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Abstract. We used a direct imaging technique to investigate concentration fluctuations enhanced by ther-
mal fluctuations in a ternary mixture of methanol (Me), cyclohexane (C), and partially deuterated cyclo-
hexane (C*) within 1 mK above its consolute critical point. The experimental setup used a low-coherence
white-light source and a red filter to visualize fluctuation images. The red-filtered images were analyzed off-
line using a differential dynamic microscopy algorithm that allowed us to determine the correlation time,
τ , of concentration fluctuations. From τ , we determined the mutual mass diffusion coefficient, D, very near
and above the critical point of Me-CC* mixtures. We also numerically estimated both the background and
critical contributions to D and compared the results against our experimental values determined from τ .
We found that the experimental value of D is close to the prediction based on Stokes-Einstein diffusion
law with Kawasaki’s correction.

1 Introduction

In this work, we determined the mutual mass diffusion
coefficient, D, for a density-matched ternary mixture of
methanol (Me), cyclohexane (C), and partially deuterated
cyclohexane (C*) within 1mK above its consolute critical
point using a microscopy direct imaging setup.

Critical fluctuations in density-matched systems

A strong limiting factor in fluctuation visualization near
critical point is the gravitational field that leads to sedi-
mentation and convection, which reduce both the duration
and the spatial extent of critical fluctuations. One possi-
ble solution is to use a density-matched mixture such that
the density of one phase is as close as possible to the den-
sity of the other phase. In this work, we used a density-
matched ternary mixture of methanol (Me), cyclohexane
(C) and deuterated cyclohehane (C*). Since the density
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of methanol (ρMe = 0.78647 g/cm3) is slightly larger than
that of cyclohexane (ρC = 0.77354 g/cm3), methanol and
cyclohexane (Me-C) system can be initially prepared with
nearly matched densities. By adding a small amount of
deuterated cyclohexane (C*), which has a density larger
than that of methanol (ρC∗ = 0.88717 g/cm3), it is pos-
sible to create a density-matched system of Me-CC* [1]
such that the density of C+C∗ phase matches the den-
sity of methanol by tuning the density difference between
methanol and cyclohexane. In Me-CC* mixtures, the den-
sity difference between methanol and cyclohexane is tun-
able via the deuteration ratio C∗/(C∗+C). Furthermore,
the value of thermal expansion coefficient of methanol
(αMe = −1.20 · 10−3 K−1) is close to that of cyclohexane
(αC = −1.27 · 10−3 K−1), which would allow maintaining
the density match over a relatively wide range of temper-
atures. To our knowledge, the only Earth-based experi-
ment that investigated Me-CC* mixtures near the conso-
lute critical point was performed by Houessou et al. [1].

Using a microscopy imaging method, we carried out
experiments with such a Me-CC* mixture to investigate
concentration fluctuations within 1 mK above its conso-
lute critical point and to estimate the mutual mass diffu-
sion coefficient D of this ternary mixture (see sect. 2).
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Universality classes

Houessou et al. [1] showed that the ternary mixture of
methanol (Me), cyclohexane (C), and deuterated cyclo-
hexane (C*) has the same critical behavior as the bi-
nary mixture Me-C. For example, the critical exponent
βMe-CC∗ = 0.322 ± 0.002 in Me-CC* critical mixtures, al-
though slightly smaller than in critical Me-C binary mix-
ture (βMe-C = 0.334 ± 0.004), it is close to the theoreti-
cally predicted value β = 0.325. Beysens et al. [2] carried
out a similar experiment using the ternary mixture Me-
CC* under microgravity conditions and also found that
it behaves as the binary mixture Me-C with respect to
the phase transition phenomena. For example, based on
measurements of both the osmotic susceptibility, χ, and
the correlation length, ξ, at criticality, they established
that the ternary mixtures Me-CC* belongs to the same
universality class as the binary mixture Me-C. Further-
more, they found that their microgravity experiments with
density-matched Me-CC* mixtures gave the same results
as the Earth-based experiments carried out by Houes-
sou et al. [1]. Critical behavior and scaling exponents ob-
tained with density-matched Me-CC* mixtures [1,2] also
match the results obtained by Knobler and Wong [3] with
density-matched binary mixtures of isobutyric acid and
water near their consolute critical point. These findings
support the conclusion that the ternary mixture of Me-
CC* and binary mixtures belong to the same universality
class of the so-called 3D-uniaxial Ising-like systems [4].

Order parameter

Second-order phase transitions are characterized by a con-
tinuous first derivative of Gibbs free energy and an or-
der parameter, M , that describes the degree of order of
the thermodynamic system that undergoes such a transi-
tion [4,5]. As shown by Griffiths and Wheeler [6], an ap-
propriate choice of the order parameter in binary mixtures
near a liquid-liquid consolute critical point is the distance
to critical concentration cc, i.e. M = Δc = c − cc (at
constant pressure). A fluid mixture consists of partially
miscible (soluble) components below a certain (critical)
temperature, Tc, and completely miscible above it. Above
Tc, thermal motion prevents phase separation to occur and
the system is homogeneous. When the temperature, T , ap-
proaches its critical value, Tc, it is convenient to use the
reduced temperature, ε = |T −Tc|/Tc, to express the tem-
perature dependence of thermophysical properties as well-
known power laws. For example, near Tc, the fluctuation
correlation length, ξ, scales as ξ0ε

−ν , with ν = 0.63 [7–9].
Critical exponents, such as the correlation length criti-
cal index, ν; and the system-dependent amplitudes, such
as the correlation length constant, ξ0, have been deter-
mined in various ways, especially for the Me-CC* case [1].
We used such power laws for mutual mass diffusion co-
efficient D within 1 mK above its consolute critical point
to compare our experimentally determined Dexp against
theoretical predictions (see sect. 4).

Direct imaging

Large and correlated fluctuations of the order parameter
take place at critical point. Such fluctuations cover length
scales from atomic level to microns and are determined
by the distance to the critical point according to the scal-
ing law ξ = ξ0ε

−ν . At the same time, the spectrum of
relaxation times of critical fluctuations range from micro-
scopic times (10−12 s) up to a 103 s. Fluctuations can be
probed experimentally using direct imaging or light scat-
tering techniques [10,11]. Direct imaging techniques de-
liver detailed information on the local structure and dy-
namics of the sample by providing access to real space im-
ages. Scattering techniques provide a statistical character-
ization of the sample as a whole in the reciprocal (Fourier)
space through the angular and time dependence of the
scattered light intensity. Usually, direct imaging methods
use non-coherent white-light sources, while scattering ex-
periments use lasers since a certain degree of coherence
of the light source is required. Some experimental setups
combined direct imaging with dynamic light scattering
(DLS) and took advantage of the complementary infor-
mation provided by the two techniques [12,13]. Visualiza-
tion of microscopic fluctuation through direct imaging can
be achieved by using a standard white-light microscope
and a digital video camera [10–13]. Fourier analysis of
recorded images allows access to statistical information re-
garding sample dynamics [10,11]. The microscopy method
that combined direct imaging with light scattering was
called differential dynamic microscopy (DDM) [10,11].
The DDM technique has been extensively used, for exam-
ple, to improve the conventional video tracking method for
bacteria [14,15], was combined with confocal microscopy
for fluorescent samples to access statistical information re-
garding the dynamics of samples [16], and was applied to
anisotropic colloidal suspensions to extract orientational
order parameter and diffusion coefficients [17].

In this work, we used a microscopy direct imaging
method with a low-coherence white-light source and a
CCD camera to record concentration fluctuations near the
consolute critical point of Me-CC* (see sect. 3). The ex-
perimental setup of the direct imaging technique used here
is similar with the standard DMM [10,11]. We performed
off-line analysis of time sequences of fluctuating images
using Fourier transforms to extract quantitative informa-
tion on the dynamics of the system, such as the mutual
mass diffusion coefficient.

2 Experimental setup

Sample cell unit and mixing

Me-CC* mixture was placed between two 8.5mm thick
and 10mm diameter sapphire windows separated by a
gold-coated 3mm thick brass spacer [18,19]. The sample
was placed in a larger copper housing of diameter 6 cm
and length 6 cm. The copper housing of the cell contains
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Fig. 1. (a) The optical microscopy setup used for direct imaging of Me-CC* ternary mixture (not to scale). A halogen white-light
source and a collimator (lenses L1 and L2) produced a beam of light that was focused by an achromatic high-quality Olympus
Zuiko 50 mm f/1.8 compound lens (L3) on a Sony XC-75CE CCD camera. Concentration fluctuations in the sample scattered
the beam of light producing fluctuation in the recorded light intensity. (b) Direct imaging of phase-separated Me-CC* using
bright field technique without the red filter.

two thermistors for temperature measurement and con-
trol. To avoid local heating from the thermistors, tem-
perature measurements are never taken more often than
every 30 seconds.

To reduce sedimentation and prevent convective flows,
we used a density-matched mixture of Me-CC* with a
critical concentration cc = 71% cyclohexane by weight
or mass fraction for which the critical temperature was
Tc = 46.640 ◦C (see also ref. [1] for a detailed description
of a ground-based experiment with density-matched Me-
CC* and ref. [20] for a similar experiment with a critical
mixture of Me-C very close to consolute critical point).
The sample cell unit was filled to a slightly off critical
concentration |c−cc| = 0.010±0.002, which is well within
the concentration range |c − cc| < 0.05 where fluctua-
tions are visible [1,21,22]. Although Me-CC* allows the
density to be precisely matched, when quenched below
Tc = 46.640 ◦C, slow sedimentation of the phase-separated
droplets is still clearly visible in the microscopic field of
view after several hours.

Thermostat

The thermal control system used air convection and ra-
diation for heat transfer [18,19]. The cell and the larger
copper housing were placed at the center of an aluminum
cylinder of 18 cm length and 10 cm diameter with a foil
heater glued to its exterior. Heat was continuously applied
to the system with a computer-controlled power supply.
The space between these cylinders was filled with air so
that heat was exchanged with the inner copper housing
only through radiation and convection. Two holes in the
heating cylinder, aligned with the optical axis of the cell,
allowed light to enter and leave the sample fluid. To pre-
vent convective cooling of the sample cell windows, these
holes were closed at both ends by optical windows. To pro-
vide a constant ambient temperature for the inner cylin-
der, two more thermal shields made of polystyrene of 7 cm
thickness surrounded the heating cylinder. The walls of
these rectangular polystyrene boxes were attached with

silicone glue to provide an outer box with inner dimen-
sion 50 cm × 40 cm × 50 cm and an inner box with inner
dimension 24 cm × 24 cm × 30 cm. These boxes provided
two layers of shielding, except for the bottom which had
only one layer, so that the optical support for the heating
cylinder and the magnification lens could fit the boxes.
The temperature of the air between these boxes was also
computer controlled. The heater was placed near the top
of the space between these thermal shields in order to cre-
ate stable temperature gradient in this space such that the
midpoint temperature was at an ambient temperature of
approximately (Tc−5) ◦C, temperature fluctuation within
1 ◦C. The thermostat control could achieve stability as
high as 0.1mK over 12 hours. Therefore, as mentioned
in the Introduction, all the following analyses refer to a
Me-CC* ternary mixture at T = Tc + (1 + 0.1 − 0.3) mK.

Optics

In this work, we used a microscopy direct imaging method
to record liquid-liquid fluctuations [18,19]. Our thermally
shielded heating cylinder was placed on a optical bench
shown schematically in fig. 1a (not to scale). We used a
100W halogen lamp with a short coherence time and a
longitudinal coherence length of ≈ 1μm. As opposed to
high spatial coherence of laser light sources, low-coherence
light sources produce no speckle in the recorded image.
Speckle is generated when an imaging system or a sam-
ple imparts a range of random path length differences,
e.g. due to scattering, in mutually coherent photons that
subsequently interfere at a detector [23]. A red filter was
inserted between the halogen lamp and the collimator
(see fig. 1a) to provide a monochromatic beam of light.
A collimator made of two identical 7.8mm diameter and
50mm focal distance plan-convex lenses L1 and L2 pro-
duces a wide and parallel beam of monochromatic light.
The 0.8mm pinhole of the collimator is at the input focal
point of L2. The central portion of the collimated beam
with a diameter of 1 cm travels through the sample cell
unit (see fig. 1a).
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Fig. 2. (a) Images of equilibrium fluctuations near the consolute critical point of Me-CC* mixture acquired at t = 0 s (a1),
t = 0.04 s (a2), t = 0.4 s (a3), t = 4 s (a4), t = 40 s (a5). The height of the visualized sample was 1.5 mm. The strong background
light and the weak scattering signal make the recorded images of equilibrium fluctuations look similar. (b) Fluctuation images
obtained by subtracting the reference image (a1) from images taken at different delay times Δt = 0.04 s (b1), Δt = 0.4 s (b2),
Δt = 4 s (b3), Δt = 40 s (b4). The subtraction removes the stationary background and emphasizes the local density fluctuations.

The sample cell unit was placed near the focal point of
the high quality Olympus Zuiko 50mm f/1.8 compound
lens L3. The position of Olympus lens L3 was adjusted
with a translation stage such that the field of view was
near the output window of the cell. The sample cell po-
sition is adjusted along the optical axis by moving the
bottom support using the translation stage of the heat-
ing cylinder that also contains the sample cell unit. The
light input to the heating cylinder passes through a small
glass covered hole and the output light travels through
the lens L3. The space between the cylinder and the lens
L3 is filled with a polystyrene spacer that allows for rela-
tive movement along the optical axis of the cell in order
to adjust the position of the object plane. The maximum
scattering angle, limited by the aperture of the Me-CC*
cell, is about θ = 16.7 degrees, which gives an effective
numerical aperture NA = n sin(θ) = 0.29 in air. A 8-bit
monochromatic Sony XC-75CE CCD camera with a chip
sensor of 7.95mm × 6.45mm and 752 pixels × 582 pixels
was placed about 1m from L3. Based on Abbe’s resolution
formulas, the lateral resolution is λ/(2NA) ≈ 1μm for the
red-filtered light used in our experiments. Additionally,
the depth of focus was λ/(2NA)2 ≈ 1.9μm.

The height of the visualized sample was 1.5mm, which
was mapped onto the 582 pixels of the CCD sensor (see
fig. 2a). Since we cropped the rectangular images of 752
pixels × 582 pixels to 512 pixels × 512 pixels, the ac-
tual size of the visualized sample was w ≈ 1.3mm. As
a result, the minimum wave vector in Fourier space was
qmin = 2π/w ≈ 48 cm−1. Given the dimension of the CCD
sensor, it results that the magnification factor of the op-
tical setup shown in fig. 1a was about 4.3. We tested
our optical setup by visualizing images of phase-separated
droplets (see fig. 1b).

Experimental protocol

The cell was first mechanically shaken by hand and then
heated above Tc to approximately 50 ◦C where the Me-

CC* mixture was allowed to sit for at least 12 hours so that
it was thoroughly mixed by diffusion [18,19]. The tem-
perature was then decreased toward the critical point in
steps or temperature quenches, ΔT , that were decreased
in magnitude as we approached Tc. Far from and above
Tc = 46.640 ◦C, we used ΔT = 1K temperature quenches,
whereas closer to Tc the temperature quenches were de-
creased to ΔT = 1mK. Because the quenches often re-
sulted in as much as a 20% undershoot we limited the
temperature quenches to 1mK.

The phase separation was relatively fast, producing
high contrast spatial domains that grew over time (see
fig. 1b), then the consolute critical point could be mea-
sured to within 1mK accuracy by observing the image
after each quench to see if the fluid phase-separated. The
identification of the features in the images was verified
by waiting for over 12 hours. We found that the images
retained the same characteristics and the fluid did not
phase-separate. After each quench, the temperature was
allowed to equilibrate for at least 20 minutes before record-
ing the images of concentration fluctuations.

At each temperature, bright field images were recorded
for about 1 minute at 25 frames per second with and
without a red filter. The recorded video images were time
tagged to correlate with the temperature data that was
also time tagged.

3 Image analysis

Differential dynamic microscopy method

We applied an image processing method developed for
DDM to real space images acquired with the above-
described optical setup (see fig. 2a) in order to investigate
the dynamics of concentration fluctuations near the con-
solute critical point of Me-CC*. In fig. 2a, the signal due
to concentration fluctuations is barely visible because of
the large bright background signal.
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Fig. 3. (a) Equilibrium concentration fluctuations in critical Me-CC* mixture cause an increase of intensity fluctuation variance
σ2(Δt). For small delay times Δt, the variance of intensity fluctuations is small since the images are correlated and a significant
fraction of the scattering signal is also subtracted when removing the stationary background. When the time delay Δt increases,
the two subtracted images become progressively uncorrelated and produced a σ2(Δt) plateau. (b) The azimuthal average of
image structure function C(q, Δt) plotted versus the reduced wave vector q∗ for different values of the delay time Δt = 1.28 s
(squares), Δt = 2.56 s (circles), and Δt = 5.12 s (triangles).

Since the background brings a static contribution to
all spatial images in fig. 2a, by subtracting two images
recorded at different times, Δt, it is possible to elimi-
nate background contribution and emphasize the scatter-
ing contribution to concentration fluctuations. In fig. 2a
the left panel is a reference image that was subtracted
from those taken at later times. The image subtraction
procedure can be repeated for different values of the de-
lay time Δt as shown in fig. 2b. The time-independent
background signal was removed in the difference images
(fig. 2b), which allowed the visualization of the weaker,
small-scale, signal associated with concentration fluctua-
tions.

As discussed in refs. [10,11], the amplitude of the
fluctuation-related signal increases with the delay time Δt,
a dependence that can be quantitatively captured by the
variance of the difference images. A time-delayed fluctua-
tion image ΔI(x, t,Δt) is the difference between two real
space images separated by a delay time Δt and is defined
as

ΔI(x, t,Δt) = I(x, t + Δt) − I(x, t),

where I(x, t) is the intensity detected at the pixel with
position x on CCD camera (see fig. 2b).

Assuming that equilibrium fluctuations are stationary,
i.e. the dynamical properties of the system depend only
on the time delay Δt but not on the actual reference time
t, then ΔI(x, t,Δt) dependence on t can be dropped. As
a result, the expected mean value ΔI(x,Δt) is equal to
zero and the energy content of the intensity fluctuations
can be quantified by the expected variance σ2(Δt), which
is defined as

σ2(Δt) =
∫ ∫

|ΔI(x,Δt)|2dx.

As shown in refs. [10,11], the variance σ2(Δt) of the fluc-
tuating images ΔI(x,Δt) for dynamically active systems
is expected to increase with Δt as a consequence of the

local concentration fluctuations. Figure 3a shows the in-
crease of σ2(Δt) for concentration fluctuations near the
consolute critical point of Me-CC* mixture from a small
background value due to detector noise to a large satura-
tion plateau due to the complete loss of spatial correlation
between successive images.

The principles, advantages, and applications of DDM
technique were explained in depth in refs. [10,11]. In order
to access statistical details regarding the scattered light,
the intensity fluctuations ΔI(x,Δt) obtained from mi-
croscopy direct imaging were analyzed in Fourier space.
Local concentration fluctuations determine refractive in-
dex disturbances that can be Fourier decomposed. Each
Fourier component of the refractive index distribution acts
as a periodic diffraction grating that scatters light. DDM
theory [10,11] established a one-to-one relationship be-
tween the Fourier components of the measured light inten-
sity and the sample refractive index. Dynamical changes
in the sample are determined by computing the image cor-
relation function [10,11]

G(q,Δt) = I∗(q, 0)I(q,Δt),

where I(q,Δt) is the Fourier transforms of I(x,Δt) and
I∗( ) is the complex conjugate of I( ). The normalized im-
age correlation function g(q,Δt) = G(q,Δt)/G(q, 0) is
related to the characteristic diffusion time constant. Croc-
colo et al. [24] showed that a more robust estimator for
the normalized image correlation function can be obtained
through computing the expectated value of the Fourier
power spectrum of light intensity fluctuations:

c(q,Δt) = |I(q,Δt)|2,

which is called the image structure function. In dynamic
light scattering [24], the image structure function c(q,Δt)
is called photon structure function or time-dependent
structure function. In a series of seminal papers on DDM,
Cerbino and Trappe [10] and Giavazzi et al. [11] showed
that, without prior knowledge about the relationship be-
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tween the light intensity and the refractive index fluctua-
tions, the image structure function is generally given by

c(q,Δt) = A(q)[1 − g(q,Δt)] + B(q), (1)

where A(q) includes contributions from the scattering
properties of the sample, the coherence of the light source,
and the details of optical setup. B(q) accounts for the
noise of the detection system. Furthermore, the normal-
ized correlation function g(q,Δt) for Brownian motion is

g(q,Δt) = e−Δt/τ(q), (2)

where τ(q) = (Dq2)−1 is the characteristic diffusion time
and D is the diffusion coefficient. The above eq. (1)
for white-light direct imaging is strikingly similar to the
equation for the time-dependent structure function from
DLS [24]. However, as proved by Cerbino and Trappe [10],
the coefficient A(q) has a very complex expression and
both its derivation and meaning for non-coherent light
are significantly different from the derivation of the sim-
ilar coefficient obtained by Trainoff and Cannell [25] for
DLS.

Cerbino and Trappe [10] showed that previous knowl-
edge of A(q) and B(q) is not necessary for performing
direct imaging experiments. We used eq. (1) with A(q),
B(q), and τ(q) as fitting parameters to extract the corre-
lation time of fluctuations from the image structure func-
tion. Additional information, such as the mutual mass dif-
fusion coefficient D, was then extracted from the fluctua-
tion correlation time τ(q) (see refs. [10,11]).

Because of the azimuthal symmetry exhibited by the
image structure function c(q,Δt), we only retained and
used its azimuthal average over thin rings with a width of
qmin = 2π/w ≈ 48 cm−1 (see fig. 3b):

C(q,Δt) = c(q,Δt)|q|.

The azimuthal average of image structure function
C(q,Δt) was truncated at q∗ = 50 arb. units (q =
qminq∗ ≈ 2381 cm−1) to eliminate the contribution of the
very large zero order of the power spectrum that over-
shadowed the rest of the image structure function. In-
stead of using an opaque circular mask in Fourier space to
remove the zero-order component, others used a Fourier
mask that allowed a smooth decrease to zero of the image
structure function [11]. The dynamics of the system can
be revealed analyzing the behavior of the image structure
function C(q,Δt) as a function of Δt. Typical C(q,Δt)
plots versus the delay time are presented in fig. 4a for
different wave vectors q. Regardless the method used for
eliminating the contribution of the very large zero order of
the power spectrum from the azimuthal average of image
structure function C(q,Δt), the area under the curve, i.e.
the variance σ2(Δt), increases with Δt, as seen in fig. 3a.

We extracted the three fitting parameters A(q), B(q),
and τ(q) based on eq. (1). Similar to DLS experiments,
we also plotted in fig. 4b the normalized correlation func-
tion g(q,Δt) that shows a fair exponential decay of the
normalized correlation function of fluctuations. Our data
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Fig. 4. (a) Evolution of the azimuthal average of image struc-
ture function, C(q, Δt), as a function of the delay time Δt for
three different values of wave vector q∗ = 256 (black squares),
q∗ = 192 (red circles), and q∗ = 160 (blue triangles). (b) Ex-
ponential decay of the normalized correlation function g(q, Δt)
corresponding to the same wave vectors as in (a).

show that the normalized correlation function can be well
approximated by a single exponential given by eq. (2)
similar to the results reported by Croccolo et al. [24,
26] for DLS experiments. For very short time delays,
Δt → 0, the normalized correlation function, g(q,Δt),
becomes unity while it decreases to zero for longer time
delays (see fig. 4b). In our experiment, we recorded 1
minute of data at 25 frames/s, i.e. a minimum delay
time Δt = 0.04 s, which is definitely smaller that 1/5
of the minimum characteristic time of fluctuations [24,
26–28]. We applied the above-described DDM image pro-
cessing algorithm to overlapping sets of 128 successive
images and computed successive image difference with
a delay time from Δt = 0.04 s to N/2Δt = 5.12 s (see
fig. 4). We cropped a 512 pixels × 512 pixels square im-
age from the original 752 pixels × 582 pixels image such
that the Fourier transform covers a range of wave vectors
q ∈ qmin[1, Npix/2] ≈ [48, 12189] cm−1.
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Fig. 5. (a) Experimentally determined characteristic decay time, τ(q), of concentration fluctuations plotted against the wave
vector q∗. For large wave vectors, i.e. above a critical value q∗ ≈ 85, the existence of a power law behavior allowed mutual
mass diffusion coefficient estimation based on eq. (3). (b) Experimentally determined mutual mass diffusion coefficient Dexp =
(1.8±0.3)·10−8 cm2/s (horizontal continuous line) obtained with the dynamic algorithm from the correlation time of fluctuations
based on red-filtered bright field images. The vertical error bar on the right side of panel measures 0.3·10−8 cm2/s and represents
one standard deviation of the average Dexp. The horizontal dashed line at Dtheory = 1.76·10−8 cm2/s represents the theoretically
predicted mutual mass diffusion coefficient from Stokes-Einstein diffusion law with Kawasaki’s correction.

4 Mutual mass diffusion coefficient

Experimental estimation of D

We computed the radial average of the azimuthal average
of the image structure function C(q,Δt) (see fig. 3b) for
different delay times, Δt, which were multiple of the 1/25 s
sampling rate. The saturation of C(q,Δt) is determined by
a significant decrease of correlation between images that
are too far apart.

For a fixed time delay Δt between images, we com-
puted the image differences ΔI(q, t,Δt) that showed in-
tensity fluctuations induced by local variations of the re-
fractive index (see fig. 2b for red-filtered bright field im-
ages). The recording time t for each frame is the image’s
index multiplied by 1/25 s duration lapsed between succes-
sive frames. To reduce the noise related to the statistical
properties of equilibrium fluctuations, we computed the
average power spectrum over a set of 128 images with the
same Δt (see fig. 2b). All our data sets showed clear sat-
uration of the image structure function, which allowed us
to accurately determine the correlation time of fluctua-
tions τ .

The shape of the correlation time (see fig. 5a) suggests
that at large wave vectors a power law could accurately fit
the experimental data. In hydrodynamic regime (qξ � 1)
and for large wave vectors, the typical correlation time
for equilibrium fluctuations should obey Kawasaki the-
ory [29]

τ−1 = Dq2, (3)

where D is the mutual mass diffusion coefficient. On the
other hand, for qξ � 1 (critical regime), the correla-
tion time should scale as τ−1 ∝ q3. The value of the
critical correlation amplitude in methanol and pure cy-
clohexane is ξ0 = 0.238 nm from dynamic droplet model
and ξ0 = 0.285 nm from mode-coupling theory [30]; ξ0 =
0.47 nm from refractive index experimental data [31]; ξ0 =
(0.41 ± 0.05) nm from light scattering experiments [32];

and ξ0 = (0.387 ± 0.035) nm from turbidity measure-
ments [20]. A detailed discussion about the ξ0 value for
Me-CC* can be found in Houessou et al. [1]. To our knowl-
edge, Houessou et al. [1] is the only study on Me-CC*
critical behavior, and the authors reported the critical
amplitude ξ0 in Me-CC* is somewhat different than of
methanol and pure cyclohexane binary mixture. Here we
considered ξ0 = 0.327 nm [1,33,20,34,35], which gives a
correlation length of ξ = 0.959μm at 1 mK distance to
Tc.

Since in our experiment the wave vector range is
48 cm−1 < q < 12189 cm−1, the product qξ is in the range
4.6 · 10−3 < qξ < 1.2, which is definitely not qξ � 1 as
is required for the critical regime. As a result, our exper-
imental data fall in the hydrodynamic regime where the
correlation time of fluctuations scales according to eq. (3).
We used a Levenberg-Marquardt least-square fitting algo-
rithm to estimate the mutual mass diffusion coefficient D
by fitting the correlation time data to eq. (3) with a fixed
exponent of 2 for the wave vector. The range q∗ that gave
the best goodness of the fit was 90–150.

For each individual set of images over which we de-
termined the mutual mass diffusion coefficient, D, using
eq. (3) the standard deviation of the fitting parameter
D is quite good. For example, at t = 0.28 s we found
Dexp = (1.17 ± 0.06) · 10−8 cm2/s and at t = 11.88 s the
mutual mass diffusion coefficient was Dexp = (2.45±0.04)·
10−8 cm2/s. However, due to the large spread of the fit-
ting values (see fig. 5b) for the mutual mass diffusion co-
efficient, its average value is Dexp = 1.8 · 10−8 cm2/s (see
the horizontal continuous line in fig. 5b) with a standard
deviation of 0.3 · 10−8 cm2.

Theoretical estimation of D

The diffusion relaxation time determined with the above-
described image processing algorithm is related to the mu-
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tual mass diffusion coefficient, D, through eq. (3) [36,37].
At critical point, the mutual mass diffusion coefficient,
D, vanishes [5], a phenomenon known as critical slowing
down of fluctuations [38]. Away from critical point, the
mutual mass diffusion coefficient varies slowly with tem-
perature whereas near the critical point it breaks down
into a background contribution and a critical enhancement
due to long-range correlations. Following Sengers et al. [7,
39–41], the mutual mass diffusion coefficient near the crit-
ical point is D = Db + ΔD, where Db is its background
contribution and ΔD is its critical enhancement.

Close to the critical point, the critical enhancement
ΔD of the mutual mass diffusion coefficient obeys Stokes-
Einstein diffusion law asymptotically [29,42]

ΔD = RD
kBT

6πηξ
, (4)

where kB = 1.381·10−23 J/K is Boltzmann’s constant, η is
the viscosity, RD is a universal amplitude and ξ is the cor-
relation length. The value of RD slightly changes with the
approximations made by different models. For example,
from mode-coupling theory RD = 1.00 [29,43], whereas
memory and nonlocal effects lead to RD = 1.03 [38]. The
renormalization group theory led to a broader range from
RD = 0.8 to RD = 1.2 [44] and a more precise estima-
tion gave RD = 1.063 [45,46]. Here we used RD = 1.05 as
in [46].

The background mutual mass diffusion coefficient Db

is given by [7,39–41]

Db =
kBT

16ηbξ

1
qCξ

, (5)

where ηb is the background viscosity and qC is a system-
dependent constant. The background viscosity is given by
Arrhenius equation [38]

ηb = Aη exp(Bη/kBT ),

where the coefficients slightly vary with the experimental
method used, e.g. Aη = 2.431 · 10−5 Pa s and Bη = 1.333 ·
10−20 J in [47] whereas Aη = 1.085 · 10−5 Pa s and Bη =
1.471 · 10−20 J in [48]. In our calculations, we used the
values Aη = 2.0 · 10−5 Pa s and Bη = 1.21221 · 10−20 J
from Alekhin et al. [49].

The viscosity η has a very weak divergence

η = ηb(Q0ξ)zη , (6)

where Q0 is a system-dependent amplitude and the criti-
cal viscosity exponent computed from the mode-coupling
model [50,51] is zη = 0.0679±0.0007 whereas from exper-
imental data it is zη = 0.0690± 0.0006 [52]. The constant
qC can be determined from

Q−1
0 = e4/3/2(q−1

C + q−1
D ), (7)

where qD is a Debye cutoff wave vector and Q0 covers a
wide range of values from Q−1

0 = (1.2 ± 0.3) nm [53] to

Q−1
0 = (1.8 ± 0.06) nm [54]. Following Oxtoby and Gel-

bart [55], we also assumed q−1
D � q−1

C and found qC from
eq. (7), which gave us 0.632 nm < q−1

C < 0.949 nm.
Our calculations showed that for a critical temperature

of Tc = 46.640 ◦C as estimated through our 1mK quenches
(see sect. 2), the background viscosity of Me-CC* was ηb =
3.11462 · 10−4 Pa s.

As discussed in sect. 4, the amplitude of critical fluc-
tuations is ξ0 = 0.3265 nm, which gives a correlation
length of fluctuations (at 1 mK distance to Tc) of ξ =
ξ0ε

−ν = 0.96μm. From eq. (7), we get 0.632 nm < q−1
C <

0.949 nm (assuming qD = 0 [55]), which leads to a neg-
ligible background mutual mass diffusion coefficient of
6.09·10−12 cm2/s < Db < 9.136·10−12 cm2/s (see eq. (5)).

We also computed the critical contribution to mutual
mass diffusion coefficient from eq. (4) by using the viscos-
ity scaling law given by eq. (6) and found that it varies
between ΔD = 5.2 · 10−9 cm2/s (for Q−1

0 = 1.2 nm) and
ΔD = 5.4 · 10−9 cm2/s (for Q−1

0 = 1.8 nm).
Therefore, the theoretically estimated value of the mu-

tual mass diffusion coefficient is Dtheory ≈ 5.3 ·10−9 cm2/s
while the experimental average of Dexp = (1.8 ± 0.3) ·
10−8 cm2/s as obtained from the correlation time of fluc-
tuations in red-filtered images (see fig. 3a). Because of the
significant difference between the Dexp and the Dtheory

values obtained from Stokes-Einstein diffusion law, we
also estimated the contribution of Kawasaki correction of
eq. (4) (see refs. [38,39])

ΔD = RD
kBT

6πηξ
K(qξ)(1 + (qξ/2)2)zη/2, (8)

where K(x) = 3/(4x2)(1 + x2 + (x3 − x − 1) arctan x) is
Kawasaki’s function [29,36,42].

In our experiment, the product x = qξ is in the range
4.6 · 10−3 < qξ < 1.2, which is definitely not qξ � 1
(as it is required for the critical regime), but is large
enough to warrant the use of the crossover formula given
by eq. (8). We found that at the critical wave vector
q∗c ≈ 85, i.e. qc = qminq∗ ≈ 4047 cm−1 (see fig. 5a)
K(qcξ = 0.388) ≈ 3.28, which changes the theoretically
estimated value of the mutual mass diffusion coefficient to
Dtheory ≈ 1.76 ·10−8 cm2/s (see the dashed line in fig. 5b).
With Kawasaki’s correction of Stokes-Einstein diffusion
law, the experimental and theoretical values of mutual
mass diffusion coefficient are close to each other.

5 Conclusions

We used a microscopy direct imaging method to visualize
thermal fluctuations in a density-matched ternary mix-
ture of methanol, cyclohexane, and partially deuterated
cyclohexane (Me-CC*) near its consolute critical point.
We determined the correlation time of concentration fluc-
tuations using a dynamic differential microscopy image
processing method.

For large wave vectors, the correlation time of fluctua-
tions τ(q) obeys Kawasaki’s theory (see eq. (3)), which al-
lowed us to estimate the mutual mass diffusion coefficient
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D. The average experimental value Dexp = (1.8 ± 0.3) ·
10−8 cm2/s (continuous line in fig. 5b) obtained from the
red-filtered images agrees with our theoretically estimated
values for the mutual mass diffusion coefficient range from
Dtheory = 1.76 · 10−8 cm2/s based on Stokes-Einstein dif-
fusion law with Kawasaki’s correction (see eq. (8)).
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