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Abstract. The paper is devoted to processing the data of DCMIX1 space experiment. In this experiment,
the Optical digital interferometry was used to measure the diffusion and Soret coefficients in the ternary
mixture of 1,2,3,4–tetrahydronaphthalene, isobutylbenzene and n-dodecane at mass fractions of 0.8/0.1/0.1
and at 25 ◦C. The raw interferometric images were processed to obtain the temporal and spatial evolution
of refractive indices for two laser beams of different wavelengths. The method for extracting the diffusion
and thermal diffusion coefficients originally developed for optical beam deflection was extended to optical
digital interferometry allowing for the spatial variation of refractive index along the diffusion path. The
method was validated and applied to processing the data for Soret and diffusion steps in 5 experimental
runs. The obtained results for the Soret coefficients and one of the eigenvalues of diffusion matrix showed
acceptable agreement within each step. The second eigenvalue was not determined with sufficient accuracy.

1 Introduction

Heat and mass transfer in multicomponent mixtures are
rather complicated phenomena due to the presence of sev-
eral transport mechanisms: convection, heat conduction,
diffusion, and thermal diffusion. These phenomena play
an important role in many natural and technological pro-
cesses. In particular, diffusion and thermodiffusion affect
the distribution of components in hydrocarbon deposits
due to the presence of geothermal gradient [1]. Description
and prediction of deposit composition is extremely impor-
tant for their efficient exploitation and oil extraction.

For describing heat and mass transfer in multicom-
ponent mixtures, it is necessary to know the values of
transport coefficients (in particular, diffusion and ther-
mal diffusion coefficients). These properties can be mea-
sured experimentally or estimated with the help of theo-
retical models. Existing models can predict diffusion and
thermal diffusion coefficients for some classes of binary
mixtures with good accuracy. Contrary to that, the the-
ory of transport processes in multicomponent liquid mix-
tures is far from completeness. Experimental verification
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of theoretical models is complicated because of the lack
or even absence of experimental data for mixtures with
three or higher number of components. The development
of measurement methods and accurate data on diffusion
and thermodiffusion coefficients are extremely important
for advancing the theory of transport phenomena in mix-
tures and its applications to natural and technological
processes.

Modern optical methods provide high accuracy of
transport coefficient measurement since they do not dis-
turb the diffusion process [2,3]. The paper [4] is probably
one of the first works, where diffusion and Soret coeffi-
cients in binary mixtures were measured simultaneously
by optical technique (interferometry). A necessary condi-
tion for the application of optical methods is the absence
of convection. The mixture must remain in the stable me-
chanical equilibrium state. It means that the temperature
gradient should be strictly anti-parallel to the gravita-
tional acceleration vector in terrestrial conditions. How-
ever, for mixtures with negative Soret effect, the heav-
ier components move to the warmer areas, which leads
to convective instability in gravity field. Convection may
arise even in the case of potentially stable stratification if
the thermal and diffusion time scales are essentially dif-
ferent [5]. The instabilities of such type can develop in
various experimental configurations. On the Earth, con-
vection could appear in theoretically stable configurations
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due to the imperfectness of experimental setup. Because of
that, the microgravity conditions in orbital research lab-
oratories provide ideal means for investigating transport
processes due to the absence or significant suppression of
gravitational convection [6]. The factors described above
justify the necessity of space experiments.

In 2013, the ESA Topical team “Diffusion in non-
metallic liquids” decided to perform the Benchmark on the
mass transport coefficient measurements in ternary mix-
tures. The goal of this Benchmark is to provide the values
of mass transport coefficients measured in ground labora-
tories and compare them with those obtained in DCMIX1
experiment on the International Space Station (ISS). The
teams from Mondragon Goi Eskola Politeknikoa, Spain,
Ryerson University, Toronto, Canada, Université Libre
de Bruxelles, Belgium, Universität Bayreuth, Germany,
and RAS team consisting of the Institute of Continuous
Media Mechanics UB RAS, Perm, Russia and Institute
of Computational Modelling SB RAS, Krasnoyarsk, Rus-
sia take part in the Benchmark. The mixture chosen for
the Benchmark is 1,2,3,4–tetrahydronaphthalene (THN),
isobutylbenzene (IBB), and n-dodecane (nC12) at mass
fractions of 0.8/0.1/0.1 and at 25 ◦C. Diffusion, thermal
diffusion, and Soret coefficients have been measured in mi-
crogravity and ground conditions. The experimental tech-
niques used in ground laboratories are: Optical beam de-
flection, optical digital interferometry, Taylor dispersion
technique, Thermogravitational column, Sliding symmet-
ric tubes, and Open ended capillary technique. In micro-
gravity conditions, four teams have performed indepen-
dent analysis of the measurements carried out in the SODI
facility on the ISS.

The present paper describes the contribution of the
RAS team to the Benchmark study. The performed data
processing includes two stages: 1) obtaining the fields of
refractive indices by processing raw interferometric images
from DCMIX1 experiment; 2) determining the diffusion
and Soret coefficients from the temporal and spatial evo-
lution of refractive indices.

2 Experimental setup

The experimental setup is based on Selectable Optical Di-
agnostic Instrument (SODI) installed in the Micrograv-
ity Science Glovebox on the International Space Station.
The Optical digital interferometry is used to observe and
record the spatiotemporal variations of composition in op-
tically transparent mixtures.

The setup consists of an array of five Soret cells filled
with different mixtures and a movable optical system able
to traverse all these cells. The additional (companion) cell
is probed with a fixed optical system (fig. 1). The cell array
is enclosed into a thermally stabilized case. Each Soret cell
consists of a rectangular glass chamber of the size 10×10×
5mm fixed between two copper plates thermally stabilized
by the Peltier modules. The plates incorporate thermal
registration, volume expansion compensation, and filling
systems. The cells are prepared and sealed on the ground,
and require no maintenance during space flight.

Fig. 1. Cell array with movable and fixed optical systems.

Fig. 2. Principle scheme of Mach-Zehnder interferometer.

The movable optical system consists of illumination
and imaging blocks. It principally implements the Mach-
Zehnder interferometer (fig. 2). Having equipped with
two laser sources of different wavelengths (670 nm and
935 nm), this system is capable of resolving mixtures
with up to three components. The fixed optical system
is equipped with one laser source of 670 nm and intended
for measurements in a binary mixture, which fills the com-
panion cell.

The interferometer works as follows. The coherent
beam of light emitted by the selected laser source is first
expanded by the collimation device to form a beam with
the size large enough to cover the entire frontal projection
of the experimental cell. Then the beam is split into two
beams by the splitter made of half-silvered mirror. The
resulting beams, namely the reference beam and the sam-
ple beam, follow distinct paths before getting recombined
in another beam splitter right before the imaging device.
The reference beam goes through the thermally stabilized
air and experiences two reflections on the mirrors along
its way. The sample beam goes straight through the se-
lected Soret cell capturing optical inhomogeneities caused
by temperature and concentration variations as well as
other factors. The imaging block comprises an optical sys-
tem followed by a CCD camera, which produces full HD
grayscale images. The camera captures and transfers the
resulting interference images to the computer. The latter
is also used as a storage device.

The entire SODI facility is fully programmable, and
thus requires minimal interference from the ISS personnel.
The program controls various aspects of the experimental
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Fig. 3. Interference images corresponding to homogeneous (a) and non-homogeneous (b) temperature and concentration fields.

runs including the Peltier modules on/off times, mov-
able optical system repositioning, Soret cell and laser
beam selection, image capturing, and storage. The facil-
ity also performs extensive logging by collecting and writ-
ing the telemetry information covering global timings, in-
stant temperature readings inside copper plates around
the Soret cells, Peltier modules power consumption, etc.
The recorded data array was available on the ground after
completion of the entire experimental session upon return
of the ISS mission.

The experiment is performed in two steps. First, the
temperature gradient is applied to the thermally stabi-
lized mixture. The separation of the mixture by thermal
diffusion continues until the stationary state is reached
(the Soret step). After that, the temperature gradient is
removed and the mixture becomes isothermal. Then it is
gradually homogenized by diffusion (the Diffusion step).

3 Data processing

3.1 Processing of interferometric images

The mixture THN/IBB/nC12 with mass fractions
0.8/0.1/0.1 was contained in Cell 3 of the cell array. The
measurements in Cell 3 were repeated 6 times in experi-
mental Runs with numbers 3, 8, 13, 18, 23, 28, which were
performed on the ISS in December 2011 - January 2012.
It was found that Run 13 suffered from a significant loss
of data due to poor quality of optical images, which did
not allow us to extract the values of transport coefficients.
The other runs were processed successfully.

The interference patterns came as raw 8-bit grayscale
images of size 1920×1080. They were grouped in .stk files
by five consecutive images taken within one second. The
exact number of images varied with the runs. For exam-
ple, Run 3 contained 1875 images for the laser beam with
the wavelength of λ = 670 nm (herein referred to as MR)
and 1880 images for the laser beam with the wavelength
of λ = 935 nm (herein referred to as MN). These images
covered approximately 15 hours of experimental time. The
first images in the MR/MN sequence corresponded to the
moment right before the temperature difference was ap-
plied. After skipping consecutive images taken within one
second interval, the filtered image set contained 686 MR
images and 727 MN images.

In order to recover the continuous optical phase field
and subsequently the refractive indices from interference
images, the latter were subjected to the widely known two-
dimensional Fourier filtering method [7, 8]. This method
allows to reconstruct optical phase from a single inter-
ference image in contrast to another widely employed
method, the phase-shifting interferometry [9, 10], which
requires a series of interference images to produce a single
optical phase field.

Two sample interference images for the MR laser are
presented in fig. 3. The first image (a) represents initial
state with homogeneous temperature and concentration
fields. In this case, optically visible inhomogeneity in the
form of equidistant inclined stripes is induced within the
interferometer system itself. The frequency of these stripes
is known as the carrier frequency. It plays the crucial role
in processing method as clarified below. The remaining
visible artifacts are due to non-ideality of optical system
and experimental cell. The second image (b) corresponds
to some instant after the temperature difference was ap-
plied between the top and bottom walls of the cell. It can
be seen that the initially ideal stripe pattern gets curved
to reflect the effect of temperature and concentration in-
homogeneity on optical phase field in the direction normal
to the view plane.

3.1.1 Forward Fourier transform

The forward two-dimensional real-to-complex Fourier
transformation of source image f in the spatial domain
(x, z) (see samples in fig. 3) yields the image spectrum F
in the frequency domain (u,w):

F (u,w) =
∫ ∞

−∞

∫ ∞

−∞
f(x, z) e−2πi(xu+zw) dxdz. (1)

In order to speed up the computation of (1), a discrete
form of the algorithm known as Fast Fourier Transform
(FFT) was employed.

3.1.2 Quadrants exchange

In the image spectrum resulted from the forward Fourier
transform of the source interference pattern (step 3.1.1),
the meaningful data is located in disjoint corner areas.
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Fig. 4. Power spectrum of frequency domain. The rectangle
depicts a general area of interest.

The quadrants exchange operation is employed in order
to join the meaningful frequency data subdomains and
group them around the center of frequency domain. Fig-
ure 4 represents the logarithmic view of power spectrum
of frequency domain corresponding to the sample image
shown in fig. 3(b) after forward Fourier transform and
quadrants exchange operations.

3.1.3 Bandpass filtering

The image spectrum obtained at step 3.1.2 contains two
identical areas symmetrically aligned around the center of
domain and separated by the carrier frequency. Each area
holds complete information about the phase, therefore we
are free to use the either one. In our case, it is the up-
per area. By employing the bandpass filtering, we select
the rectangular window, which covers the area of inter-
est and zero out its exterior. The window’s size and posi-
tion are determined visually from the logarithmic view of
power spectrum image (see fig. 5). The window of choice is
meant to cover sufficient frequency range and is centered
around the local maximum of power spectrum (note the
oval area in fig. 5). It was found that the most suitable
power spectrum image for obtaining the window’s param-
eters is the one coming from the interferometric image of
the last part of Soret step (t > 104 s), where the frequency
range is maximal. The window picked this way is then em-
ployed for bandpass filtering of the entire MN/MR image
sequence.

3.1.4 Carrier frequency removal

The carrier frequency introduced by a tilted mirror within
the Mach-Zehnder interferometer manifests itself as a set
of equidistant strips on an unperturbed interferometric
image (see e.g. fig. 3(a)). This frequency can be easily
determined by applying steps 3.1.1-3.1.2 to this image.
The obtained power spectrum has two outstanding max-
ima (u1, w1) and (u2, w2) symmetrically aligned around
the center of domain (u0, w0). The selected maximum
(u∗, w∗) must correspond to the side of the area selected
at step 3.1.3. The sample maximum is depicted as a cross
in fig. 5.

Fig. 5. Excerpt of power spectrum from fig. 4. The eligible
area for the bandpass filtering is shown by the oval. The carrier
frequency position (u∗, w∗) is marked by the cross.

Fig. 6. Bandpass filtering and carrier frequency removal.

The carrier frequency removal is performed by shift-
ing the entire filtered MN/MR spectra resulting from
step 3.1.3 by (u∗ − u0, w

∗ − w0) pixels. Figure 6 shows
combined effect of applying bandpass filtering and car-
rier frequency removal to fig. 4. The surviving part of the
spectrum is highlighted; the rest is to be zeroed out.

3.1.5 Inverse Fourier transform

The inverse two-dimensional complex-to-complex Fourier
transformation is applied to the filtered image spectrum

f(x, z) =
∫ ∞

−∞

∫ ∞

−∞
F (u,w) e2πi(xu+zw) du dw. (2)

It gives the complex form of the interference image
stripped of the carrier frequency. The inverse mode of FFT
algorithm is employed. Note that f in (2) is a complex field
with both real and imaginary parts containing meaningful
information.

3.1.6 Wrapped phase reconstruction

The wrapped optical phase φ is reconstructed from f as
follows:

φ = arctan
Im f

Re f
. (3)

Figure 7 shows the result of the wrapped phase recon-
struction from the sample image in fig. 3(b).
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Fig. 7. Wrapped optical phase image.

Fig. 8. Cropped part of optical phase image.

3.1.7 Wrapped phase cropping

Phase image cropping is performed to remove unwanted
cell interior captured by the camera as well as phase in-
homogeneities near the sidewalls. The cropped parts cap-
ture the central area of the cells in horizontal direction
and span approximately half of the distance between the
cell side walls. In the vertical direction, the cropping start-
ing and ending points were symmetrically offset from the
heated/cooled boundaries by a few pixels as the bound-
ary errors were found to be the main source of errors for
the resulting refractive indices. The vertical size of the
cropped part was 4.9mm in contrast to the full distance
between the heaters of 5.0mm. The cropped part of fig. 7,
which contains the relevant information, is shown in fig. 8.

3.1.8 Subtraction of reference wrapped phase

To determine the phase change induced by concentra-
tion variations only, the reference wrapped phase φ0 is
selected. This wrapped phase corresponds to the reference
image with homogeneous temperature field (for the Diffu-
sion step) or with linear temperature field (for the Soret
step). The reference wrapped phase φ0 is subtracted from
the current wrapped phase φ. This procedure is applied to
all interference images in the MR/MN sequence. In what
follows, it will be referred to as subtraction of reference
image.

3.1.9 Phase unwrapping

Due to the nature of inverse tangent, the field values ob-
tained from (3) are limited to the interval [−π, π). How-

Fig. 9. Unwrapped optical phase image.

ever, the real optical phase is known to be continuous and
it can extend over this range. In order to remove the dis-
continuities, the process known as the phase unwrapping
is employed. The principal equation of phase unwrapping
is as follows:

(φ − φ0) + 2πk = Δϕ, (4)

where Δϕ is the unwrapped optical phase difference and
k is an integer. The problem reduces to the determina-
tion of the right number k. Figure 9 shows the result of
unwrapping of fig. 8.

In general, phase unwrapping is a non-trivial task, es-
pecially for distorted wrapped images, for which the di-
rect application of eq. (4) yields unsatisfactory results [9].
However, as the resulting wrapped optical phases in our
case are of sufficient quality (see fig. 8), the phase fringes
exhibit a strict horizontal alignment. Since we are inter-
ested in the optical phase difference between different posi-
tions in the vertical direction, a one-dimensional sequen-
tial phase unwrapper in vertical direction has been em-
ployed. The resulting vertical profile of the unwrapped
phase was selected from a full set of vertical profiles cor-
responding to different values of the horizontal coordinate,
see fig. 9. The selected profile is characterized by the min-
imal presence of residual phase discontinuities, which are
considered erroneous due to the smooth nature of the pre-
sumed profile.

3.1.10 Refractive index reconstruction

Finally, the refractive index difference is computed by ap-
plying the following formula

Δn(x, z) =
λ

2πLy
Δϕ(x, z)

to the unwrapped optical phase difference Δϕ from (4).
Here λ is the corresponding wavelength and Ly is the op-
tical path in liquid in the y-direction normal to the view
plane, see fig. 10. The refractive index profiles are com-
puted simultaneously for MN and MR images.

3.2 Determination of transport coefficients

In this section, we describe the method for extracting dif-
fusion, thermal diffusion, and Soret coefficients from the
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Fig. 10. Geometry of the experimental cell.

evolution of refractive index in the experimental cell. This
method was originally developed for optical beam deflec-
tion setup in [11]. In this work, we extend it to optical
digital interferometry and take into account not only the
temporal variation of refractive index, but also its profile
along the diffusion path.

Let us consider a mixture with N components, which
composition is given by C = (C1, . . . , CN−1)T , where T

denotes the transpose (in this case, a column vector). In
the three-dimensional space x, y, z, the diffusive fluxes of
components in the z direction Jz = (Jz1, . . . , Jz,N−1)T

are written as

Jz = −ρD
∂C

∂z
− ρDT

∂T

∂z
. (5)

Similar expressions are valid for x and y directions. Here
T is the temperature, D is the square matrix of (N − 1)2
diffusion coefficients Dij , DT = (DT1, . . . , DT,N−1)T is
the vector of thermal diffusion coefficients, and ρ is the
constant density of the mixture.

In the experiment, the mixture is placed in a rectan-
gular cell with height H (fig. 10). Initially, the mixture
is isothermal and homogeneous, i.e. T = T0, C = C0 =
(C01, . . . , C0,N−1)T . Then the temperature difference ΔT
is applied between the top and bottom walls. As a result,
the temperature gradient appears and causes the concen-
tration gradient due to the Soret effect. Assuming that
the heat and mass transfer occur in the z-direction only,
the governing equations and imposed conditions can be
written as

∂T

∂t
= χ

∂2T

∂z2
, (6)

T (0, z) = T0, T (t, 0) = T0 −
ΔT

2
,

T (t,H) = T0 +
ΔT

2
, (7)

∂C

∂t
= D

∂2C

∂z2
+ DT

∂2T

∂z2
, (8)

C(0, z) = C0,

D
∂C

∂z
(t, 0) + DT

∂T

∂z
(t, 0) =

D
∂C

∂z
(t,H) + DT

∂T

∂z
(t,H) = 0. (9)

Here χ is the thermal diffusivity. When the stationary
state is reached, the temperature and concentration pro-

files become linear in z coordinate:

T = Ts ≡ T0 + ΔT

(
z

H
− 1

2

)
,

C = Cs ≡ C0 − D−1DT ΔT

(
z

H
− 1

2

)
. (10)

The separation of components induced by the temperature
gradient occurs during the Soret step of the experiment. It
is followed by the diffusion step, in which the temperature
difference is removed by setting the wall temperatures to
T = T0. With time, the mixture becomes isothermal, and
concentration gradients gradually diffuse to homogeneous
state. This process is described by eqs. (6) and (8), while
the imposed conditions are given by

T (0, z) = Ts, T (t, 0) = T (t,H) = T0, (11)

C(0, z) = Cs,

D
∂C

∂z
(t, 0) + DT

∂T

∂z
(t, 0) =

D
∂C

∂z
(t,H) + DT

∂T

∂z
(t,H) = 0. (12)

In liquid mixtures, the heat transfer by conduction
occurs much faster than the mass transfer by diffusion.
The ratio of diffusion time to the thermal time has the
order of 100. In this case, the description of Soret step
can be simplified by assuming that the linear tempera-
ture profile (10) is already established before the separa-
tion starts. The diffusion step, in its turn, is supposed to
occur in a completely isothermal mixture. These assump-
tions are violated for small times, where the heat and mass
transfer occur simultaneously. This case will be considered
in more detail later. Under the above assumptions, prob-
lems (8), (9) describing the Soret step can be rewritten as

∂C

∂t
= D

∂2C

∂z2
, C(0, z) = C0,

∂C

∂z
(t, 0) =

∂C

∂z
(t,H) =

ΔCs

H
, (13)

where

ΔCs = (ΔCs1, . . . ,ΔCs,N−1)T ≡ Cs(H) − Cs(0)

= −D−1DT ΔT (14)

is the vector of concentration differences between the top
and bottom walls at the stationary state, see (10). Equa-
tions (8) and conditions (12) for the Diffusion step are
reduced to

∂C

∂t
= D

∂2C

∂z2
, C(0, z) = Cs,

∂C

∂z
(t, 0) =

∂C

∂z
(t,H) = 0. (15)

To solve (13) and (15), we diagonalize the diffusion
matrix by the transformation Λ = P−1DP . Here P is
the matrix, whose columns are eigenvectors of D, and
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Λ = diag{λ1, . . . , λN−1} is the diagonal matrix of eigen-
values. By introducing new concentrations W = P−1C,
problem (13) is reduced to

∂W

∂t
= Λ

∂2W

∂z2
, W (0, z) = W 0,

∂W

∂z
(t, 0) =

∂W

∂z
(t,H) =

ΔW s

H
, (16)

where W 0 = P−1C0 and

ΔW s = P−1ΔCs = (ΔWs1, . . . ,ΔWs,N−1)
T

. (17)

The application of the same procedure to problem (15)
gives

∂W

∂t
= Λ

∂2W

∂z2
, W (0, z) = W s,

∂W

∂z
(t, 0) =

∂W

∂z
(t,H) = 0, (18)

where W s = P−1Cs. Since the matrix Λ is diagonal, each
of the problems (16) and (18) represents a set of N −
1 independent equations and imposed conditions, which
can be solved by the separation of variables [12] in the
same way as for binary mixture [13]. The solution of both
problems can be written in the universal form

W = W 0 + V w, (19)

where
V = diag{ΔWs1, . . . ,ΔWs,N−1} (20)

is the diagonal matrix and w(t, z) = (w1, . . . , wN−1)T is
the vector of functions. For the Soret step (problem (16)),
these functions are given by

wj(t, z) =
z

H
− 1

2
+

4
π2

∞∑
k=0

1
(2k + 1)2

× cos
(

(2k + 1)πz

H

)
exp

(
−(2k + 1)2

t

τj

)
,

while for the Diffusion step (problem (18)) they have the
form

wj(t, z) = − 4
π2

∞∑
k=0

1
(2k + 1)2

× cos
(

(2k + 1)πz

H

)
exp

(
−(2k + 1)2

t

τj

)
,

where τj = H2/π2λj are the relaxation times for diffusion,
j = 1, . . . , N − 1.

In what follows, we will need the concentration differ-
ences between symmetric points with respect to the mid–
height of the cell:

ΔW (t, z′) ≡ W

(
t,

H

2
+ z′

)
− W

(
t,

H

2
− z′

)
=

V Δw(t, z′) = V

(
w

(
t,

H

2
+ z′

)
− w

(
t,

H

2
− z′

))
,

(21)

where Δw(t, z′) = (Δw1, . . . ,ΔwN−1)T , 0 � z′ � H/2,
and (19) was used. For the Soret step, one has

Δwj(t, z′) =
2z′

H
− 8

π2

∞∑
k=0

(−1)k

(2k + 1)2
sin

(
(2k + 1)πz′

H

)

× exp
(
−(2k + 1)2

t

τj

)
, (22)

while for the Diffusion step

Δwj(t, z′) =
8
π2

∞∑
k=0

(−1)k

(2k + 1)2
sin

(
(2k + 1)πz′

H

)

× exp
(
−(2k + 1)2

t

τj

)
, (23)

where j = 1, . . . , N − 1. The concentration differences in
the original variables are found from

ΔC(t, z′) = PΔW (t, z′). (24)

To experimentally observe the evolution of composi-
tion with time, the Optical digital interferometry can be
employed. For a mixture with N components, N − 1 laser
beams of different wavelengths are required. These beams
traverse the entire cell perpendicular to the temperature
gradient (in y-direction, see fig. 10). Both thermal and
compositional fields contribute to the temporal and spatial
evolution of refractive indices n(t, z) = (n1, . . . , nN−1)T .
The thermal contribution can be eliminated by taking the
reference image at the time when linear (homogeneous)
temperature field is established in the case of Soret (Dif-
fusion) step. This reference image is then subtracted from
all subsequent images.

The difference of refractive indices between symmetric
points with respect to the mid-height of the cell is given by

Δn(t, z′) ≡ n

(
t,

H

2
+ z′

)
− n

(
t,

H

2
− z′

)

=
∂n

∂C
ΔC(t, z′). (25)

Here ∂n/∂C is the matrix of contrast factors, i.e. re-
fractive indices derivatives with respect to concentrations
∂ni/∂Cj , i, j = 1, . . . , N − 1. This matrix will be denoted
by NC . With the help of (21) and (24), eq. (25) can be
transformed into

Δn(t, z′) = NCΔC(t, z′) = NCPP−1ΔC(t, z′)

= NCPΔW (t, z′) = KΔw(t, z′),

where the matrix K = NCPV was introduced. The matrix
K and the eigenvalue matrix Λ can be found from the
regression analysis of relation

Δn(t, z′) = KΔw(t, z′). (26)

Here the left-hand side is measured experimentally, while
the vector on the right-hand side represents the analytical
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solution given by (22) and (23) for the Soret and diffu-
sion steps, respectively. Before proceeding to regression
analysis, let us provide formulas for calculating diffusion
and thermal diffusion coefficients from the known K and
Λ. Note that the matrix U = PV = N−1

C K is also an
eigenvector matrix of D. The effect of multiplying P by
a diagonal matrix V is only to change the magnitude of
each eigenvector. Then the matrix of diffusion coefficients
is given by

D = UΛU−1, U = N−1
C K. (27)

The thermal diffusion coefficients are found from (14) with
the help of (17) and (20):

ΔTDT = −DΔCs = −PΛP−1ΔCs

= −UV −1ΛV V −1ΔW s = −UΛI,

where I = (1, . . . , 1)T . It follows that

DT = − 1
ΔT

UΛI. (28)

Taking into account the definition of the Soret coefficients
ST = (ST1, . . . , STN−1)T (see (5))

∂C

∂z
= −ST

∂T

∂z
, ST = D−1DT ,

from (27) and (28) we find

ST = − 1
ΔT

UI. (29)

We now turn to the regression procedure, which al-
lows finding K and Λ from eq. (26). Let the differences
of refractive indices be measured experimentally at time
moments t = tm, m = 1, . . . , M and positions z′ = z′r,
r = 1, . . . , R. Using the notation Δnimr ≡ Δni(tm, z′r)
and Δwjmr ≡ Δwj(tm, z′r), we can rewrite (26) as

Δnimr =
N−1∑
j=1

KijΔwjmr,

i = 1, . . . , N − 1, m = 1, . . . , M, r = 1, . . . , R. (30)

The least squares method is used to find the elements Kij .
The sum of squared errors for beam i is

Ei =
R∑

r=1

M∑
m=1

⎛
⎝N−1∑

j=1

KijΔwjmr − Δnimr

⎞
⎠

2

. (31)

For a given set of eigenvalues λj , this sum reaches a min-
imum when all derivatives ∂Ei/∂Kik = 0:

∂Ei

∂Kik
= 2

R∑
r=1

M∑
m=1

⎛
⎝N−1∑

j=1

KijΔwjmr − Δnimr

⎞
⎠

×Δwkmr = 0, k = 1, . . . , N − 1. (32)

Let us introduce matrices Nr = {Δnimr} and Wr =
{Δwjmr} with the dimension (N − 1) × M . Then rela-
tions (32) can be written in a compact form

R∑
r=1

(KWr − Nr) WT
r = 0,

where WT
r is the transpose of Wr. Solving the above equa-

tion with respect to K gives

K =

(
R∑

r=1

NrW
T
r

) (
R∑

r=1

Wr WT
r

)−1

.

With the matrix K given by this formula, the total sum
of squared errors,

E = E1 + . . . + EN−1, (33)

is a function of eigenvalues λj only. They can be found
by numerical minimization of E. In this work, we use the
Nelder-Mead method [14]. The initial approximation of
eigenvalues can be obtained by estimating the relaxation
times τj = H2/π2λj from the time evolution of the mea-
sured refractive index differences Δni(t,H/2) between the
top and bottom walls of the cell.

Let us now return to the assumption that the linear
temperature profile (see (10)) is already established be-
fore the Soret separation begins. In reality, the separation
starts along with the build-up of temperature gradient. By
the time when the temperature profile is formed, there is
already some separation near the top and bottom walls.
A simple way to correct for this separation was proposed
in [3]. Suppose that the reference image is taken at time
t = t0 from the start of the experiment when the temper-
ature profile is completely established. In this case, rela-
tion (25) can be corrected as follows:

Δn(t, z′) =
∂n

∂C
(ΔC(t0 + t, z′) − ΔC(t0, z′)) .

Then the following equation

Δn(t, z′) = K (Δw(t0 + t, z′) − Δw(t0, z′)) (34)

must be used instead of eq. (26) in the regression analysis
for the Soret step. For the diffusion step, the reference im-
age corresponds to the isothermal state, which is reached
at time t = t0 after setting the same temperatures at top
and bottom walls. In this case, eq. (26) must be modified
as follows:

Δn(t, z′) = KΔw(t0 + t, z′). (35)

The initial separation can be calculated precisely by solv-
ing heat transfer problem (6), (7) and using the obtained
solution to solve mass transfer problem (8), (9). However,
the absence of a simple analytical solution for the con-
centration fields in this case would make the regression
analysis complicated and time consuming.
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Table 1. Eigenvalues of diffusion matrix, diffusion, thermal diffusion, and Soret coefficients for ternary mixture nC12 (1),
IBB (2), THN (3) with equal mass fractions 1/3 at 25 ◦C [16].

λ1 λ2 D11 D12 D21 D22 D′
T1 D′

T2 ST1 ST2

10−10 m2/s 10−10 m2/s 10−12 m2/sK 10−3 1/K

6.81 11.00 6.70 0.43 −1.08 11.10 −0.81 −0.93 −1.15 −0.95

Table 2. Contrast factor matrices used in the test calculations. Matrix 1 is taken from [16] and corresponds to the lasers with
wavelengths 633 nm (1) and 405 nm (2) for ternary mixture nC12 (1), IBB (2), THN (3) with equal mass fractions 1/3 at 25 ◦C.

Matrix ∂n1/∂C1 ∂n1/∂C2 ∂n2/∂C1 ∂n2/∂C2 Condition number K
1 −0.1201 −0.0495 −0.1431 −0.0475 29

2 −0.1428 −0.0487 −0.1431 −0.0475 245

The Soret coefficients can be determined not only from
transient state, but also from the stationary state. It fol-
lows from (26) that the difference of refractive indices be-
tween the top and bottom walls at the stationary state is
given by

Δns ≡ Δn(∞,H/2) = KΔw(∞,H/2) = KI. (36)

With a help of (29) and (36), the Soret coefficients can be
expressed via Δns

ST = − 1
ΔT

N−1
C Δns. (37)

For reliable determination of transport coefficients
from formulas (27)-(29), (37), the contrast factor matrix
NC = ∂n/∂C must be well conditioned. Otherwise, small
errors in the elements of K will result in large errors in
the elements of U and, correspondingly, in the transport
coefficients. The conditioning of an arbitrary matrix A is
characterized by the condition number K, which can be
calculated as [15]

K =
(
|λmax|
|λmin|

)1/2

, (38)

where λmax and λmin are the maximal and minimal (by
moduli) eigenvalues of the matrix AT A (provided that L2

norm is used). The smaller is the condition number, the
less error amplification is expected after multiplying A−1

by the input data (vector or matrix).

4 Validation of the method

To validate the proposed method for extracting the trans-
port coefficients from the experimental data, we have
performed tests with ternary mixture of nC12 (1), IBB
(2), THN (3) with equal mass fractions (1/3). The dif-
fusion, thermal diffusion, and Soret coefficients for this
mixture were measured by optical beam deflection tech-
nique in [16]. To follow the notation of the latter work,
the thermal diffusion coefficients are denoted by D′

Ti in-
stead of DTi, i = 1, 2. The obtained values are pre-
sented in table 1. Two laser beams with wavelengths of

633 nm (1) and 405 nm (2) were used. The correspond-
ing contrast factors are given in table 2 (see Matrix 1
with condition number 29). To provide additional test-
ing of the method, we have also used Matrix 2 with
much higher condition number of 245. The latter was ob-
tained from the former by changing the derivatives of n1

with respect to C1 and C2. The temperature derivatives
of refractive indices are ∂n1/∂T = −4.574 × 10−4 and
∂n2/∂T = −4.892 × 10−4 [16].

The input data for the tests were obtained on the basis
of eq. (25), where the analytical solution with parameters
given in tables 1 and 2 was used. The applied temperature
difference was ΔT = 10K. The normally distributed ran-
dom noise with the standard deviation of σΔn = 5× 10−6

and zero mean was added to the refractive index curves.
This noise can be associated with the typical tempera-
ture deviation δT = 0.01K from the prescribed values at
the top and bottom walls, and, correspondingly, from the
linear profile in the experimental cell [3]. It leads to the
deviation of refractive index δn = (∂n/∂T ) δT = 5×10−6,
where we put ∂n/∂T = 5 × 10−4 for simplicity. The
height of the cell is taken as H = 5mm, so the relaxation
times calculated from the eigenvalues given in table 1 are
τ1 = 3720 s and τ2 = 2303 s.

The obtained curves for refractive index differences on
the time interval (0, τ), where τ = 10τ1, are shown in
fig. 11(a) and (b) for contrast factor Matrices 1 and 2,
respectively. The total number of sample points in time is
M = 200 with 100 evenly distributed points on each of the
intervals (0, τ/3) and (τ/3, τ). The solid lines in fig. 11(a)
correspond to the fitted analytical solution for R = 100
sample points in space. The curves for Δn1 and Δn2 are
clearly separated from each other when Matrix 1 with low
condition number 29 is used. The use of Matrix 2 with
high condition number 245 leads to the situation when
these curves almost coincide. In this case, a significant
loss of precision in determination of transport coefficients
can be expected.

The results of data processing are presented in ta-
bles 3 and 4 for contrast factor Matrices 1 and 2, re-
spectively. For each number of points R taken along the
diffusion path, 10 runs were performed with different ran-
dom noise. For any given quantity q, the mean value q,
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Fig. 11. The evolution of the differences of refractive indices Δn1 (red) and Δn2 (blue) with time at different positions for
contrast factor Matrix 1 (a) and Matrix 2 (b). Solid lines correspond to the fitted analytical solution.

Table 3. Results of calculations for contrast factor Matrix 1 with K = 29. For a given quantity q, q is the average value over 10
runs, s is the bias-corrected standard deviation, s/q is the relative standard deviation, and q/q is the relative error with respect
to the exact value q.

Points λ1 λ2 D11 D12 D21 D22 D′
T1 D′

T2 ST1 ST2

R 10−10 m2/s 10−10 m2/s 10−12 m2/s K 10−3 1/K

1 s/q, % 3.1 10.8 3.3 87.8 91.8 10.7 1.2 3.2 0 1.1

q/q, % −0.9 0.3 −0.1 −4.7 −9.3 −0.1 0 1.1 0 0

10 s/q, % 1.2 4.6 1.8 50 28.6 4.3 1.2 2.2 0 0

q/q, % −0.3 −0.6 −0.1 −2.3 −9.3 −0.6 0 0 0 0

100 q 6.80 10.99 6.71 0.41 −1.03 11.09 −0.81 −0.93 −1.15 −0.95

s 0.03 0.20 0.04 0.05 0.15 0.20 0 0.01 0 0

s/q, % 0.4 1.8 0.6 12.2 14.6 1.8 0 1.1 0 0

q/q, % −0.1 −0.1 0.1 −4.7 −4.6 −0.1 0 0 0 0

Table 4. Results of calculations for contrast factor Matrix 2 with K = 245. For a given quantity q, q is the average value over
10 runs, s is the bias-corrected standard deviation, s/q is the relative standard deviation, and q/q is the relative error with
respect to the exact value q.

Points λ1 λ2 D11 D12 D21 D22 D′
T1 D′

T2 ST1 ST2

R 10−10 m2/s 10−10 m2/s 10−12 m2/sK 10−3 1/K

1 s/q, % 3.4 11.9 115 348 386 162 8.9 20.8 1.7 5.3

q/q, % −1 0.2 50.9 −1012 −332 −31.1 −2.5 8.6 0 0

10 s/q, % 1.5 5.8 43.2 231 207 19.4 6.3 13.5 0.9 3.2

q/q, % −0.6 −1.4 −14 233 26.9 6.9 −1.2 3.2 0 −1.1

25 s/q, % 1 4.4 2.5 250 74.6 4 2.5 6.1 0.9 2.1

q/q, % 0.1 1.1 0.9 −62.8 −41.7 0.6 −2.5 5.4 0 0

50 s/q, % 0.6 2.5 1.5 113 75 2.5 1.3 5.2 0 1.1

q/q, % −0.1 −0.4 0.6 −44.2 −40.7 −0.7 −1.2 4.3 0 −1.1

100 q 6.80 10.99 6.75 0.27 −0.73 11.05 −0.80 −0.96 −1.15 −0.94

s 0.03 0.22 0.07 0.19 0.39 0.22 0.01 0.03 0 0.01

s/q, % 0.4 2 1 70.4 53.4 2 1.3 3.1 0 1.1

q/q, % −0.1 −0.1 0.7 −37.2 −32.4 −0.5 −1.2 3.2 0 −1.1
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Fig. 12. Distribution of Soret coefficients ST1 and ST2 obtained from stationary refractive index differences and contrast factors
with the added noise. Results for contrast factor Matrix 1 (a) and Matrix 2 (b). The black point corresponds to the mean values
given in table 1. The data of plot (a) are shown in black color on plot (b).

the bias-corrected standard deviation s, the relative stan-
dard deviation s/q (%), and the relative error q/q (%)
with respect to the exact value q were calculated. One can
see that the use of Matrix 2 with high condition number
leads to a significant increase of relative errors and stan-
dard deviations in comparison with the results for Matrix
1, which has low condition number. The list of transport
properties, from most to least sensitive to errors, is as
follows: the cross-diffusion coefficients, main diffusion co-
efficients, thermal diffusion coefficients, eigenvalues, Soret
coefficients. Increasing the number of points along the dif-
fusion path can greatly improve the quality of results even
in the case of ill-conditioned contrast factor matrix. In par-
ticular, for Matrix 2 with R = 100 the precision is very
good for all transport properties except the cross-diffusion
coefficients.

Let us now validate the determination of Soret coef-
ficients from refractive index differences in the station-
ary state according to formula (37). To do this, we cal-
culate Δns1, Δns2 from the values of Soret coefficients
given in table 1 and add normally distributed random
noise with the standard deviation σΔn = 5 × 10−6 and
zero mean. To take into account possible errors in the
determination of contrast factors, the normal noise with
the standard deviation σn = 10−4 is added to them as
well (it corresponds to the relative standard deviation of
0.07–0.21%, which is realistic [16]). The results of simu-
lation, where the Soret coefficients were determined from
104 pairs of Δnsi values, are shown in fig. 12. The use of
Matrix 1 with low condition number leads to the following
values of Soret coefficients and their standard deviations:
ST1 = (−1.15± 0.03)× 10−3 K−1, ST2 = (−0.95± 0.07)×
10−3 K−1. In the case of Matrix 2 with high condition
number, the results are ST1 = (−1.15± 0.20)× 10−3 K−1,
ST2 = (−0.96 ± 0.58) × 10−3 K−1. Note that the vari-
ations of coefficients are not independent and populate
some domain on the plane (ST1, ST2), see fig. 12. This
domain appears when the linear transformation with the
matrix −ΔT−1N−1

C is applied to the square (Δns1±3σΔn,

Δns2 ± 3σΔn), which contains more than 99% of all sim-
ulated points. The form of domain is also affected by the
variations of contrast factors (in the considered case, their
influence is rather small). For Matrix 2, the resulted do-
main has the form of a line due to the large condition num-
ber, which is related to the ratio of maximal and minimal
eigenvalues according to (38). Comparison between steady
and transient state methods for the determination of Soret
coefficients shows that the latter method is much more ro-
bust since fitting of refractive index differences smoothes
the experimental curves and eliminates most of random
errors.

5 Results and discussion

In this section, we present the results of data processing
and transport coefficient determination for DCMIX1 ex-
periment with the mixture THN (1), IBB (2), nC12 (3)
with mass fractions 0.8/0.1/0.1 at 25 ◦C. Here the num-
bering of components is different from that used in sect. 4
and corresponds to the decrease of density. The mixture
was contained in Cell 3 of the cell array with the height
of H = 5mm. We have processed Soret and Diffusion
steps for 5 experimental runs with numbers 3, 8, 18, 23,
28. It was not possible to extract the values of transport
coefficients from Run 13 due to poor quality of optical im-
ages. The contrast factor matrix for the two lasers with
wavelengths 670 nm (1) and 935 nm (2) is presented in ta-
ble 5 [17]. It has a rather large condition number K = 241.

Let us first provide a detailed description of results
for Run 3. The time sequence of this run was as follows.
The mixture was first kept for 2 hours in isothermal con-
ditions at the temperature of 25 ◦C (thermalization step).
The interferometric images were recorded during the last
30 minutes of this step. Then the temperature difference
ΔT = 10K was applied. The readings of thermocou-
ples at the top and bottom walls show how the tempera-
ture regime was established, see fig. 13(a). The Soret step
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Table 5. Contrast factor matrix for the lasers with wavelengths 670 nm (1) and 935 nm (2) for ternary mixture THN (1), IBB
(2), nC12 (3) with mass fractions 0.8/0.1/0.1 at 25 ◦C [17].

∂n1/∂C1 ∂n1/∂C2 ∂n2/∂C1 ∂n2/∂C2 Condition number K
0.142741 0.088676 0.137344 0.083753 241

Fig. 13. The establishment of temperatures at the top and bottom walls in the beginning of Soret step (a) and diffusion step
(b), Run 3.

Fig. 14. The evolution of the differences of refractive indices Δn1 (red) and Δn2 (blue) with time at different positions during
Soret and diffusion steps, Run 3.

lasted for 32295 seconds. Then the temperature difference
was removed (fig. 13(b)), and the diffusion step contin-
ued for 21499 seconds. The evolution of refractive index
differences Δn1 and Δn2 with time at different positions
is shown in fig. 14. These curves were obtained by tak-
ing the reference image at the isothermal state (t = 0 in
fig. 13(a)) and subtracting it from the subsequent images.
Note that the original data for Δn1 and Δn2 contained
different numbers of points in time. To provide a set of
M points taken at the same time moments as required by
eq. (30), linear interpolation of data was used. The curves
for Δn1 and Δn2 practically coincide due to the large
condition number of the contrast factor matrix. Note that
these curves describe the change of refractive indices in-

duced by the changes of temperature and concentration
of the mixture components.

To separate the concentration contribution for the
Soret step, we took the reference image at time t0 = 193 s
and subtracted it from all subsequent images. The optical
data and thermocouple readings (fig. 13(a)) suggest that
the linear temperature profile is already established by
this moment of time. The chosen offset time corresponds
to 7.6 τth, where τth = H2/π2χ is the relaxation time for
temperature and χ is the thermal diffusivity (typical value
for liquids χ = 10−7 m2/s is assumed). The evolution of
Δn1 and Δn2 during the Soret step is shown in fig. 15(a).
One can see that the steady-state separation is not com-
pletely achieved. The resulting curves for the diffusion step
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Fig. 15. The evolution of the differences of refractive indices Δn1 (red) and Δn2 (blue) with time at different positions during
the Soret step (a) and diffusion step (b), Run 3. The zero-time moment corresponds to 193 s for the Soret step and to 32487 s
for the diffusion step, see figs. 13 and 14. Solid lines correspond to the fitted analytical solution.

Table 6. Results of calculations for Run 3 with different numbers of points R.

Points Soret step Diffusion step

R λ1 λ2 ST1 ST2 λ1 λ2 ST1 ST2

10−10 m2/s 10−3 1/K 10−10 m2/s 10−3 1/K

1 3.09 8.97 1.27 −0.57 2.87 8.43 2.20 −2.12

2 0.37 6.43 1.19 −0.21 2.39 7.31 2.08 −1.95

4 0.38 6.38 1.06 −0.31 2.26 7.15 1.87 −1.61

8 0.37 6.34 1.22 −0.28 2.16 7.06 1.79 −1.48

16 0.36 6.32 1.44 −0.64 2.05 6.95 1.71 −1.36

23 0.36 6.30 1.20 −0.24 2.06 6.95 1.69 −1.33

46 0.36 6.29 1.18 −0.22 2.02 6.91 1.67 −1.30

92 0.36 6.29 1.29 −0.39 2.00 6.89 1.66 −1.27

184 0.36 6.29 1.33 −0.47 1.99 6.89 1.65 −1.26

368 0.36 6.29 1.34 −0.48 1.99 6.89 1.65 −1.26

are shown in fig. 15(b). In this case, the reference image
corresponds to the isothermal state (t = 0). The time off-
set t0 = 192 s from the end of Soret step (t = 32295 s) was
taken to ensure that the temperature gradient is removed,
see fig. 13(b).

The results of calculations for Run 3 are shown in ta-
ble 6. The eigenvalues and Soret coefficients were deter-
mined from the data of Soret and diffusion steps for dif-
ferent numbers of points R along the diffusion path. The
total number of points in the z-direction in the images is
736, so the possible values of R correspond to the divisors
of 736/2 = 368. With increasing R, convergence of results
is observed. There is a good agreement between values of
λ2 and ST1 for Soret and Diffusion steps for large R, while
the values of ST2 and especially λ1 disagree.

To understand the reasons of such disagreement, let
us analyze the behaviour of the error function E given
by (31), (33). It is convenient to treat it as a function of
relaxation times τj = H2/π2λj , j = 1, 2. First of all, this

function satisfies E(τ1, τ2) = E(τ2, τ1). When τ1 and τ2 are
exchanged, the columns of matrix K in eq. (26) are ex-
changed as well, so the final expressions for Δn1 and Δn2

remain unaltered. The plots of error function E(τ1, τ2)
for the Soret and diffusion steps in Run 3 are shown in
fig. 16. One can see that this function has a ravine-type
shape. The point corresponding to the minimum of E is
well defined in τ2 direction. At the same time, large vari-
ations of τ1 produce small variations of the error function
E. Thus, τ1 cannot be determined accurately. Due to the
large scattering of results for λ1, we do not provide the val-
ues of diffusion and thermal diffusion coefficients, which
essentially depend on both eigenvalues. The apparent rea-
sons for that are incomplete separation (homogenization)
in the Soret (Diffusion) step and reduced separation due to
non-linearity of temperature field in the y-direction (which
is expected to be the same as in the x-direction, see figs. 7
and 10). Note that the observed separation results from
the concentration field averaged in the y-direction (along
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Fig. 16. The isolines of error function E(τ1, τ2) for the Soret step (a) and diffusion step (b) of Run 3, R = 368. The red dots
correspond to minimum of E, which is reached at τ1 = 70973, τ2 = 4030 for the Soret step and at τ1 = 12740, τ2 = 3679 for
the diffusion step. The corresponding eigenvalues are given in table 6.

Fig. 17. The evolution of refractive index profiles for n1 (a) and n2 (b) with time during the Soret step of Run 3. Solid lines
correspond to the fitted analytical solution.

the optical path). The above uncertainties coupled with
ill-conditioned contrast factor matrix made it impossible
to determine τ1 accurately. Note that the latter reason it-
self could not affect the results so drastically since the test
calculations with ill-conditioned matrix in sect. 4 allowed
us to determine the transport coefficients accurately.

The evolution of refractive index profiles with time
during the Soret step is presented in fig. 17. The exper-
imental data are shown along with the fitted theoretical
curves for R = 368. The fitting is performed with the help
of eq. (34) with t0 = 193 s. The obtained eigenvalues are
given in table 6, while the elements of K matrix are as fol-
lows: K11 = −3.814335×10−4, K12 = −11.114110×10−4,
K21 = −3.572971×10−4, K22 = −10.866410×10−4. Equa-
tion (34) can be written in the form

Δntheor(t0 + t, z′) = Δnexper(t, z′) + Δntheor(t0, z′),
(39)

where Δnexper(t, z′) is the experimentally measured differ-
ence of refractive indices, and Δntheor(t, z′) = KΔw(t, z′)
is the theoretical prediction based on analytical solution.
Equation (39) shows how the experimental data must be
corrected to account for separation during the establish-

ment of temperature gradient. The corrected refractive
index profiles are presented in fig. 18. They are recon-
structed from (39) assuming that the deviations of refrac-
tive indices from those corresponding to the reference im-
age are zero at the mid-height of the cell and profiles are
antisymmetric with respect to the point z = H/2, ni = 0.
The solid lines (points) correspond to the values on the
left-hand (right-hand) side of (39). The profiles shown in
fig. 17 correspond to the first term on the right-hand side
of (39). One can see that the corrected profiles provide
accurate description of separation near the top and bot-
tom walls of the cell. The curves for t = ∞ correspond to
the anticipated separation at the steady state according
to (36).

The summary of obtained results for all runs is pre-
sented in table 7. The Soret coefficient of nC12 is calcu-
lated as ST3 = −ST1 − ST2. The eigenvalue λ2 and the
Soret coefficients ST1, ST2 determined in different runs
within each step show acceptable agreement. However, the
Soret coefficient ST2 obtained from the diffusion step is
almost two times larger in magnitude than that obtained
from the Soret step. Unfortunately, the eigenvalue λ1 can-
not be accurately determined due to large scattering of
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Fig. 18. The evolution of corrected refractive index profiles for n1 (a) and n2 (b) with time during the Soret step of Run 3.
The profiles are corrected to account for the separation during the establishment of temperature regime. Solid lines correspond
to the fitted analytical solution. The curves for t = ∞ correspond to the anticipated separation at the steady state.

Table 7. Summary of results for Soret and diffusion steps. Number of points in space R = 368.

Step Run λ1 λ2 ST1 (THN) ST2 (IBB) ST3 (nC12)

10−10 m2/s 10−3 1/K

Soret 3 0.36 6.29 1.34 −0.48 −0.86

8 0.60 6.78 1.21 −0.27 −0.94

18 0.60 6.82 1.65 −0.97 −0.68

23 0.55 6.56 1.43 −0.64 −0.79

28 0.54 6.77 1.38 −0.51 −0.87

Mean value 0.53 ± 0.10 6.64 ± 0.22 1.40 ± 0.16 −0.57 ± 0.26 −0.83 ± 0.10

Diffusion 3 1.99 6.89 1.65 −1.26 −0.39

8 0.07 6.13 1.24 −0.64 −0.60

18 0.19 6.22 1.56 −1.15 −0.41

23 0.08 6.16 1.52 −1.08 −0.44

28 0.25 6.21 1.47 −1.00 −0.47

Mean value 0.52 ± 0.83 6.32 ± 0.32 1.49 ± 0.15 −1.03 ± 0.24 −0.46 ± 0.08

results. The eigenvalue λ2 and the Soret coefficient ST1

demonstrate good agreement for all runs in both Soret
and diffusion steps. The values of Soret coefficients pro-
vided for the Benchmark correspond to the Soret step. We
think that these results are more reliable since the exper-
imental time of Soret step was 1.5 times larger than that
of diffusion step in all runs. However, fig. 15(a) and fig. 18
show that the complete separation was not achieved even
in the Soret step of extended Run 3. Note that the exper-
imental time in the rest of the runs was smaller than in
Run 3 (around 21500 seconds for the Soret step and 14000
seconds for the diffusion step).

Let us now discuss the experimental error in the Soret
coefficients (see table 7). The largest standard deviation
is obtained for ST2 (IBB), the medium one corresponds to
ST1 (THN), while the smallest one is found for ST3 (nC12).

Due to a small number of available experimental runs,
one may ask whether the obtained standard deviations
give a reliable estimation of experimental error. Note that
real experimental measurements contain not only random,
but also systematic errors, which cannot be eliminated by
fitting analytical solution to the experimental data (as it
was done in sect. 4).

The impact of errors on the stationary values of Δns,
which are related to the fitted matrix K by formula (36),
can be estimated by performing simulations on the ba-
sis of eq. (37) with the prescribed level of noise in Δns.
To estimate the level of noise, we analyzed the refractive
index differences Δn1(t, z′) and Δn2(t, z′), 0 < z′ < H/2
during 30 minutes before the start of experiment (thermal-
ization step). In the absence of temperature and concen-
tration gradients, these differences should be ideally zero.
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Table 8. Mean values and standard deviations of refractive in-
dex differences Δn1(t, z

′) and Δn2(t, z
′) during thermalization

step at 25 ◦C.

Run Δn1 × 106 Δn2 × 106

3 0.30 ± 2.80 0.34 ± 2.35

8 −0.01 ± 3.01 0.68 ± 3.88

18 0.09 ± 2.65 1.16 ± 3.10

23 1.36 ± 3.29 0.21 ± 4.19

28 −0.61 ± 3.07 0.90 ± 3.17

Average 0.23 ± 2.96 0.66 ± 3.34

Fig. 19. The values of Soret coefficients ST1 and ST2 measured
in Soret step of different runs and distribution of these coef-
ficients obtained from stationary refractive index differences
with the added noise.

The recorded fluctuations show the typical level of noise,
whose statistical characteristics are presented in table 8.
Based on these data, we performed simulation on deter-
mining the Soret coefficients from eq. (37). The normally
distributed noise with the standard deviation 3×10−6 and
zero mean was added to the values of Δn1s and Δn2s,
which correspond to the mean values of ST1 and ST2 for
the Soret step in table 7 (104 points were taken). The
obtained distribution of Soret coefficients and the results
from real experimental runs are shown in fig. 19. The simu-
lation provided the following results: ST1 = (1.38±0.17)×
10−3 K−1, ST2 = (−0.54±0.28)×10−3 K−1. The obtained
standard deviations are very close to those given in table 7.
If the noise in contrast factor matrix NC with standard
deviation 10−4 is taken into account, the deviations be-
come somewhat larger: ST1 = (1.38 ± 0.19) × 10−3 K−1,
ST2 = (−0.55±0.32)×10−3 K−1. Note that the simulated
and measured variations of Soret coefficients are not in-
dependent. They show a linear correlation due the large
condition number of contrast factor matrix (see fig. 19 and
discussion in sect. 4).

6 Conclusion

In this paper, we have processed the data of space ex-
periment DCMIX 1, which is devoted to the measurement
of diffusion and Soret coefficients for ternary mixture of
1,2,3,4-tetrahydronaphthalene, isobutylbenzene and n-do-
decane at mass fractions of 0.8/0.1/0.1 and at 25 ◦C. The
measurements were performed on the ISS with the help
of optical digital interferometry. The raw interferometric
images were processed to obtain the temporal and spatial
evolution of refractive indices for two laser beams of differ-
ent wavelengths. The method for extracting the diffusion
and thermal diffusion coefficients originally developed for
Optical beam deflection was extended to optical digital in-
terferometry allowing for the spatial variation of refractive
index along the diffusion path. The method was validated
and applied to processing the data for Soret and diffu-
sion steps in 5 experimental runs. The obtained results
for the Soret coefficients and one of the eigenvalues of dif-
fusion matrix showed acceptable agreement within each
step. The second eigenvalue was not determined with suf-
ficient accuracy.

This work was performed in the frame of DCMIX project
(ESA-Roscosmos) and supported by FGUP TSNIIMASH. The
authors are grateful to A. Mialdun, V. Shevtsova, and W.
Köhler for useful discussions.
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