models breaks down in
length scales smaller than or equal to the grain diameter.
At such length scales, the employment of hybrid models
that couple a DEM for the solid particles with a continuum
description for the fluid phase is deemed better adapted.

The mathematical model of Papalexandris [17] can
be seen as the two-phase analogue of the Navier-Stokes-
Fourier equations that additionally takes into account
the non-Newtonian character of the granular materials.
Its incompressible limit was systematically derived by
Varsakelis and Papalexandris [25], upon generalization of
low-Mach-number asymptotics to multiphase flows. Un-
der the additional assumption of no-dilatancy, the non-
dimensional governing equations read:

Mass and momentum balance equations for the granular
phase:

∇ · us = 0, (1)

ρsφs
dus

d ts
+ ∇(φsps) =

1
Re

∇ · (μsφs Ss)

−∇ · (Γs∇φs ⊗∇φs)

+pf∇φs + δ (uf − us)

+ρsφsg. (2)

Mass and momentum balance equations for the fluid
phase:

∇ · ((us − uf )φf ) = 0, (3)

ρfφf
duf

d tf
+ ∇(φfpf ) =

1
Re

∇ · (μfφf Sf )

−(pf∇φs + δ (uf − us))

+ρfφfg. (4)

Compaction equation:

dφs

dts
= 0. (5)

Here, the subscripts “s” and “f” denote the gran-
ular and fluid phase, respectively. Further, ρi, φi and
ui = (ui1 , ui2 , ui3), i = s, f are the density, volume frac-
tion and velocity vector of the phase i. Also, ps and pf are
the “dynamic” pressures of the granular and fluid phase,
respectively; they are completely equivalent to the pres-
sure term that appears in the Navier-Stokes equations.
Additionally, μi is the viscosity coefficient of the phase i
and g is the gravity vector.

The operators d
d ti

= ∂
∂t + ui · ∇ and Si stand for the

material derivative and the traceless deviatoric part of the
deformation tensor of phase i, i = s, f , respectively. The
above governing equations are closed by the saturation
condition

φs + φf = 1. (6)

The momentum exchange between the two phases is
represented by the combined term pf∇φs + δ(uf − us),
appearing on the right-hand side of the momentum equa-
tions (2) and (4), albeit with opposite sign. More specif-
ically, the term δ(uf − us) models the interphasial drag
exerted on the solid particles by the fluid, with δ being
a term proportional to the interphasial drag coefficient.
Further, the non-conservative product pf∇φs models noz-
zling effects and its presence is dictated by thermody-
namic considerations. Its presence follows from the consti-
tutive assumption that the volume fraction φs is carried
by the granular phase; in particular, as asserted by Bdzil
et al. [26], discarding such terms leads to mathematical
models that violate the second thermodynamic axiom.

The viscosity of the granular phase μs describes the
rheology of the granular material. As such, it is not con-
stant but can generally depend, among others, on the
particle concentration φs, the strain rate γ̇ij , the normal
stress ps and others. Therefore, the choice of the rheology
can lead to vastly different profiles for the variables of the
two phases. We will elaborate further on the choice of the
rheology in due course.

The term Γs∇φs ⊗ ∇φs, whose divergence enters the
momentum equation of the granular phase (2), is the con-
figuration stress tensor, mentioned above, and, accord-
ingly, Γs is the configuration stress coefficient. The pres-
ence of the configuration stress tensor asserts that the
model in hand i) allows for density (volume fraction)
gradients at equilibrium, ii) predicts that the granular
material supports non-zero shear stresses at equilibrium,
iii) predicts that, at equilibrium, the normal and shear
stresses are connected via a Coulomb-Mohr stress-strain
relation that links the angle of internal friction to φs

and ∇φs.

2.1 Numerical method

The numerical methodology employed for the integra-
tion of the governing equations is described in detail in
the recent article of Varsakelis and Papalexandris [18].
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Therefore, only an outline of it is presented herein. The
algorithm constitutes a generalization of projection-type
methods, on collocated grids, to multi-phase flows and em-
ploys a predictor-corrector scheme for the integration in
time. The generalized flux-interpolation method proposed
in Lessani and Papalexandris [27,28] is employed for the
integration of the convective terms to remedy the well-
known odd-even decoupling phenomenon that occurs in
collocated grids. Additionally, stiffness problems due to
steep volume-fraction gradients in the vicinity of material
interfaces are treated via a regularization method.

Schematically, the flow-chart of the algorithm reads:

i) The values of the volume fraction, φs are computed by
integrating the compaction equation (5) via the multi-
dimensional upwind scheme of Colella [29].

ii) The algorithm searches for interfaces by checking the
magnitude of ∇φs. In the vicinity of the interface,
the predicted values of φs are replaced by those of
smoother, compactly supported function obtained via
a parabolic regularization of the compaction equation.

iii) A projection method is employed for the computation
of the granular pressure ps and velocity us. In particu-
lar, the pressure ps is computed via solving numerically
a Poisson equation. Once ps has been computed, us is
calculated via the standard Helmholtz decomposition.

iv) In our case, uf is not divergence free; see eq. (3), which
requires a generalization of the standard projection
method. This results in a second order elliptic PDE
with variable coefficients for the pressure pf . Once pf

is computed, then uf is calculated via the Helmholtz-
Marsden decomposition.

3 Numerical results

We study numerically the response of an erodible granular
bed of constant thickness, placed on an inclined plane,
to the combined effect of gravity and the shearing by an
interstitial fluid. We remark that the physical parameters
that we are using are given in dimensional form. For clarity
purposes, all dimensional variables are denoted with a hat
symbol, “ˆ”.

3.1 Mixture parameters and computational set-up

We consider a mixture of water with coarse sand. The
sand is assumed to be monodisperse and its diameter d̂p

is taken equal to 1mm. The densities of water and sand
are ρ̂f = 1000 kg/m3 and ρ̂s = 2200 kg/m3, respectively.

As regards the configuration stress coefficient Γs, we
assume the following expression:

Γ̂s = k̂2ρ̂sφs. (7)

Here, k̂2 is a (strictly positive) material-dependent con-
stant. As such, its value should be obtained experimen-
tally. However, and to the best of our knowledge, system-
atic experimental measurements for k̂2 have yet to appear

in the literature. On the other hand, Varsakelis and Pa-
palexandris [30] estimated numerically the value of k̂2 by
computing the equilibrium distributions of granular ma-
terials and the forces acting on them. On the basis of this
study, we first choose herein k̂2 = 4 × 10−5 m4/s2. Later
on this work we assess the effect of modifying its value.

For the rheology of the granular material we proceed
as follows. Our starting point is a Krieger-Dougherty-type
law for the effective normal and shear viscosity of suspen-
sions, acquired experimentally by Boyer et al. [31], that
reads

ηshear = 1 + 2.5φs

(
1 − φs

φc

)−1

+ μc φs

(φc − φs)2
, (8)

ηnormal =
φs

(φc − φs)2
. (9)

Here, ηshear and ηnormal designate the apparent shear and
normal viscosity of the suspension, respectively whereas
φc represents the maximum packing fraction. Further, μc

is given by the following relation:

μc = μ1 +
(μ2 − μ1)

1 + I0φ2
s(φc − φs)−2

. (10)

In the above relation, μ1, μ2 and I0 are experimentally
determined constants. As φs → φc the suspension ap-
proaches the jamming transition and both the shear and
normal viscosity diverge to infinity at a rate of O((φc −
φs)−2). For dilute mixtures, the shear viscosity approaches
Einstein’s law (1+2.5φs) at a rate of O(φs). Importantly,
eqs. (8) and (9) constitute the volume-fraction representa-
tion of the so-called μ(I)-rheology for suspensions of par-
ticles in fluids.

For the accommodation of (8) to the governing equa-
tions we assume that the contribution of the fluid phase
to the viscous stress tensor of the mixture is negligibly
small. In other words, the shear and normal viscosity of
the granular phase are only related to (8) and (9), cor-
respondingly. Further, since the model at hand concerns
isochoric motions for the granular material, the stress ten-
sor of the granular phase does not have a component that
models the bulk viscous pressure, i.e. it is traceless. Con-
sequently, only the shear viscosity η̂shear is needed in our
case. In order to derive the relation that links ηshear to μ̂s,
we first recall that

τ̂s = ηshearμ̂fφs
ˆ̇γs, (11)

φsτ̂s = μ̂sφs
ˆ̇γs, (12)

where τ̂s is the viscous stress tensor. The multiplication
by φs on the right-hand sides of the above equations is
needed in order to recover the correct single-phase limits
as φs → 0, 1, Drew and Passman [13]. Then, the combi-
nation of (11) and (12) with (8) yields

μ̂s = ηshearμ̂f . (13)

As documented in various studies, e.g., Stickel and
Powell [32], the classical Krieger-Dougherty relation, i.e.
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the third term of equation (8), is sufficient to recover Ein-
stein’s formula for the rheology of dilute suspensions. The
proof of this argument is a direct consequence of the bi-
nomial theorem. Based on this fact, in our simulations we
have set

μ̂s = μ̂fμc φs

(φc − φs)2
, (14)

and following Savage [33], Passman et al. [34] and Wang
and Hutter [15], we have set μ̂fμc = 727 kg/(m · s).

Still, the rheology law given by (14) has a singularity
at φs = φc which numerically is extremely cumbersome to
compute. For the circumvention of this issue, we introduce
an ad hoc finite, upper bound for ηshear and, more specif-
ically, we employ φc = 1. This regularization bypasses the
difficulties associated with the singularity but comes at
a price; the correct angle of repose cannot be captured
by the numerical simulations. In other words, the govern-
ing equations predict that the mixture will always be set
in motion for every angle of inclination. In other words,
in this context, equilibrium is identified with a creeping
motion.

On the other hand, the interstitial fluid, water, is as-
sumed to be a simple Newtonian fluid at constant tem-
perature. As such, its dynamic viscosity is taken to be
constant and equal to μ̂f = 1 × 10−3 kg/(m · s).

As regards the interphasial drag coefficient δ̂, the force
density exerted by the fluid on the particles is approxi-
mated by the drag on a sphere moving at constant speed
at low Reynolds numbers. This results in the following
expression for δ̂:

δ̂ = φs 18
μ̂f

d̂2
p

Q(Rep). (15)

For the function Q(Rep), the empirical relationship of
Rowe [35] is used

Q(Rep) =

⎧⎨
⎩

1 + 0.15 Re0.687
p , Rep < 1000,

0.01833 Rep, Rep ≥ 1000,
(16)

where Rep is the particle Reynolds number, defined with
respect to the relative grain velocity, i.e.,

Rep =
ρ̂f d̂p

μ̂f
|ûs − ûf |. (17)

In our study, all physical parameters are non-
dimensionalized as follows. The phasial densities and
pressures have been non-dimensionalized with respect to
the density of water, ρ̂ref = 1000 kg/m3, and atmo-
spheric pressure, pref = 105 Pa, respectively. Also, the
initial thickness of the granular layer, ĥ, and the ref-

erence velocity uref =
√

ĝ ĥ have been used for the
non-dimensionalization of lengths and velocities, respec-
tively. Further, the viscosity coefficients have been non-
dimensionalized with respect to the viscosity of the mix-
ture μref = (ρsφs,inμs + ρfφf,inμf )/(ρsφs,in + ρfφf,in),

Fig. 1. Configuration of the numerical experiments.

where φs,in stands for the initial distribution of particles.
For the problem in hand, μref ≡ 608 kg/(m · s) and, ac-
cordingly, the Reynolds number of the flow is equal to
approximately 0.2. For comparison purposes, it is worth
noting that if we had used the fluid viscosity as reference,
μref = μf , then the Reynolds number would have been
equal to 210.

In our numerical experiments, the mixture is placed on
the surface of a plane inclined at an angle a to the stream-
wise direction, as shown in fig. 1. A Cartesian coordinate
system is employed with x1 the streamwise and x3 the
normal direction. The dimensions of the computational
domain are l = 20 and 4 in the streamwise and normal
directions, respectively. An equidistant mesh of 500× 100
cells is used to discretize the computational domain. Fi-
nally, we set Δt = 0.005 Δx3.

As regards boundary conditions, the flow is assumed
to be periodic in the streamwise (x1) direction, with pe-
riod equal to l. At the bottom of the computational do-
main, which coincides with the inclined plane, the no-slip
condition is prescribed for the phasial velocities and zero-
Neumann conditions are prescribed for both the phasial
pressures and the volume fraction. On the other hand,
the top boundary of the computational domain is consid-
erably far from the material interface. For this reason, at
this boundary, the free-slip boundary condition is applied
for the phasial velocities whereas zero-Neumann condi-
tions are assigned to the phasial pressures and the volume
fraction.

For the initial condition of the particle concentration,
we consider a dense (φs = 0.7) granular layer of constant
thickness h = 1, placed on the inclined plane. This profile
is superimposed to a sinusoidal perturbation of period l
and amplitude h/5, so as to trigger the erosion of the
material interface. Outside the granular bed, the domain
is filled with water. As regards the initial conditions for
the other variables, we assume that the entire mixture is
at rest so that the flow is induced by gravity.

3.2 Reference case: a = 30◦

For the reference case, the angle of inclination is set to
a = 30◦. According to the experimental measurements
of Cassar et al. [4], for such an angle of inclination and
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Fig. 2. Iso-contours of particle concentration φs. (a) t = 24.5, (b) t = 30, (c) t = 37, (d) t = 43, (e) t = 49, (f) t = 73.
The material interface deforms into a series of long waves which are transformed into skewed, vortex ripples that grow in time
and also coalesce. Eventually, the fluid velocity becomes large enough in the neighborhood of the interface and the ripples are
washed out.

with the mixture parameters that have been employed,
the flow is not expected to reach a steady state. As will
be shown below, this has been observed in our simulations
as well.

We begin the discussion of the numerical results with
the evolution of the material interface. Figures 2(a)-(f)
show the particle concentration at various time instances.
The evolution of the flow can be partitioned in three dis-
tinct phases. During the first phase, which lasts until ap-
proximately t � 36.7, the material interface deforms into
a series of wavy patterns due to the onset of an inter-
facial instability. The wavelengths of these patterns are
large, accounting for approximately 1/4 of the length of
the computational domain; this is in agreement with pre-
vious studies on two-layer flows of both Newtonian and
non-Newtonian fluids down inclined planes; see, for ex-
ample, Millet et al. [37] and references therein. Moreover,
these long waves are reminiscent to the ones reported in
Cassar et al. [4]; see also the earlier study of Prasad et
al. [38].

The second phase of the flow, which starts at t � 36.7
and lasts until t � 62, is characterized by the transforma-
tion of the density waves to skewed almost triangular pat-
terns. The height of these patterns spans a few decades of
grain diameters. Accordingly, these patterns are referred
to as ripples (in large-scale flows, such as the ones encoun-
tered in sediment transport, these patterns are commonly
referred to as dunes). The wavelengths of the ripples in-

crease with time and eventually the ripples coalesce. The
formation, propagation and coalescence of ripples at the
material interface is a typical feature of the flows of inter-
est and has been confirmed experimentally in a variety of
configurations; see, for example, the recent review article
of Charru et al. [39].

To date, the exact mechanism of ripple formation is not
fully understood. As noted, among others, in Sleath [40],
there is some consensus that their origin is due to hy-
drodynamic instabilities and, more specifically, due to the
fact that the inertia of the interstitial fluid plays a desta-
bilizing role in the shearing of an erodible bed. Charru
and Hinch [41,42] have asserted this point of view via
a linear stability analysis for both steady and unsteady
flows, and have determined the stabilizing role of crest
erosion as a function of the Galileo number. In turn, if
the formation of ripples is engendered by the interaction
between the two phases, this implies that an adequate de-
scription of the flows of interest requires the consideration
of the dynamics of both phases; a consequence that is in
agreement with the results of Meruane et al. [43]. More
recently, Durán et al. [12], who investigated the formation
of aeolian ripples via direct numerical simulations, pro-
posed a different mechanism. According to these authors,
the dominant mechanism of formation involves resonant
grain trajectories, of suitable lengths, and the subsequent
reptation. In other words, in the view of Durán et al. [12],
the formation of aeolian ripples is non-hydrodynamic.
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For the case under study, the Galileo number is quite
large

Ga =
(ρ̂s − ρ̂f )

ρ̂f

ρ̂2
f d̂2

p

μ̂2
f

≈ 104.

For such values of the Galileo number, the analysis of
Charru and Hinch [41,42] predicts the formation of rip-
ples, due to hydrodynamic instabilities. On the other
hand, we have ρ̂f/ρ̂s = 1/2.2 and μ̂f = 10−3 kg/(m · s).
These values are quite different from those employed in
Durán et al. [12] so that extrapolating their conclusions
to problem at hand needs a judicious investigation of dif-
ferent interstitial fluids, which goes beyond the scopes of
the present study.

As can be inferred from figs. 2(c) and (d), the crests of
the predicted ripples are oriented downstream. This is in
agreement with the experimental observations of Doppler
et al. [44] and Loiseleux et al. [45] which assert that the
orientation of the crests always follows the direction of the
motion of the interstitial fluid. Interestingly, in both these
studies, the interstitial fluid is forced to flow upwards the
inclined plane. Still, the orientation of the crests of the
ripples follows the direction of the fluid motion.

At t � 61.2 the vortex ripples begin to wash out. This
marks the beginning of the third phase of evolution which
lasts until the termination of the simulation at t = 100.
During this phase, the ripples are eventually damped and
they are replaced by a shear layer of rapidly moving par-
ticles. The damping of the vortex ripples is attributed to
the high streamwise velocity of the interstitial fluid, which
accelerates continuously due to gravity. In fact, the phe-
nomenon of damping of vortex ripples, generated at low
velocities, at high velocities is well known; see, for exam-
ple, Van Rijn [46].

Alternatively, one could seek a correlation between the
damping of the ripples and the values of the Shields num-
ber of the flow, θ, defined as follows:

θ =
τ

(ρs − ρf )gdp
, (18)

where τ stands for the shear stresses exerted on the mate-
rial interface while the denominator is the apparent weight
of a grain. Upon comparison of previous experimental
studies, Nielsen [47] concluded that the formation of vor-
tex ripples is possible only if θ < 1. By contrast, for θ > 1,
the ripples are washed out and the motion resembles that
of a sheet flow, i.e. the particles move as a granular sheet
whose thickness can range from a few to several decades of
grain diameters; see, for example, the analysis presented
in Wilson [48]. In our case, however, the Shields number of
the flow remains at the order of 10−1. In turn, this implies
that the damping of the predicted vortex ripples is solely
attributed to the high fluid velocities in the neighborhood
of the interface.

Next, we turn our attention to the granular velocity
profiles. First, it is important to remark that, to the best
of our knowledge, experimental measurements of the in-
stantaneous velocity profiles for the flows of interest are

Fig. 3. Predicted granular velocity profiles us1 plotted against
depth at various times juxtaposed to the experimental mea-
surements of Larcher et al. [36] and Aragon [14]. In the first
stages of the flow, the predicted profiles are in good agreement
with those of Larcher et al. [36]. As the flow evolves, quanti-
tative comparison becomes less favorable but the qualitative
trend remains similar.

not available in the literature. For this reason, we have
opted to juxtapose our numerical predictions against ex-
perimental evidence acquired from steady flows at lower
inclination angles and discuss differences and notable sim-
ilarities.

Let us1 denote the normalized, streamwise-averaged,
granular velocity component, in the streamwise direction.
Figure 3 shows plots of us1 , against depth x3, at different
time instances. In the same figure we have also plotted the
experimental measurements of Larcher et al. [36] and of
Aragon [14], normalized accordingly. The velocities attain
their maximum value at the material interface whereas
away from it they decrease rapidly. This decrease consists
roughly of two segments: a concave one at the vicinity
of the material interface and a slightly convex one below.
This trend is shared by the experimental measurements
of Larcher et al. [36], which are also quantitatively similar
to the numerical predictions at the first stages of the flow.
As the flow evolves, and hydrodynamic instabilities man-
ifest, the quantitative agreement becomes less accurate;
still, the qualitative trend remains similar. Discrepancies
are more evident when comparison is attempted against
the profiles of Aragon [14]. Interestingly, the experimen-
tal measurements of Aragon [14] illustrate the existence
of a considerable slip at the lower plane, so that the two
segments of different curvature are not easily distinguish-
able. We may note that since the no-slip condition has
been employed for both phases such slip phenomena can-
not be captured by our numerical simulations.

Further insight to the flow properties can be obtained
upon examination of the vorticity field of the fluid. Fig-
ures 4(a)-(c) depict iso-contours of the magnitude of the
fluid phase vorticity field at times t = 30, 43 and 73, re-
spectively. We observe that the shearing of the granular
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Fig. 4. Iso-contours of the vorticity field of the fluid phase
at (a) t = 30.6, (b) t = 43, (c) t = 73. Vortical structures
are observed over the material interface. At t = 43, when the
ripples have been formed, lee vortices are formed downstream
the crest of each ripple.

Fig. 5. Iso-contours of the difference of the phasial pressures
Δp at times (a) t = 30, (b) t = 43, (c) t = 73. The pressures
are maintained at different levels for all times due to the in-
terphasial drag and the configuration stresses. However, the
amplitude of their difference remains at the order of 10−4.

medium by the interstitial fluid results in the formation
of vortices that are shed from the material interface. The
height of these vortices is approximately ten times smaller
than their length in the streamwise direction. Moreover,
as the flow evolves, they are subject to streamwise stretch-
ing. Upon comparison of figs. 2(c) and (d) with figs. 4(b)
and (c), we infer that the observed vortices are located

Fig. 6. Iso-contours of the difference of the phasial velocities
Δu at times (a) t = 30, (b) t = 43, (c) t = 73. The two phases
respond differently to gravitational forces. In fact, due to the
density and viscosity bias, the fluid moves faster than the solid
particles. Still, the difference is small and remains at the order
of 10−1.

downstream each ripple’s crest. Therefore, in accordance
with Bagnold’s classical terminology, we deduce that these
ripples are actually vortex ripples.

Wang and Hutter [15] studied numerically the steady
flow of a water-sand mixture, down an inclined plane,
and reported that both the phasial pressures and the
velocities are maintained at different levels. In view of
these results, it is interesting to examine whether the two
phases eventually reach mechanical equilibrium. To this
end, in figs. 5(a)-(c) and figs. 6(a)-(c) we have plotted
the evolution of the differences of the phasial pressures
Δp = (ps − pf ) and velocities Δu = us,1 − uf,1, respec-
tively. It can be readily inferred that the mixture remains
out of mechanical equilibrium throughout the duration of
the simulation. Moreover, the negative sign of Δu in most
areas of the domain shows that the fluid accelerates faster
than solid particles do; this is due to the density and vis-
cosity bias between the two phases. Still, the magnitudes
of Δp and Δu are relatively small, at the order of 10−4

and 10−1, respectively.
Figures 7(a)-(c) show iso-contours of the configuration

stresses at t = 43. From these figures, we deduce that
both the normal and the shear configuration stresses are
maximized in the neighborhood of the material interface,
where steep volume-fraction gradients are confined. On
the other hand, away from this interface, they approach
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Fig. 7. Iso-contours of the configuration stresses at t = 43.
(a) σ11, (b) σ22, (c) σ12. Both the normal and the shear config-
uration stresses are maximized in the vicinity of the material
interface, where the volume-fraction gradients are larger. Away
from this area, the configuration stresses decay rapidly to zero.

rapidly zero. This result indicates that at the vicinity of
the material interface, ∇(ps − pf ) is counterbalanced by
the combined effect of the configuration stresses and the
interphasial drag, δ(us − uf ). By contrast, in the bulk of
granular layer, where the particle concentration is con-
stant, ∇(ps − pf ) is solely offset by the interphasial drag.

Finally, for this reference case, a grid-convergence
study has also been performed in order to validate the
grid-independence of the numerical results. To this end,
we have calculated and compared the mesh-dependent L1-
norm of the error for the phasial pressures ps, pf , the
phasial velocities us, uf and the volume fraction φs. As
usual, the mesh-dependent L1 norm of the error is defined
as

Err(F ) =
1
N

N∑
i=1

|fi − Fi|. (19)

In the above equation, N stands for the number of com-
putational cells whereas fi and Fi are the numerical pre-
diction and the exact solution evaluated at the cell i, re-
spectively. In our study, the following grid sizes have been
considered: 250×50, 500×100, 1000×200 and 2000×400.
In the absence of an analytic solution, F has been cho-
sen as the numerical prediction obtained with the finest
grid of the study, namely, 4000× 800 points. Figures 8(a)
and (b) show the results of the grid-convergence study for
the variables us, uf and φs, respectively, juxtaposed to

Fig. 8. Grid-convergence study. (a) us, uf , (b) φs.

an estimate of the convergence rate. It can be evidenced
that numerical convergence is achieved with refinement of
the grid.

3.3 On the wavelengths of the vortex ripples

As mentioned above, the formation of vortex ripples is a
typical feature of the flows of interest. For this reason,
various studies have been devoted to the study of their
properties. In particular, emphasis has been placed on
the evaluation of their wavelengths via both experimen-
tal measurements and linear stability analyses. However,
as commented in Charru et al. [49], the experimentally
measured wavelengths exhibit large scatter which makes
the assessment of numerical and theoretical predictions
difficult.

Despite this conundrum, empirical correlations for the
wavelengths of the ripples have already appeared in the
literature. Herein, we compare the predicted wavelengths
against the correlations of Coleman and Melville [50],
and Coleman and Eling [51], derived from experiments
on water-sand and air-sand mixtures. Both correlations
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Fig. 9. Comparison of the predicted mean ripple wavelengths
(◦) and the ones obtained from the empirical correlations of
Coleman and Melville [50] (♦), and Coleman and Eling [51]
(−−). In our study, the numerically predicted wavelengths are
in good agreement with the correlation of Coleman and El-
ing [51].

associate the wavelength of the ripple with the particle
diameter and read, respectively,

λ

dp
= 102.5 Re−0.2

pt , (20)

λ

dp
= 175 d0.75

p . (21)

Here, λ is the wavelength of the ripple whereas Rept =
û∗d̂pρ̂f/μ̂f is the particle Reynolds number defined with
respect to the friction velocity of the fluid at the surface
of the granular layer, û∗.

Figure 9 shows the numerically computed mean wave-
length of the ripples at various instances of the flow vis-
à-vis the values calculated from (20) and (21). It can be
readily inferred that the predicted wavelengths are in good
agreement with the values acquired from the correlation of
Coleman and Eling, (21), throughout the duration of the
simulation. On the other hand, the correlation of Coleman
and Melville, (20), predicts wavelengths that are higher
by an order of magnitude than the ones predicted herein,
for all time instances. For the sake of completeness, we
mention that we have compared the predicted mean-ripple
wavelengths, obtained from simulations with different dp,
to the ones given by (20) and (21). Again, the predicted
wavelengths are in good agreement with the ones com-
puted by (21).

4 Parametric studies: angle of inclination and
configuration stress coefficient

In order to study the sensitivity of the predicted features
of the flow to changes in physical parameters we have con-
ducted two parametric studies. More specifically, we have

Fig. 10. Predicted granular velocity profiles us1 plotted
against depth for various angles of inclination juxtaposed to
the experimental measurements of Larcher et al. [36] and
Aragon [14]. The qualitative trend remains unchanged for all
angles of inclination. However, discrepancies become larger as
the inclination angle increases.

assessed the effects of modifying i) the angle of inclination
a and, ii) the magnitude of the constant k2 while main-
taining the remaining parameters and the computational
set-up identical to the reference case. The results from
these studies are summarized below.

4.1 Angle of inclination

Modifying the angle of inclination amounts to changing
the force that drives the flow. Since in the present study
our focus is on unsteady granular flows, we have consid-
ered angles of inclination larger than the one employed
in the reference case. In particular, we have used angles
between 30◦ and 80◦. Our simulations predict, as before,
three phases of evolution of the material interface. More-
over, the characteristics of these phases of evolution are
the same as in the reference case. In particular, the emer-
gence of surface density waves and the formation, prop-
agation, coalescence and damping of vortex ripples, are
evidenced for all angles of inclination. Still, as the angle
of inclination increases, the duration of the first two phases
of the evolution becomes shorter because the growth of the
streamwise phasial velocity components increases with the
angle of inclination.

In view of the above, it is interesting to compare the
granular velocity profiles at different angles of inclination.
Figure 10 depicts profiles of us1 , plotted against depth, for
a = 30◦, 45◦, 60◦ and 80◦. In this figure we have also su-
perimposed the experimental measurements of Larcher et
al. [36] and Aragon [14]. Similarly to the reference case, the
numerical predictions are in better agreement with the ex-
perimental measurements of Larcher et al. [36]. However,
it can be readily inferred that, although the qualitative
trend remains roughly unchanged, the discrepancies in-
crease with the angle of inclination. In other words, as
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Fig. 11. Iso-contours of the particle concentration φs for var-
ious values of k2 at t = 43. The increase of k2 renders the
relative motion of grains more difficult. For k1 > 10−2, the
strength of the configuration stresses inhibits the formation of
the ripples. In other words, the configuration stresses have a
stabilizing effect and offset the inertia instability that is man-
ifested during the second phase of the flow.

the inclination angle increases and the flow moves fur-
ther away from the steady-state regime, the steady-state
profiles become inadequate for the description of the flow
properties.

4.2 Configuration stress coefficient

The configuration stress tensor Γ∇φs ⊗∇φs has been in-
troduced to model contact forces that are developed be-
tween the grains due to rearrangements in the distribu-
tion of the interfacial area density. By virtue of (7), as
k2 increases so do the configuration stresses. In turn, this
renders the relative motions between the grains more dif-
ficult. Despite the fact that the configuration stress tensor
appears in many models for granular materials, its influ-
ence on the flows of interest remains largely unexplored.
For this reason, we present results of a parametric study
with respect to the magnitude of the configuration stress
coefficient k2. The range of values of k2 that we have con-
sidered is between 10−7 and 10−1.

According to our simulations, for as long as k2 < 10−2,
all features of the flow remain practically unchanged. How-
ever, for larger values of k2, the evolution of the material
interface changes considerably; this can be inferred from
figs. 11(a)-(c) which depict the particle concentration for

various values of k2. More specifically, for k2 > 10−2, the
patterns observed at the material interface are character-
ized by very low particle concentrations. In this respect,
they are more reminiscent of rolling grains as opposed to
vortex ripples. Rolling grains are transient patterns of low
concentration formed at a material interface of a sheared,
erodible bed; see, for example, Charru et al. [39]. Fur-
ther, as demonstrated by Stegner and Wesfreld [52], rolling
grains often gradually transform to ripples. However, in
our case, this transition is not evidenced. In other words,
the increasing magnitude of the configuration stresses in-
hibits the formation of vortex ripples.

As mentioned above, a key mechanism in the formation
of the vortex ripples is the destabilization of the shearing
of the material interface by the interstitial fluid’s inertia.
Therefore, our simulations suggest that, for larger values
of k2, the destabilizing role of the fluid’s inertia is partially
offset by the increased resistance of the particular phase to
individual grain motions. In summary, we may conclude
that the configuration stresses have a stabilizing effect to
the flows of interest; this, to the best of our knowledge,
has not been reported before.

5 Conclusions

In this paper, the unsteady gravity-driven flow of a sub-
aqueous erodible granular bed on an inclined plane has
been investigated via direct numerical simulations. Our
simulations show that the evolution of the flow can be di-
vided into three distinct phases. The first phase is charac-
terized by the deformation of the material interface into a
series of long waves. In the second phase the density waves
transform into skewed vortex ripples. As the flow evolves,
the ripples grow and eventually coalesce. The computed
wavelengths of the ripples are in good agreement with
available experimental data. In the third phase, the high
fluid velocities wash out these ripples and a layer of rapidly
moving particles forms at the material interface.

According to our numerical predictions, the instanta-
neous granular velocities attain their maximum value at
the material interface whereas away from it they decrease
rapidly to zero. The profiles of these velocities consist of
two segments: a concave one, located in the vicinity of the
material interface, and a slightly convex one, which ex-
tends until the surface of the inclined plane. Comparisons
against previously acquired experimental results that cor-
respond to steady flows yield two results. The qualitative
trend is similar independently of the angle of inclination
and the time that the instantaneous profiles are extracted.
Second, quantitative agreement becomes less favorable as
the flow evolves and as the inclination angle increases. We
can, therefore, conclude that, even though the examina-
tion of the steady flows provides important information
for the unsteady regime as well, it is not sufficient for the
identification of all flow properties.

Finally, we have investigated the effect of the config-
uration stresses to the flow properties via a parametric
study. These are contact forces that are developed be-
tween the grains and do not vanish even in the absence



Page 12 of 12 Eur. Phys. J. E (2015) 38: 40

of shear rates. The results of this parametric study indi-
cate that the configuration stresses have a stabilizing effect
to the flows of interest. More specifically, increasing their
magnitude inhibits the formation of vortex ripples at the
material interface.
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