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Abstract. We present molecular-dynamics simulations for a fully flexible model of polymer melts with
different chain length N ranging from short oligomers (N = 4) to values near the entanglement length
(N = 64). For these systems we explore the structural relaxation of the supercooled melt near the critical
temperature Tc of mode-coupling theory (MCT). Coherent and incoherent scattering functions are ana-
lyzed in terms of the idealized MCT. For temperatures T > Tc we provide evidence for the space-time
factorization property of the β relaxation and for the time-temperature superposition principle (TTSP)
of the α relaxation, and we also discuss deviations from these predictions for T ≈ Tc. For T larger than
the smallest temperature where the TTSP holds we perform a quantitative analysis of the dynamics with
the asymptotic MCT predictions for the late β regime. Within MCT a key quantity, in addition to Tc,
is the exponent parameter λ. For the fully flexible polymer models studied we find that λ is independent
of N and has a value (λ = 0.735) typical of simple glass-forming liquids. On the other hand, the critical
temperature increases with chain length toward an asymptotic value T∞

c . This increase can be described
by T∞

c − Tc(N) ∼ 1/N and may be interpreted in terms of the N dependence of the monomer density
ρ, if we assume that the MCT glass transition is ruled by a soft-sphere–like constant coupling parameter
Γc = ρcTc

−1/4, where ρc is the monomer density at Tc. In addition, we also estimate Tc from a Hansen-
Verlet-like criterion and MCT calculations based on structural input from the simulation. For our polymer
model both the Hansen-Verlet criterion and the MCT calculations suggest Tc to decrease with increasing
chain length, in contrast to the direct analysis of the simulation data.

1 Introduction

During the past decades the mode-coupling theory
(MCT) [1–3] has been among the influential theoretical
approaches to the structural glass transition [4, 5]. Much
of this interest can be explained by the fact that MCT
proposes a quantitative description for the onset of the
glassy dynamics, which allows to analyze experimental
and simulation data [2, 5–7]. A key result of the MCT
is the emergence of a two-step decay for all time corre-
lation functions coupling to dynamic (two-point) density
fluctuations, when the liquid is cooled from high tem-
perature (T ) toward the critical temperature Tc of the
theory. This two-step decay is observed in experiment or
simulation and arises, according to MCT, from the sep-
aration of two relaxation processes: the β process associ-
ated with the relaxation of particles inside their neighbor
cages and the α process leading to a full renewal of the
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cage structure and macroscopic flow. For both processes
MCT suggests universal results, supposed to be valid for
any glass former in the limit T → T+

c [1–3]. These re-
sults involve for the β process a factorization of the space
and time dependence of dynamic scattering functions and
for the α process a stretched nonexponential relaxation
which obeys the time-temperature superposition principle
(TTSP). The range of validity of these universal results
has been elaborated by calculating leading-order correc-
tions in terms of the distance to Tc [8, 9]. These asymp-
totic predictions—universal results plus corrections—have
provided guidance for tests of the theory by experiment
and simulation (see, e.g., refs. [3, 6, 7] for reviews).

These tests reveal a complex picture. On the one hand,
the prediction that the glass transition occurs at Tc is not
observed. Instead of diverging, the measured α relaxation
time smoothly crosses Tc and continues to grow in a super-
Arrhenius fashion. So, Tc is an extrapolated quantity, situ-
ated in the regime of the supercooled liquid above the glass
transition temperature Tg [3–5]. This shortcoming that
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MCT cannot explain the thermal activation of the struc-
tural relaxation time was recognized early [2]. Attempts
had been made to include “hopping processes” into the
theory [1,10], but have raised several concerns [11,12] and
were only pursued seldom in the recent past [13]. Finding
a predictive theory for the activated dynamics of super-
cooled liquids remains a major challenge in the research
on the glass transition [4, 5, 14, 15]. On the other hand, if
one limits the analysis to the temperature regime above
Tc, the asymptotic predictions allow for a detailed descrip-
tion of the structural relaxation [3,5–7]. This suggests that
the theory captures some important features of the glassy
dynamics (which also an extended theory with thermal ac-
tivation should likely preserve). Moreover, this has stimu-
lated further applications, e.g. to systems with competing
arrest mechanisms [16–19], and also led to extensions of
the theory, e.g. to polymer melts [20, 21], spatially con-
fined glass-forming liquids [22–25] or colloidal suspensions
under shear [26].

In the past years, the asymptotic predictions have also
been applied extensively to analyze the slow dynamics in
computer simulations of supercooled polymer melts, both
for bead-spring models [27–29] and chemically realistic
models, like 1,4 polybutadiene [30, 31], poly(vinyl methyl
ether) [32] or polyisobutylene [33]. These MCT analyses
suggest that there are qualitative differences between the
limiting cases of a fully flexible bead-spring model and
a chemically realistic model. Earlier studies [7, 21, 34, 35]
and recent work [27–29] of fully flexible models find val-
ues around 0.7 for the exponent parameter λ of the the-
ory. Such values are typical of hard-sphere systems [8, 9]
or simple glass-forming liquids [6]. Chemically realistic
models, however, require larger values near the upper
limit λ = 1 [30–33]. Large λ values are expected within
MCT, if different arrest mechanisms simultaneously oper-
ate in a system [3, 17], for instance, packing constraints
and bond formation as in short-ranged attractive col-
loids [16] or packing constraints and spatial confinement as
in statically [36] and dynamically asymmetric binary mix-
tures [18,19]. For chemically realistic polymer models the
different mechanisms could correspond to i) intermolecu-
lar packing (as in simple liquids) and ii) intramolecular
barriers for conformational transitions [31–33]. Support
for this interpretation has come from simulations of bead-
spring models, for which the strength of the intramolecular
barriers and, along with that, chain stiffness are systemati-
cally varied by adding bond-angle and torsional potentials
to the fully flexible model [27–29]. These studies indeed
find that λ (and Tc) increases with chain stiffness.

In addition to chain stiffness, the length (N) of a chain
is another polymer-specific source for slow motion [37,38].
Already for short nonentangled chains it is known that Tg

increases with N (see, e.g., [39] and references therein).
So, the question arises of whether chain length could also
provide a further mechanism for glassy arrest in an MCT
analysis. We address this question in the present work.
Our study is not the first considering the influence of chain
length on the slow dynamics of supercooled, fully flexi-
ble bead-spring melts (see, e.g., refs. [40–42]). However, it
appears as if a systematic MCT analysis of the interplay

of packing and chain-length effects has not been done be-
fore. Our analysis shows that chain length does not lead
to an additional arrest mechanism in the sense of MCT.
We find that λ has a standard value (λ = 0.735) for all
N , while Tc increases with N toward an upper limit. This
increase can be explained by packing effects because the
monomer density similarly saturates with increasing chain
length [42].

Our article is organized as follows. Section 2 describes
the model and simulation technique, while sect. 3 pro-
vides the necessary theoretical background for the MCT
analysis. The results for structural, conformational and
dynamic properties are presented in sect. 4. This section
also includes a detailed discussion of the fit procedure and
of the comparison of the MCT fits with the simulation
data. Section 5 summarizes our main findings and puts
them into perspective with other work.

2 Model and simulation

2.1 Polymer model

We examine a generic bead-spring model of linear flexible
polymer chains, which has been used in previous studies
of glass-forming polymer films [43] and of the linear me-
chanical properties of bulk polymer glasses [39,44]. In this
model, the energy of the bond length (l) between consecu-
tive monomers of a chain is given by a harmonic potential

Ub(l) =
1
2
kb(l − l0)2 (1)

with the equilibrium bond length l0 = 0.967σLJ and the
force constant kb = 1110 εLJ/σ2

LJ. Here σLJ and εLJ de-
note the Lennard-Jones (LJ) diameter of a monomer and
the depth of the LJ potential, respectively. Nonbonded
monomers of a chain and monomers of different chains
interact by a truncated and shifted LJ potential

ULJ(r)=

⎧
⎪⎨

⎪⎩

4εLJ

[(σLJ

r

)12

−
(σLJ

r

)6
]

+CLJ, for r<rcut,

0, else.
(2)

The constant CLJ = 0.02684 εLJ makes the potential van-
ish continuously as the distance r between two monomers
approaches the cutoff rcut = 2.3σLJ � 2rmin with rmin =
21/6σLJ being the minimum of the LJ potential.

In the following all quantities are given in LJ units:
temperature (T ) in units of εLJ/kB, distance in units of
σLJ, and time (t) in units of τLJ = (mσ2

LJ/εLJ)1/2, where
the monomer mass m and the Boltzmann constant kB are
set to unity.

2.2 Simulation aspects

We carried out molecular-dynamics (MD) simulations of
polymer melts having n chains, each with N monomers.
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The studied values are N = 4 (n = 3072), N = 8
(n = 1536), N = 16 (n = 768), N = 32 (n = 384), and
N = 64 (n = 192). The largest chain length is close to the
entanglement length of the model [45] and the total num-
ber of monomers in the systems is M = nN = 12288. All
simulations were performed with the LAMMPS code [46]
at constant temperature. For simulations at constant vol-
ume we used the Nosé-Hoover thermostat with damping
parameter TNVT

damp = 0.1 (LAMMPS command fix nvt)
and for simulations at constant pressure (P = 0) the Nosé-
Andersen barostat with damping parameters PNPT

damp = 75
and TNPT

damp = 10 (LAMMPS command fix npt). Periodic
boundary conditions were applied in all spatial directions
of the cubic simulation box. The equations of motion were
integrated by the velocity Verlet algorithm with a time
step of 0.005.

The simulation procedure itself consists of three steps.
First, an initial configuration of the polymer melt is set
up following ref. [47]. That is, freely rotating chains with
(approximately) the correct intrachain statistics but no
excluded volume are randomly placed in the simulation
box. The size of the simulation box is chosen such that
the monomer density is near the target density at the tem-
perature considered (here T = 1 � 2.5Tg [43]). Then, the
LJ interaction is slowly ramped up to its full value. In the
second step, the melt is equilibrated at T = 1 while impos-
ing P = 0. This allows the system to find its equilibrium
volume. As a criterion for equilibration we require that
the correlation function of the end-to-end vector (Re),
ϕe(t) = 〈Re(t) · Re(0)〉/〈R2

e(0)〉, attains a value of 0.1.
This criterion is sufficient, since ϕe(t) probes the slowest
relaxation of the melt [37, 38]. Starting from the equili-
brated configuration at T = 1 the system is continuously
cooled down to T = 0.5 with a cooling rate of ΓT = 10−5.
At T = 0.5 nonequilibrium effects due to the finite cool-
ing rate are very weak and can be eliminated quickly by
isothermal equilibration (at P = 0). Lower temperatures
are then reached by reducing T in a stepwise fashion by
ΔT = 0.01, always followed by an equilibration run until
ϕe(t) ≤ 0.1. Finally, in the third step we determine the av-
erage volume for each equilibrated configuration and per-
form canonical simulations at the resulting volume (only
Nosé-Hoover thermostat), yielding the time series used for
the analyses in this work.

3 Theoretical background

We analyze our simulation results in the framework of the
idealized mode-coupling theory [3, 8, 9]. MCT predicts a
bifurcation scenario for the coherent scattering function,

φq(t) =
1

MS(q)

M∑

i,j=1

〈exp{iq · [ri(t) − rj(0)]}〉 , (3)

and for all quantities coupling to collective density fluctu-
ations, e.g. also for the incoherent scattering function,

φs
q(t) =

1
M

M∑

i=1

〈exp{iq · [ri(t) − ri(0)]}〉 . (4)

Here q denotes the absolute value of the wave vector q,
ri(t) is the position of monomer i at time t and S(q) is
the static structure factor (see eq. (18)). φq(t) and φs

q(t)
are real-valued and depend on q only through its scalar
invariant q, as the polymer liquid is isotropic and transla-
tionally invariant. The bifurcation scenario of MCT then
implies that there is a critical temperature (Tc) where the
nonergodicity parameters fq, f s

q ,

fq(T ) = lim
t→∞

φq(t) and f s
q(T ) = lim

t→∞
φs

q(t), (5)

jump discontinuously from zero for T > Tc to finite values
fq(Tc) = f c

q and f s
q(Tc) = f sc

q . It is therefore interesting
to analyze the theory on the relative temperature scale
ε = (Tc − T )/Tc. To quantify the distance to the critical
point MCT introduces the separation parameter σ which
is proportional to ε,

σ = Cε (C = system-specific constant), (6)

provided T is close to Tc. The following equations are pre-
dictions in leading order of |σ|.

The separation parameter determines the temperature
dependence of two time scales: the β-relaxation time tσ

tσ =
t0

|σ|1/2a
(0 < a < 0.3953) (7)

and the α-relaxation time t′σ

t′σ =
t0
|σ|γ , γ =

1
2a

+
1
2b

(γ > 1.765). (8)

Equation (7) holds for T → T±
c , eq. (8) only for T ≥ Tc.

In both equations t0 denotes a system-specific microscopic
time. The exponents a and b are called respectively critical
exponent and von Schweidler exponent. They are related
to each other by the “exponent parameter” λ,

λ =
Γ (1 − a)2

Γ (1 − 2a)
=

Γ (1 + b)2

Γ (1 + 2b)
, (9)

where Γ is the Gamma function.
Equations (7) and (8) indicate that t′σ diverges more

strongly than tσ on cooling toward Tc. Due to this separa-
tion of the time scales MCT predicts a two-step relaxation
scenario. The first step encompasses times on the scale tσ
(i.e. t0 � t � t′σ) for which the correlators φq(t) and
φs

q(t) remain close to their nonergodicity parameters, i.e.,
for which |φq(t)−fc

q | � 1 and |φs
q(t)−f sc

q | � 1. This time
regime is called β process (or β-relaxation regime). The
second step corresponds to the α process (or α-relaxation
regime) where the correlators decay from the nonergodic-
ity parameter to zero for times on the scale t′σ.

In the β-relaxation regime MCT predicts a factoriza-
tion theorem for φq(t) and φs

q(t). The theorem states that
the wave-vector and time dependent correction to the non-
ergodicity parameter factorizes so that the scattering func-
tions may be written as

φq(t) = f c
q + hqG(t),

φs
q(t) = f sc

q + hs
qG(t). (10)
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The critical amplitudes hq, hs
q are independent of temper-

ature (near Tc). The temperature dependence only enters
by the β correlator G(t). On approach to Tc from above
this T dependence is given by

G(t) =
√

|σ|g(t/tσ)

t�tσ−−−→ −B
√
|σ|

(
t

tσ

)b

= −B

(
t

t′σ

)b

. (11)

Here B = B(λ) is a constant [48] and G(t) ∼ −(t/t′σ)b is
called von Schweidler law which holds for tσ � t � t′σ.
The factorization theorem and the von Schweidler law are
MCT results in leading order of |σ|. Corrections have been
worked out [3, 8, 9]. For long times (t 
 tσ) they take the
following form:

φq(t) = f c
q − hqB

(
t

t′σ

)b

+ hqB
2Bq

(
t

t′σ

)2b

, (12)

φs
q(t) = f sc

q − hs
qB

(
t

t′σ

)b

+ hs
qB

2Bs
q

(
t

t′σ

)2b

. (13)

These corrections violate the factorization theorem due to
the q dependence of Bq, Bs

q. Near Tc the amplitudes Bq

and Bs
q may be taken as independent of temperature (in

the same way as hq, hs
q). The analysis of our simulation

data in the β regime is based on eqs. (12) and (13).
The α-relaxation regime deals with the dynamics for

times t ∼ t′σ. Here MCT predicts that the scattering func-
tions are described by the T independent α master curves
(for σ → 0−):

φq(t) = φ̃q(t/t′σ), φs
q(t) = φ̃s

q(t/t′σ), (14)

which have the following limits for t → 0,

φ̃q(t → 0) = f c
q and φ̃s

q(t → 0) = f sc
q , (15)

and give back the von Schweidler law (11) for t � t′σ.
Therefore, the α and β relaxations overlap for times
tσ � t � t′σ. Equation (14) implies that the α pro-
cess obeys the time-temperature superposition principle
(TTSP): Correlators for different T collapse onto the same
master curve when rescaled by some relaxation time that
is proportional to t′σ. In particular, if we choose the re-
laxation time τq as a time in the α regime, defined by
φq(τq) = const, we have

τq = Cqt
′
σ, (16)

with Cq being a T independent constant which contains
the q dependent part of the relaxation time. This predic-
tion will be tested for our simulation data.

4 Results

4.1 Static properties

Figure 1 depicts the monomer density (ρ) for all temper-
atures and chain lengths. Over the T range studied we
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Fig. 1. Main panel: Monomer density ρ versus T for differ-
ent N (symbols). The solid lines represent a parameterization
of the data by ρ(T, N) = ρ(0.5, N) exp[−αN (T − 0.5)], where
ρ(0.5, N) is the monomer density of the melt with chain length
N at T = 0.5 and αN its thermal expansion coefficient. With
ρ(0.5, 4) = 0.9795, ρ(0.5, 8) = 0.9968, ρ(0.5, 16) = 1.0055,
ρ(0.5, 32) = 1.0098 and ρ(0.5, 64) = 1.0119 the fits yield
α4 = 0.3360, α8 = 0.3134, α16 = 0.3022, α32 = 0.2961 and
α64 = 0.2933. The parameterization allows to interpolate or
extrapolate the data to determine the monomer density ρc

at Tc (table 1); ρc is indicated by an open square. Inset:
Monomer density as a function of N for T = 0.5, 0.44 and
Tc. The data are scaled according to eq. (17) with the fit pa-
rameters: ρ∞(0.5) = 1.014, C0.5 = 0.137; ρ∞(0.44) = 1.032,
C0.44 = 0.126; ρ∞(Tc) = 1.038, CTc = 0.076.

may assume that the thermal expansion coefficient αN

(= −∂ ln ρ/∂T ) of the polymer liquid is constant [39, 43].
Thus, the density-temperature trace can be parameterized
by ρ(T,N) = ρ(0.5, N) exp[−αN (T − 0.5)] (solid lines in
fig. 1). This parameterization allows interpolations or ex-
trapolations to determine pairs of temperatures and densi-
ties which were not simulated, as for example the critical
density ρc corresponding to the critical temperature Tc

found from the MD simulations (open squares in fig. 1).
For fixed temperature fig. 1 shows that the density in-

creases with N toward an asymptote ρ∞(T ). Since the
work by Fox and Flory (see, e.g., [49] and references
therein) this N dependence is usually interpreted as a
chain-end effect, associating an extra free volume (Ve)
with the chain ends compared to inner monomers. This
argument yields the following relation:

ρ(T,N) =
ρ∞(T )

1 + ρ∞Ve/N
� ρ∞(T )

(

1 − CT

N

)

, (17)

where the last equality holds, if the constant CT (= ρ∞Ve)
is small. For flexible bead-spring models (as ours) CT is ex-
pected to be small [41] because the efficient packing of the
monomers limits the extra volume of the chain ends, which



Eur. Phys. J. E (2015) 38: 11 Page 5 of 18

is caused by the fact that end monomers, having only one
binding partner, occupy more space. Equation (17) then
implies that all (T, ρ) pairs should collapse onto a master
curve when scaled by ρ∞ and CT /N . This is demonstrated
in the inset of fig. 1 for two selected temperatures. Fur-
thermore, the inset shows that the relation (17) also holds
for the monomer density ρc evaluated at the critical tem-
perature Tc(N).

In addition to the average density static density fluc-
tuations are key properties of glass-forming liquids. They
can be characterized by the collective static structure fac-
tor S(q),

S(q) =
1
M

M∑

i,j=1

〈exp [iq · (ri − rj)]〉 , (18)

and the direct correlation function c(q) that is defined by
the generalized Ornstein-Zernike equation via [50,51]

ρc(q) =
1

w(q)
− 1

S(q)
=

ρh(q)
w(q)S(q)

, (19)

where

w(q) =
1
N

N∑

i,j=1

〈exp [iq · (ri − rj)]〉 (20)

denotes the intrachain structure factor (the form factor of
a polymer) and

h(q) = [S(q) − w(q)] /ρ (21)

is the intermolecular pair-correlation function [50].
Figure 2 shows S(q) for N = 4 and T = 0.36, 0.38,

0.44, 0.7 (Tc = 0.383, cf. table 1). In this T range the
shape of S(q) is characteristic of a liquid (see, e.g., [28,52]
or [7] and references therein). For q → 0 the structure fac-
tor is small due to the low compressibility of the melt. For
larger wave vectors S(q) displays oscillations around 1.
The amplitude of these oscillations quickly decreases with
increasing q. So, no long-range structural correlations de-
velop; the system stays amorphous for all T shown. The
strongest temperature dependence is found near the first
peak of S(q), occurring at q∗ ≈ 7, which indicates the av-
erage monomer separation and roughly corresponds to the
length scale of the monomer diameter. With decreasing T
the peak position and the peak height shift to larger val-
ues. This reflects the increase of the density and the atten-
dant tighter nearest-neighbor packing on cooling [28, 52].
Similar behavior is found for all chain lengths.

Within MCT the slowdown of the dynamics is mainly
driven by the local cage effect, i.e., by wave vectors near
q∗ [3, 20, 21]. It is therefore expected that an estimate
of Tc can be obtained by an extension of the (empirical)
Hansen-Verlet freezing criterion [53] to glass-forming liq-
uids. This criterion states that a liquid transitions to a
solid when S(q∗) reaches a certain threshold. Ideal MCT
suggests S(q∗) = 3.54 at the liquid-glass transition for
hard spheres [54]. We apply this criterion here. The inset
of fig. 2 depicts the T dependence of S(q∗) for N = 4,
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Fig. 2. Main panel: Static structure factor S(q) for N = 4
and T = 0.36, 0.38, 0.44, 0.7 (Tc = 0.383). The (T dependent)
position of the first maximum (q∗) and a fixed wave vector close
to q∗ (q0 = 6.9) are indicated. The thin dashed and dotted
lines show the form factor w(q) for T = 0.7 and T = 0.36,
respectively. Inset: S(q) at q∗ versus T for different N (6.96 �
q∗ � 7.16 for the temperatures shown). The horizontal dotted
line shows the Hansen-Verlet criterion for the glass transition
of hard spheres within the ideal MCT (S(q∗) = 3.54) [54]. The
solid line for N = 4 is an interpolation between the two data
points above and below S(q∗) = 3.54; for N = 64 the solid line
is an extrapolation using the two lowest T .

Table 1. Survey of MCT parameters. Tc,HV is the critical tem-
perature estimated from S(q) via the Hansen-Verlet criterion
(fig. 2). Results from an MCT calculation based on static input
(sect. 4.3.2) are denoted by the subscript “MCT”. As for Tc,HV,
the critical temperature Tc,MCT decreases with increasing N .
On the other hand, the exponent parameter λMCT (eq. (9))
and the associated exponents aMCT, bMCT and γMCT (eq. (8))
can be taken as independent of N . For the exponent param-
eter and the associated exponents the MCT calculation gives
values that agree well with the fit results using the asymp-
totic predictions (sect. 4.3.1). These fit results are denoted by
λ, a, b and γ; they can also be taken as independent of N .
However, the critical temperature Tc from the fits depends on
chain length; it increases with N . The corresponding monomer
density ρc = ρ(Tc) is taken from fig. 1. (a = 0.312, b = 0.582,
γ = 2.464, λ = 0.735, B = 0.837, aMCT = 0.317, bMCT = 0.602,
γMCT = 2.408, λMCT = 0.723.)

N 4 8 16 32 64

Tc,HV 0.426 0.422 0.420 0.416 0.413

Tc,MCT 0.322 0.275 0.247 0.229 0.221

Tc 0.383 0.402 0.408 0.414 0.416

ρc 1.0187 1.0279 1.0339 1.0358 1.0372

16, and 64. Whereas for N ≤ 16 we have equilibrated
configurations below and above S(q∗) = 3.54 so that Tc

can be determined by an interpolation, an extrapolation
from high T is required for N ≥ 32. Of course, such an
extrapolation introduces uncertainties. Nevertheless, we
find that the qualitative trend for the interpolated and ex-
trapolated critical temperatures is the same: The Hansen-
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Fig. 3. Upper panel: S(q) (solid lines) and w(q) (dashed lines)
for N = 4 and N = 64 at T = 0.44 (Tc(N = 4) = 0.383,
Tc(N = 64) = 0.416). The position q∗ (≈ 7.09) of the first peak
of S(q) is indicated. The vertical dotted lines depict the q values
where q = 1/Rg for both chain lengths (Rg(N = 4) = 0.824,
Rg(N = 64) = 3.923). For w(q) two theoretical curves are
shown by thin solid lines, the Debye curve (23) and the large-q
approximation (22). Lower panel: Direct correlation function
c(q) for N = 4 and N = 64 at T = 0.44 (eq. (19)). The
modulus of the wave vectors for q∗ and 1/Rg are indicated
as in the upper panel. The horizontal lines show −1/ρS(q →
0) (S(q → 0) � 0.0143 for N = 4, S(q → 0) � 0.0126 for
N = 64). The inset magnifies the behavior of c(q) for q � q∗

and also compares c(q) with the intermolecular pair-correlation
function h(q) for both N (dotted line for N = 4, dashed line
for N = 64). To put h(q) on the scale of the figure h(q)/2 is
shown.

Verlet criterion suggests that Tc decreases with increasing
N (denoted by Tc,HV in table 1). We will compare this
suggestion with the results from the quantitative analysis
with the asymptotic MCT predictions in sect. 4.3.

The upper panel of fig. 3 compares S(q) and w(q) for
two chain lengths, N = 4 and 64, at T = 0.44. For the
form factor we can distinguish two regimes. If q → ∞,
w(q) probes the smallest distance (l0) along the chain.
Following ref. [51] we expect that w(q) is given by

w(q) ≈ 1 +
2(N − 1)

N

sin(ql0)
ql0

(q large). (22)

Figure 3 shows that this approximation agrees well with
the MD data for q � 10 and explains the weak chain-
length dependence of w(q) for large q. The dependence on

N is much stronger in the opposite limit q → 0, where
w(q) reflects the chain size and behaves as w(q → 0) =
N(1−q2R2

g/3) with Rg being the radius of the gyration of
a chain [37,38]. Since (long) flexible polymers in melts have
approximately [55] an ideal random-walk–like structure on
intermediate and large length scales, the Debye function,

wD(q) = NfD(q2R2
g), fD(x) =

2
x2

(
e−x + x − 1

)
,

(23)
is commonly used to describe w(q) for q � 1/l0 [37, 38].
For q < 1/Rg the form factor from the simulation and the
Debye function must agree, irrespective of chain length,
because w(q → 0) = wD(q → 0) (cf. fig. 3). For 1/Rg <
q < 1/l0, however, deviations from eq. (23) are expected,
not only for short chains (as ours) where the length scales
l0 and Rg are not well separated, but also for long chains
due to corrections to chain ideality [55]. In addition to
the temperature dependence of Rg, the latter corrections
introduce an extra T dependence via the density. How-
ever, both ρ and Rg depend only weakly on T for our
model. Therefore, the fact that w(q) is (almost) indepen-
dent of temperature can be understood (see fig. 2) [51]. A
negligible T dependence of w(q) is also observed in other
simulations of flexible bead-spring models [28]. A stronger
T dependence is found for stiffer chain models with bond-
angle and torsional potentials which affect in particular
the small-q behavior due to an increase of Rg on cooling.
However, the overall T dependence is reported to be weak
compared to that of S(q) [28].

From fig. 3 we also see that S(q) has a much weaker
dependence on chain length than w(q). This means that
the intermolecular pair-correlation function h(q) nearly
compensates the N dependence of w(q) (eq. (21)). For
small wave vectors we have S(q → 0) ≈ 10−2 and so
ρh(q) ≈ −w(q). This “correlation hole effect” [50, 56] im-
plies that the direct correlation function c(q) is determined
by the inverse compressibility of the melt (eq. (19)). From
the lower panel of fig. 3 we see that |c(q → 0)| increases
with N . According to MCT, however, this N dependence
is not crucial because the glass transition is driven by
wave vectors near the first peak of S(q) [8]. For q ∼ q∗

we find that S(q) slightly decreases with N , while w(q)
increases with N . Thus, h(q) is smaller for N = 64 than
for N = 4, and this impacts c(q) (eq. (19)). Figure 3 shows
that c(q) closely traces the dependence of h(q) on N for
q � q∗. Therefore, the effective monomer-monomer in-
teraction becomes weaker as N increases. This suggests
that an MCT calculation based on this structural input
(as done in [21,28,29]) would predict Tc to decrease with
increasing N , in agreement with the Hansen-Verlet crite-
rion. We test this suggestion for our model (see sects. 4.3.2
and 4.3.3).

4.2 MCT analysis: Qualitative features

We turn now to an MCT analysis of the dynamics. The
analysis begins with qualitative tests of the two main pre-
dictions in the β regime (factorization theorem, eq. (10))
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Fig. 4. Test of the factorization theorem for φq(t) and q ≥ q0 =
6.9 via eq. (24). Upper panel: N = 4, T = 0.44 (Tc = 0.383).
Lower panel: N = 64, T = 0.44 (Tc = 0.416). By definition,
Rq(t

′′ = 5.12) = 1 and Rq(t
′ = 30.72) = 0. The times t′ and t′′

are indicated by vertical dashed lines. In both panels the filled
(orange) circles show eq. (26) with b taken from table 1.

and α regime (TTSP, eq. (14)). Not only shall these tests
reveal whether an application of MCT can be promising
at all (not every two-step relaxation needs to be related to
the physics described by MCT [30, 57]), they also inform
on the range of validity of the ideal theory, which guides
the further quantitative analysis (see sect. 4.3.1).

The factorization theorem can be tested by fixing two
times t′′ and t′ (> t′′) in the β regime and evaluating the
following relations:

Rq(t) =
φq(t) − φq(t′)
φq(t′′) − φq(t′)

=
G(t) − G(t′)
G(t′′) − G(t′)

(24)

=
φs

q(t) − φs
q(t

′)
φs

q(t′′) − φs
q(t′)

= Rs
q(t), (25)

where G(t) is the β correlator (eq. (10)). These equations
show that Rq(t), Rs

q(t) are independent of q. Thus, super-
imposing Rq(t) and Rs

q(t) for different q should result in
a collapse over a time window where the β scaling holds.
The advantage of this method is that it works directly with
the simulation (or experimental) data. Consequently, this
test is easy to implement and has been widely applied
in simulations of simple glass formers [52, 58–61], silica
glasses [62,63] and polymeric glass formers [28,31–33,35].

As demonstrated in fig. 4 such a collapse is indeed pos-
sible. The upper panel depicts Rq(t) for N = 4 at T = 0.44
for various q values near the maxima and minima of S(q).
The lower panel shows Rq(t) for N = 64 at T = 0.44

for the same q values. For N = 64 the factorization the-
orem holds over almost one and a half decades, whereas
for N = 4 the region of collapse hardly spans a decade.
This can be explained by the fact that the N = 4 system
is farther away from Tc (ε = −0.1488) than the N = 64
system (ε = −0.05767). Here Tc refers to the critical tem-
perature as obtained from the analysis of sect. 4.3.3 (cf.
table 1). In fact, for relative distances −0.1 � ε � −0.05
one should not expect the leading-order result (10) to hold
over more than one decade in time [8]. By combining
eqs. (10) and (11) we get a simple expression for Rq(t)
and Rs

q(t),

Rq(t) = Rs
q(t) =

tb − t′b

t′′b − t′b
. (26)

With the result b = 0.582 from sect. 4.3.3 (cf. table 1) the
circles in fig. 4 show that eq. (26) gives a good description
of the MD data in the time regime where the data collapse
is observed.

Figure 4 also shows that the data splay out at early
and late times. This splaying out is q-dependent and can
serve as a further sensitive test of the MCT asymptotics.
In the β regime MCT predicts an ordering rule [8,9]: Since
in the next-to-leading order corrections to the factoriza-
tion theorem the same q dependent amplitudes appear
both for the early-time and long-time corrections, correla-
tors that lie, for example, above the factorization theorem
for short times must also lie above it for long times. Thus,
when numbering the correlators in the order in which they
enter the collapse regime, this numbering should be pre-
served when the correlators leave the regime [8]. Figure 4
confirms this prediction for our model. This has also been
observed in many other simulations [28,31–33,52,59,61].

Figure 5 extends the analysis to T � Tc, i.e., to the
T regime where additional relaxation channels, not ac-
counted for by MCT, compromise the ideal glass transi-
tion scenario [11–14]. Nevertheless, we find that the data
still collapse in an intermediate time window onto a mas-
ter curve which is the same for both Rq(t) and Rs

q(t) (the
latter result also holds for T > Tc.) Therefore, even for
T � Tc the coherent and incoherent correlators continue
to display a factorization property into a t-dependent and
q-dependent contribution. However, the ideal MCT can
no longer rationalize the features observed in fig. 5. For
instance, we see that the ordering rule is violated. Fur-
thermore, ideal MCT would have expected the liquid to
vitrify at Tc, but the master curve is still described by
eq. (26) with the same exponent b as found above Tc. The
latter observation, i.e. that eqs. (12), (13) with the same
b as above Tc can be applied for T � Tc, was also made in
other simulations [30,32].

We turn now to a test of the TTSP for the α relaxation.
According to eqs. (14) and (16) plotting the correlation
functions as a function of rescaled time t/τq0 should allow
to superimpose the data for long times onto a master curve
as T → T+

c . We determine the scaling time τq0 with q0 =
6.9 by the condition φq0(τq0) = 0.1. This threshold value
is arbitrary, yet fulfills two criteria: It is small enough for
the correlator to be definitely in the α regime and large
enough to be above the noise level. Note that q0 = 6.9 is
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Fig. 5. Test of the factorization theorem for N = 4 and T =
0.38 (� Tc) by eqs. (24) and (25). The lines show φq(t) for q ≥
q0. The symbols depict φs

q(t) for two wave vectors (crosses for
q0 = 6.9, squares for q = 19). By definition, Rq(t

′′ = 20.48) =
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q(t
′′ = 20.48) = 1 and Rq(t
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The times t′ and t′′ are indicated by vertical dashed lines. The
inset shows a zoom of Rq(t) and Rs

q(t) for times close to t′ and
t′′. In the main figure and the inset the open circles (connected
by a dotted line) show Rq(t), Rs

q(t) evaluated from eq. (26) with
b taken from table 1.

close to the position of the main peak of S(q), where the
strength of the α process is most pronounced and the best
separation from the β regime can be achieved.

The upper panel of fig. 6 depicts the rescaling for φq(t)
at q = 6.9 for N = 4 and T = 0.38, 0.39, 0.4, 0.44,
0.5 (Tc = 0.383). The TTSP is fulfilled for all T above
0.39, but becomes violated for smaller temperatures. For
T = 0.38 deviations are clearly visible: The plateau value
is increased, making φq(t) to lie above the master curve ob-
tained for higher T . Such deviations from the ideal MCT
must occur because T = 0.38 � Tc where the theory would
expect the system to be in the glass phase [3,8]. Contrary
to that, φq(t) exhibits a relaxation to zero. Similar behav-
ior is also found for other wave vectors. The lower panel
of fig. 6 gives an example by showing φq(t) for q = 9.5
(first minimum of S(q)) with time rescaled by τq0 . Quite
generally, we see that the scaling is worse than for q0. A
similar superposition as for q0 could have been obtained,
had time be rescaled by τq=9.5 instead of by τq0 . This illus-
trates that the α-relaxation times at different wave num-
bers have somewhat different T dependence, in contrast
to eq. (16), but as observed in many simulation studies
(see, e.g., [7, 52,60,64,65]).

Figure 7 extends the test of the TTSP to N = 64.
The scaling time τq0 is again determined by the condition
φq0(τq0) = 0.1. We obtain results similar to those of the
N = 4 system. The TTSP works better for q0 than for
q = 9.5 and is well fulfilled for all T shown because the
temperatures are larger than Tc (= 0.416).
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4.3 Quantitative MCT analysis

4.3.1 Description of the fit procedure using the asymptotic
MCT predictions

The quantitative analysis of the slow dynamics in the su-
percooled state is based on the MCT prediction for the
late-β regime (t 
 tσ)

φq(t) = f c
q − hfit

q

(
t

t′σ

)b

+ hfit
q Bfit

q

(
t

t′σ

)2b

(27)

with the fit constants hfit
q , Bfit

q being connected to hq, Bq

(eq. (12)) as

hfit
q = hqB and Bfit

q = BBq. (28)

The same equations also hold for the incoherent scattering
with the substitutions f c

q → f sc
q , hq → hs

q, and Bq → Bs
q

(eq. (13)).
The fit must furnish five parameters, four of which are

independent of temperature (f c
q , hfit

q , Bfit
q , b) and one is T

dependent (t′σ). To determine (f c
q , hfit

q , Bfit
q , b) it is best

to work at low temperature so that the microscopic dy-
namics and α process are well separated and the time
interval for the application of eq. (27) is large. There-
fore, we fit the simulation data at the lowest tempera-
ture Tmin where the TTSP still holds: Tmin = 0.40 for
N = 4, Tmin = 0.42 for N = 8, Tmin = 0.43 for N = 16,
and Tmin = 0.44 for N = 32 and 64. For these Tmin we
focus on φq(t) at q = q0 = 6.9 near the maximum of
S(q) because the plateau of the two-step decay is high (cf.
fig. 6), leading to a large range of φ values (0 < φq0 < f c

q0
)

where eq. (27) can be applied. Furthermore, a glance at
fig. 8 shows that the decay of φq0(t) roughly takes the
same time for N = 4 and 64. This implies that we can
employ the same fit interval [tmin, tmax] for the different
chain lengths. Since the choice of this interval has an influ-
ence on the numerical values of the fit parameters [66–68],
we want to fix [tmin, tmax] in the analysis. We choose the
fit interval by two requirements: i) tmin should be larger
than the time needed to complete the first relaxation step
and ii) tmax should be much larger than tmin, but not so
large that the second-order correction in eq. (27) exceeds
the von Schweidler law. In practice, we use the criterion
|Bfit

q0
|(tmax/t′σ)b < 0.4. A possible choice [68] meeting these

requirements is [tmin, tmax] = [20, 500].
Using eq. (27) we then perform a five-parameter fit of

φq0(t) for all N . The fit is subject to several constraints:
i) f c

q must not be smaller than the value of φq(t) at the
smallest times where the TTSP holds. Otherwise, eq. (15)
would be violated. ii) The von Schweidler law ∼ hq(t/t′σ)b

is invariant under the rescaling hq → �bhq and t′σ → �t′σ
with � being a constant. Therefore, the same fit result
can be obtained for small t′σ (small �) or large t′σ (large
�), if hq changes accordingly. However, not all values of �
are acceptable. For instance, a very small value of � could
place t′σ in the microscopic regime where the asymptotic
formulas do not apply. To avoid such problems we have to
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constrain � and for this, we need criteria for both hq and
t′σ. In our analysis we first observe that fig. 4 imposes a
lower bound on t′σ because the von Schweidler law should
hold only for t � t′σ (eq. (11)). So, t′σ should be larger
than the time interval where the factorization holds. For
instance, for N = 64 at T = 0.44 this implies t′σ > 50
(see fig. 4). Further guidance of the fit is obtained from
results for hard-sphere systems [8, 52], which show that
typical values of the critical amplitude near the maximum
of S(q) are 0.3 � hq � 0.6 [8]. So, we also require that hq0

lies in these bounds.
When applying this fit procedure we find that f c

q0
is the

quantity with the lowest standard deviation and slightly
decreases with increasing N . Therefore we fix f c

q0
for each

N and go over to a four-parameter fit. This fit shows that
the exponents b for different N agree within the error bars,
for both coherent and incoherent scattering. So we also fix
b at its average value (b = 0.582, cf. table 1) and carry
out a three-parameter fit to get hfit

q0
, Bfit

q0
and t′σ(Tmin) for

each N . The remaining task is to determine (for each N)
the q dependence of hfit

q , Bfit
q and the T dependence of

t′σ. For the q dependence we focus again on Tmin. Since
we know the nonergodicity parameter for q0, we can cal-
culate fc

q and f sc
q for all other wave vectors because the

relation φq0(tco) = f c
q0

defines a crossover time tco(Tmin)
where the t-dependent terms in eq. (27) vanish at Tmin.
As tco is independent of q, the nonergodicity parameters
can be read off from the simulation data for any q value by
f c

q = φq(tco) and f sc
q = φs

q(tco). Fixing then fc
q (or f sc

q ),
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b and t′σ(Tmin) we carry out a two-parameter fit to get
hfit

q , Bfit
q (and their incoherent counterparts). To get the

T -dependence of t′σ we focus again on q0. We fix f c
q0

, hfit
q0

,
Bfit

q0
and b, and fit t′σ(T ) for all temperatures which obey

the TTSP.

4.3.2 MCT calculations based on static input

MCT also suggests an alternative to fits with the asymp-
totic predictions. The full dynamics, addressing molecular
details and preasymptotic corrections, can be calculated
from the theory when accurate data for the static struc-
ture of the glass former are available. Comparisons of the
dynamics predicted by such calculations with MD simu-
lations were carried out in the past for various systems,
including simple and molecular glass formers (see [52] and
references therein) and bead-spring models for polymer
melts [21,28,29]. The application to polymers employs an
extension of the theory associating an interaction site with
each monomer [20, 21]. This extension provides an equa-
tion of motion for the collective density correlations, which
is formally identical to the ideal MCT of atomic liquids.
For the nonergodicity parameter (eq. (5)) the result reads

fq

1 − fq
=

1
2

∫

d3k V (q;k,p)fkfp (29)

with

V (q;k,p) =
ρ

(2π)3q2
S(q)S(k)S(p) {q̂ · [kc(k) + pc(p)]}2

,

(30)
where q̂ = q/q and p = q − k. Polymer-specific effects,
such as chain stiffness [27–30] or chain length, enter into
the theory only by the monomer density ρ, the structure
factor S(q) and the direct correlation function c(q).

For T > Tc,MCT eq. (29) has only the solution fq(T ) =
0. (We use Tc,MCT for the critical temperature obtained
from eq. (29) to discriminate it from the fit result to the
asymptotic predictions; the latter is denoted by Tc.) A
vanishing nonergodicity parameter means that the corre-
lations of density fluctuations decay to 0 for long times and
the system is in a liquid state. By contrast, for T ≤ Tc,MCT

eq. (29) yields fq(T ) > 0. Since the density fluctuations
do not fully relax for t → ∞, the system is in a glassy
state. The MCT glass transition occurs at Tc,MCT where
the nonergodicity parameter jumps from zero to its critical
value fq(Tc,MCT) = f c

q > 0. This jump can be employed
to calculate Tc,MCT and then also related quantities, such
as hq or λ.

If Tc,MCT lies in the T range for which equilibrated sim-
ulation data exist, the required static input can be deter-
mined (accurately) by interpolation. However, if Tc,MCT

turns out to lie below the lowest equilibrated tempera-
ture, one has to resort to extrapolations. This problem
was encountered in previous studies of polymeric glass
formers [21, 28, 29] and is also found here. To estimate
S(q) we carry out a linear extrapolation from two low
temperatures for each N : T1 = 0.38 and T2 = 0.39 for

N = 4, T1 = 0.41 and T2 = 0.42 for N = 8, T1 = 0.42
and T2 = 0.43 for N = 16, T1 = 0.42 and T2 = 0.43 for
N = 32, T1 = 0.44 and T2 = 0.45 for N = 64. As w(q)
is almost independent of T , no extrapolation needs to be
performed, but w(q) at T1 is directly inserted into the
MCT calculations. Similar procedures were also followed
in [21,28,29]. Finally, the monomer density is extrapolated
to low T by using the data from fig. 1.

To solve the MCT equations the interval q ∈ [0.1, 50]
is discretized in an equally spaced grid with Δq = 0.2 and
the same numerical procedure as in ref. [52] is applied.
The critical temperature Tc,MCT is obtained by a bisec-
tion algorithm with a precision (stop criterion) of 10−9.
The results of this calculation for the exponent parameter
and the associated exponents (a, b, γ) turn out to be inde-
pendent of chain length; they are included in table 1. The
results for Tc,MCT, f c

q and hq are discussed in the following
section, together with the analysis of the MD data by the
asymptotic MCT predictions.

4.3.3 MD and MCT: Discussion of the results

Figure 8 depicts simulation results (symbols) for φq(t) at
q = 6.9, in the upper panel for N = 4 at T = 0.4 and
in the lower panel for N = 64 at T = 0.44. Both tem-
peratures correspond to the lowest T where the TTSP
still holds at the respective chain length. At these tem-
peratures we see that the coherent scattering functions
for both N closely agree with one another: The height of
the plateau is almost the same and the two-step decay
roughly takes the same time. This shows that we can ob-
tain a very similar φq(t) for small and large N , if a higher
temperature is considered for large N . At a given T the
main effect of increasing chain length is thus to slow down
the local structural relaxation. Qualitatively, this obser-
vation may be correlated with the N dependence of the
monomer density. From fig. 1 we know that the density at
fixed T decreases with decreasing chain length. For small
N lower temperatures should therefore be required to in-
crease the density sufficiently so that the ensuing packing
constraints lead to similar slow dynamics as for large N .

The solid lines in fig. 8 present the fits with eq. (27).
The MCT curves describe the simulation data over about
three decades in time and so also well outside the inter-
val [tmin, tmax] where the fit was performed. The fit starts
to work already at rather short times (t � 5), just af-
ter the first relaxation step. This first step is strongly
influenced by the microscopic dynamics (e.g. Newtonian
or stochastic [59, 69, 70]), hampering a test (by MD sim-
ulations) of the MCT predictions for the early β relax-
ation toward f c

q [21, 52]. This problem is well known [6]
and is the main reason why we employ the MCT pre-
diction (27) for the late β process in our analysis, as
other studies on nonpolymeric [52,63,65,71,72] and poly-
meric liquids [27, 28, 30–33] have done too. From the fits
with eq. (27) we find an N -independent value for the von
Schweidler exponent b = 0.583, which implies an expo-
nent parameter λ = 0.735. This λ value agrees with the
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result for hard spheres [8,9,52] and is characteristic of low-
molecular weight glass-forming liquids (e.g. binary mix-
tures [58, 64, 65, 73–75], models for water [71], silica [63]
and ortho-terphenyl [72,76]) or other fully flexible polymer
models [21, 27, 28], but not for stiffer bead-spring models
with strong torsional barriers [27–29] or chemically real-
istic polymer models [30–33] where typically larger values
λ ∼ 0.9 (and, along with that, stronger stretching of the
late β process, b ∼ 0.3) are found. Prompted by other
MCT results [17] it has been argued [27, 28, 31–33] that
such large λ values could be caused by the simultaneous
occurrence of two mechanisms of dynamic arrest in such
polymer systems: intermolecular packing, operating also
in simple glass formers, and intramolecular barriers for
conformational transitions, a polymer-specific effect. The
present finding that λ is independent of N and has a stan-
dard value for simple liquids—a finding that is corrobo-
rated by the MCT calculations based on the static input
(cf. table 1)—suggests that the increase of the chain length
does not introduce an additional mechanism for glass-like
arrest, at least for fully flexible polymer models and in the
range of nonentangled chains studied here.

The fits by eq. (27) also provide the q-dependence
of f c

q , hq, Bq and of their incoherent counterparts. Fig-
ures 9, 10 and 11 depict the results. The found q-
dependence has many features that agree qualitatively
with theoretical predictions [8, 9] and other simula-
tions [21,35,52,60,63,65,71–74,76]:

i) For q � q∗ the nonergodicity parameter f c
q closely

follows the oscillations of S(q) (fig. 9), whereas the critical
amplitude hq and the long-time correction coefficient Bq

are roughly in antiphase with fc
q for q � 10 (figs. 10, 11).

From fig. 9 we also see that fc
q ≈ f sc

q for q � 11. The agree-
ment between coherent and incoherent scattering becomes
better with increasing q. Similar agreement between co-
herent and incoherent scattering is also obtained for hq,
hs

q (fig. 10) and Bq, Bs
q (fig. 11).

When comparing f c
q and hq from the fits and the

MCT calculations based on static input (fig. 9(a), (c);
fig. 10(a), (b)) we see that both analyses yield qualita-
tively the same q dependence for q � q∗. However, f c

q and
hq from the MCT calculations are typically larger than the
fit results and the dependence on N is more pronounced
in the calculations than in the fits.

ii) For the incoherent scattering the nonergodicity pa-
rameter f sc

q monotonically decreases with q. For small q
one expects the Gaussian approximation,

f sc
q = exp(−q2r2

sc), (31)

to hold, with rsc being the “Lindemann localization
length” [9]. Fitting this relation for q ≤ 3 to our simu-
lation data results in 0.0853 � rsc � 0.0863 for all N .
This variation with N is so weak that we average the val-
ues to get rsc = 0.0858. This average localization length
is about 10% of the monomer diameter, as suggested by
MCT [9]. The dash-dotted line in fig. 9 shows eq. (31) with
rsc = 0.0858 and gives a good description of the MD data
for q � 8.

0 5 10 15 20

q

0

0.2

0.4

0.6

0.8

1

f qfc
f qfsc

N=4
N=8
N=16
N=32
N=64

2 3 4 5 6 7
q

0.4

0.6

0.8

fqf
c

0 5 10 15 20
q

0
0.2
0.4
0.6
0.8

1
fqf
c

S(q)/10

fqf
sc

(b)

(a)

fqf
c

(c)

MCT

MD

MD

Fig. 9. Panel (a): Nonergodicity parameter for coherent scat-
tering (fc

q ; symbols) and incoherent scattering (f sc
q ; lines) ver-

sus q for different N as obtained by fitting eq. (27) to the MD
data. For comparison S(q) (divided by 10) is shown by a dashed
line; fc

q is in phase with S(q) for q � q∗. The dash-dotted line
represents the Gaussian approximation for f sc

q (eq. (31)) with
rsc = 0.0858. This value is obtained as an average when fitting
eq. (31) to f sc

q for q ≤ 3 (yielding 0.0853 � rsc � 0.0863 for all
N studied). Panel (b): Zoom of the N -dependent shoulder oc-
curring in the simulation data for fc

q in the range of 4 � q � 6.
Panel (c): Results for fc

q from the MCT calculations based on
the static input. The symbols for the different N are the same
as in panel (a).

iii) Similar Gaussian approximations are also known
for the critical amplitude and long-time correction coeffi-
cient. They are expected to describe the initial increase of
hs

q and Bs
q for small q [9]. For hs

q the approximation reads

hs
q = hmsdq2 exp(−q2r2

sc), (32)

where hmsd is a constant. To get hmsd we fit eq. (32) with
rsc = 0.0858 to the MD data for q ≤ 3. Again the N de-
pendence of hmsd turns out to be weak. Averaging gives
hmsd = 0.0221. This result is shown as a dash-dotted line
in fig. 10; it describes the simulation data well only for
q < 4, so for a smaller q range than in the case of f sc

q .
This decrease of the q interval for the applicability of
the Gaussian approximation is expected from hard-sphere
calculations and should continue for the long-time correc-
tion amplitude Bs

q [9]. Indeed, we found that the Gaussian
approximation for Bs

q cannot be fitted to our simulation
data. The q → 0 limit Bs

0 shown in fig. 11 was obtained
from an analysis of the monomer mean-square displace-
ment (MSD) to which we will turn below.

Before doing so we want to comment on the behav-
ior of the coherent quantities f c

q , hq, Bq for q < q∗. Fig-
ures 9, 10 and 11 show that f c

q exhibits a shoulder at
q ≈ 4.5, whereas hq has a pronounced minimum and Bq
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a dashed line; hq is in antiphase with S(q) for q ∼ q∗. The
dash-dotted line represents the Gaussian approximation for hs

q

(eq. (32)) with rsc = 0.0858 from fig. 9 and hmsd = 0.0221.
This value is obtained as an average when fitting eq. (32) to
hs

q for q ≤ 3 (yielding 0.0213 � hs
q � 0.0228 for all N studied).

Panel (b): Results for hq from the MCT calculations based on
the static input. The symbols for the different N are the same
as in panel (a).
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Fig. 11. Long-time correction coefficient for coherent scatter-
ing (Bq; symbols) and incoherent scattering (Bs

q; lines) versus
q for different N . For comparison S(q) (rescaled) is shown by
a dashed line; Bq is in antiphase with S(q) for q � q∗. For
N = 4 and 64 the vertical dash-dotted lines represent the lim-
iting values of Bs

q for q → 0 obtained from a fit of eq. (34)
to the mean-square displacement of the monomers (cf. figs. 12
and 13).

a dip in this q range. These features have no parallel in
S(q), are absent in hard-sphere systems [8, 52] and in the
MCT calculations utilizing the static input (fig. 9(c) and
fig. 10(b)), but are observed in many simulations of poly-
mer models [21,28–30,35]. In [35] it was conjectured that
these features could be correlated with the dynamic cou-
pling of the chains’ centers of mass (CMs). This conjec-
ture was motivated by the observation that the position
of the shoulder in f c

q almost coincided with 2π/Rg where
Rg is the radius of gyration of the N = 10 system studied
in [35]. However, the more recent studies [21, 28–30], in-
cluding the present one, suggest that this conjecture is not
correct. First, the position of the shoulder should shift to
smaller q, if Rg increases, e.g., by increasing chain stiffness
or chain length. The work of [28, 29] however shows that
the shoulder does not shift in q when chain stiffness is var-
ied. The same observation is made here for the variation
of the chain length. Only the amplitude of the shoulder
is affected by N , apparently approaching an asymptotic
limit for N > 8 (see inset of fig. 9). A further argument
against the proposed correlation with the CM dynamics
comes from MCT calculations for fully flexible polymer
models [21, 28, 29] and models with intramolecular barri-
ers [28, 29]. In their common form, these calculations as-
sociate interaction sites with each monomer and employ
two-point static correlation functions, i.e. S(q), w(q) and
c(q), to derive the dynamics of the system. However, such
MCT approaches find (practically) no influence of chain
stiffness on f c

q for q < q∗ [28] and also strongly underes-
timate the nonergodicity parameter for q ≈ 4.5 [21, 28].
It is possible to include the CM as a further interaction
site in the calculations. However, no improvement was ob-
tained for fully flexible chains [21] and is also unlikely
for the models with intramolecular barriers because the
static structure factor of the CMs is already close to 1 for
q ≈ 4.5 [29]. So the static coupling of the CMs is very weak
in the pertinent q range [21]. Apparently, polymer melts
have slow collective modes [21, 28–30] in an intermediate
q range (q ≈ 0.6q∗) which do not have a static fingerprint
in standard two-point correlation functions.

Let us now turn to the time dependence of φs
q(t) and

of the monomer MSD g0(t). Both quantities are related in
the limit q → 0 where the Gaussian approximation

φs
q(t) = exp

[

−1
6
q2g0(t)

]

(33)

holds. This relation was utilized in [9] to obtain the MCT
prediction for the MSD in the late β regime

g0(t) = 6r2
sc +6hmsdB

(
t

t′σ

)b

−6hmsdB2Bs
0

(
t

t′σ

)2b

(34)

with the Lindemann localization length rsc (eq. (31)), the
critical amplitude hmsd (eq. (32)), and the long-time cor-
rection coefficient Bs

0 = limq→0 Bs
q (eq. (13)). For times

longer the late β regime polymer-specific correlations due
to chain connectivity will determine the monomer dynam-
ics. If the chains are nonentangled (as in our case), the
Rouse model [37,38] can be expected to represent a good
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Fig. 12. Incoherent scattering function φs
q(t) and monomer

MSD g0(t) for N = 4 at T = 0.4. In the upper panel the
symbols depict φs

q(t) for different q. For q = 1 and 2 the
solid lines represent the Gaussian approximation (33) with the
g0(t) obtained from the simulation. For the other wave vec-
tors the dashed lines show the results from eq. (27) with the
MCT parameters from figs. 9, 10, and 11. The horizontal dot-
ted lines indicate f sc

q ; the vertical dotted line indicates t′σ. In
the lower panel the solid line represents g0(t). The ballistic
(g0(t) = 3Tt2) and diffusive behaviors (g0(t) = 6Dt) are in-
dicated by dash-dotted lines. The (red) dashed line depicts
the MCT prediction, eq. (34). Here we used rsc = 0.0858
from fig. 9 and hmsd = 0.0221 from fig. 10, whereas Bs

0

(= −1.3055) was obtained by fitting eq. (34) to g0(t) in the
interval tmin = 20 ≤ t ≤ tmax = 500. The (blue) dash-dotted
line shows the von Schweidler law, i.e. eq. (34) with Bs

0 = 0.
The horizontal dotted lines show the nonergodicity parame-
ter (6r2

sc) of g0(t) and the radius of gyration of the chains
(R2

g = 3.578). The vertical dotted line indicates t′σ.

approximation [77–79]. The Rouse model predicts [37,38]

g0(t) = b2
e

√
Wt, τ1 < t < τN . (35)

with
τ1 =

4
π3W

and τN = τ1N
2. (36)

Here be denotes the effective bond length, W the monomer
relaxation rate, τ1 the monomer relaxation time and τN

the Rouse time. For t > τN this subdiffusive motion
crosses over to normal diffusion where g0(t) = 6Dt with
D being the diffusion coefficient of the polymer. Equa-
tions (33)–(36) will be compared to the MD data in the
following.

Figure 12 depicts φs
q(t) (upper panel) and g0(t) (lower

panel) for N = 4 at T = 0.4, whereas fig. 13 shows
the same data for N = 64 at T = 0.44. For both chain
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Fig. 13. Incoherent scattering function φs
q(t) and monomer

MSD g0(t) for N = 64 at T = 0.44. In the upper panel the
symbols depict φs

q(t) for different q. For q = 1 and 2 the
solid lines represent the Gaussian approximation (33) with the
g0(t) obtained from the simulation. For the other wave vec-
tors the dashed lines show the results from eq. (27) with the
MCT parameters from figs. 9, 10, and 11. The horizontal dot-
ted lines indicate f sc

q ; the vertical dotted line indicates t′σ. In
the lower panel the solid line represents g0(t). The ballistic
behavior (g0(t) = 3Tt2) and the prediction from the Rouse
model (g0(t) = b2

e

√
Wt) are indicated by dash-dotted lines.

For the Rouse model we used be = 1.295 from ref. [68] and
fitted W = 1.586 × 10−4. For the monomer relaxation time
of the Rouse model this gives τ1 = 4/(π3W ) = 813.4 (shown
by a vertical dash-dotted line). The (red) dashed line depicts
the MCT prediction, eq. (34). Here we used rsc = 0.0858
from fig. 9 and hmsd = 0.0221 from fig. 10, whereas Bs

0

(= −0.7724) was obtained by fitting eq. (34) to g0(t) in the
interval tmin = 20 ≤ t ≤ tmax = 500. The (blue) dash-dotted
line shows the von Schweidler law, i.e. eq. (34) with Bs

0 = 0.
The horizontal dotted lines show the nonergodicity parame-
ter (6r2

sc) of g0(t) and the radius of gyration of the chains
(R2

g = 15.39). The vertical dotted line indicates t′σ.

lengths g0(t) starts from the ballistic regime (3Tt2) and
goes over to a plateau. The height of the plateau gives an
estimate of the localization length for a monomer which
is temporarily trapped in the cage of its neighbors. Fig-
ures 12 and 13 show that the value rsc = 0.0858, obtained
from the fit in fig. 9, is consistent with the height of the
plateau. Moreover, the figures also show that the MCT
prediction (34) allows to describe the increase of g0(t) be-
yond the plateau over about three decades for both N .
Here only Bs

0 was fitted, all other quantities were taken
from the previous analysis. The fits give Bs

0 = −1.3055
for N = 4 and Bs

0 = −0.7724 for N = 64. This N de-
pendence may be understood as follows: For N = 4 the
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chains are too short to display subdiffusive Rouse mo-
tion and the MSD quickly becomes diffusive (fig. 12). For
N = 4 the MSD thus increases more steeply with t than
for N = 64 where the increase of g0(t) flattens so that
the α-process can merge with eq. (35) (fig. 13). There-
fore, the von Schweidler law underestimates the increase
of g0(t) more strongly for N = 4 than for N = 64 (com-
pare figs. 12 and 13). To compensate this underestimation
the fit with eq. (34) yields a larger |Bs

0| for N = 4 than
for N = 64. This also explains why the long-time correc-
tion coefficient Bs

q has a pronounced dependence on N for
q < q∗, as shown in fig. 11.

The upper panel of figs. 12 and 13 shows φs
q(t) for

1 ≤ q ≤ 19. For both chain lengths and all q values φs
q(t)

exhibits a two-step relaxation. If q � 2, the Gaussian ap-
proximation (33) with g0(t) taken from the simulation rep-
resents a good approximation for φs

q(t) (green solid lines).
For larger q the incoherent correlators can be described
over more than two decades by eq. (27) with the values
for b and t′σ determined before from the analysis of coher-
ent scattering function. Similar consistency is also found
for other temperatures (where the TTSP holds) and for
all chain lengths.

The fits provide the α-relaxation time t′σ(T ) for all
N . According to eq. (8) a plot of t

′ −1/γ
σ versus T , with γ

calculated from b by eqs. (8) and (9), should give a straight
line that extrapolates to 0 at Tc(N). This prediction is
tested in fig. 14. Indeed, we find straight lines which shift
to larger T with increasing N and furthermore are parallel
to each other (with the exception of N = 8 where a slight
deviation from parallelism occurs). This implies that Tc

increases with N and that the prefactor t0/Cγ , linking t′σ
to (T−Tc)/Tc, is independent of N . A master curve should
therefore be obtained by plotting the α-relaxation time
versus (T − Tc)/Tc. This is confirmed in the lower panel
of fig. 14, not only for t′σ but also for τq0 , the scaling time
used in the test of the TTSP (cf. fig. 6). Since τq0 is read
off from the simulation data (by φq0(τq0) = 0.1), it can be
determined also for temperatures below Tmin where the β
analysis was performed. Figure 14 shows that the scaling
with Tc onto an N independent master curve continues to
work down to the lowest T studied (and even below Tc)
where τq0 displays clear deviations from the straight-line
behavior and the mode-coupling transition is avoided.

The extrapolated Tc resulting from the fit in fig. 14 is
compiled in table 1 and plotted versus N in fig. 15(a). We
find that the increase of Tc with N can be fitted by

Tc(N) = T∞
c − Cc

N
, (37)

where T∞
c is the critical temperature for infinite chain

length and Cc is a constant. Based on free-volume argu-
ments the same N dependence was first suggested by Fox
and Flory for the glass transition temperature Tg [49,80].
Although the Fox-Flory approach has been criticized (see,
e.g., [81]) and other functional forms were discussed in the
recent literature [82–84], eq. (37) is often used to model
experimental [81,83] or simulation data for Tg [85,86]. We
have done so too in [39] where the same polymer model
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Fig. 14. Upper panel: Rectification plot of t′σ (symbols) ver-
sus T for different N . The value of γ (= 2.464) is taken from
table 1. The solid lines are fits to eq. (8) to determine Tc(N).

Lower panel: Plot of t
′ −1/γ
σ and τ

−1/γ
q0 versus (T − Tc)/Tc.

τq0 is taken from figs. 6 and 7 (q0 = 6.9). The scaling with
N indicates that the prefactors, t0/Cγ in eq. (8) and Cq0 in
eq. (16), can be taken as independent of chain length in very
good approximation.

was studied as in this work, albeit at higher pressure, and
Tg was determined from dilatometry in continuous cool-
ing runs with a finite rate. The crosses in fig. 15 show the
resulting Tg values (multiplied by a constant factor to put
them on the scale of the figure). Interestingly, the N de-
pendence of Tc, extrapolated from equilibrium data, and
of Tg from the nonequilibrium simulations of [39] agree
with each other very well.

The squares in fig. 15(a) depict the estimates for Tc,HV

from the Hansen-Verlet criterion (cf. table 1). As pointed
out in sect. 4.1, application of this criterion suggests Tc to
decrease with increasing N , and so the opposite trend as
obtained from the MCT fits. Although the Hansen-Verlet
criterion is a crude approach and wave vectors larger than
q∗ also contribute strongly to the integral (29) [52], the
MCT calculation employing the static input from the sim-
ulation gives qualitatively the same N dependence as the
Hansen-Verlet criterion (cf. fig. 15(b)). In addition to this
difference between MCT and simulation the theory also
predicts much smaller values for Tc (compare fig. 15(a) and
(b)). This disagreement might be related to the differences
in f c

q for q ≈ 4.5 where the MD data display an N depen-
dent shoulder that is absent in the MCT calculation (cf.
fig. 9). This shoulder corresponds to slow collective density
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Fig. 15. Panel (a): Tc versus N (filled circles). Tc is deter-
mined from the extrapolation of t′σ in fig. 14. The solid line
shows a fit to eq. (37) with T∞

c = 0.418 and Cc = 0.139. The
open circle corresponds to Tc = 0.405 for N = 10 found in [43].
The crosses present the results for the glass transition temper-
ature Tg obtained in [39] from continuous cooling runs (with
rate ΓT = 2× 10−5) at pressure P = 1; the data are scaled by
0.968 (= T∞

c /T∞
g with T∞

g = 0.432 [39]). The squares show
the estimates for Tc obtained from the Hansen-Verlet crite-
rion (denoted by Tc,HV in table 1), i.e., from S(q∗, Tc) = 3.54.
The blue dotted line through the data is a guide to the eye.
Panel (b): Chain-length dependence of Tc,MCT obtained from
the MCT calculations using the static input from the simula-
tion. The data are taken from table 1. Panel (c): Tc from panel
(a) versus ρ4

c (filled circles). The values for ρc are taken from
table 1. The linear regression (solid line) gives Γ−4

c = 0.358,
i.e., Γc = 1.29. The (blue) dashed line shows a best fit to the
data, yielding Tc(ρc) = 0.353ρ4.5

c .

fluctuations which could couple to the relaxation at other
wave vectors in eq. (29). Within the theory the only way
to compensate for these slow modes is to make the cage
effect stronger by increasing S(q) for q � q∗ through a
decrease of Tc,MCT.

Finally, we want to discuss the correlation between Tc

and the monomer density (see also [42] for a similar dis-
cussion). Figure 1 shows that the density increases with
N as ρ∞ − ρ(N) ∼ 1/N . Qualitatively, this agrees with
eq. (37). So the increase of Tc may be interpreted as re-
sulting from the monomer density. A similar increase of
Tc with ρ is observed for simple LJ liquids [75,87] and can
be rationalized as follows. LJ liquids are strongly corre-
lating systems displaying e.g. strong pressure-energy cor-
relations [88] or density scaling of the average relaxation
time [88,89] (i.e. the average relaxation time is only a func-
tion of the scaling variable ργ/T with γ being a material-
specific exponent [90]). These features may be under-
stood by mapping the LJ liquid on an effective soft-sphere

system [87–89, 91]. A soft-sphere system is characterized
by the coupling parameter Γ = ρT−3/n, if the repulsive
pair-potential varies as r−n with the interparticle distance
r [92]. Due to the repulsive part of the LJ potential a nat-
ural guess is that n = 12. This suggests Γc = ρcTc

−1/4

where ρc = ρ(Tc) [87]. We have determined ρc for all
N from the data in fig. 1 and plot Tc versus ρ4

c in the
inset of fig. 15. The solid line in fig. 15 shows that the
data are compatible with a linear relationship, yielding
Γc = 1.29. Within error bars this value agrees with the
result Γc = 1.27 ± 0.02 found in simulations at different
pressure for fully flexible polymer models with N = 10
(P = 0 [43], P = 0.5, 1, 2 [93]). On the other hand, a best
fit of the data gives Tc ∼ ρ4.5

c (dashed line in the inset of
fig. 15), corresponding to n = 13.5. Exponents larger than
n = 12 are also found for LJ liquids and explained by the
contribution of the attractive r−6 term which makes the
effective repulsion steeper [88, 89]. However, the reported
values are larger than n = 13.5, typically n ≈ 15 [89] or
n ≈ 18 [88].

5 Summary and concluding remarks

In this work we conducted MD simulations of a fully flex-
ible bead-spring model for polymer melts and examined
the structural relaxation of the supercooled melt as a func-
tion of chain length. Coherent and incoherent correlators
were analyzed by the universal predictions of ideal MCT
for the β and α relaxations (sect. 3). These predictions
are expected to hold asymptotically close to the critical
temperature on approach to Tc from above. While qual-
itative features, i.e. the validity of the factorization the-
orem and of the TTSP, can be tested directly from the
simulation data (sect. 4.2), the quantitative analysis in
the late β regime requires fits which are complicated by
two problems: i) Choices for the time interval and temper-
ature, where the fit will be carried out, have to be made.
They can bias the results. ii) The fit has to optimize five
parameters simultaneously. Correlations between the pa-
rameters are therefore hard to avoid. These problems are
well known in the literature [66, 67, 94, 95]. Any fit proce-
dure can only attempt to minimize them. Our approach
is described in sect. 4.3.1.

The fits in the late β regime give detailed insight into
chain-length dependence of the structural relaxation near
Tc. Here we summarize our findings and put them into
perspective with other work:

i) The nonergodicity parameter (f sc
q ) for the incoher-

ent scattering can be taken as independent of N (fig. 9).
This implies that also the Lindemann localization length
(rsc) does not depend on chain length. We obtain for rsc

a value of about 10% of the particle (monomer) diameter,
also typically found in simple liquids [9,58] and other fully
flexible polymer models [21, 27, 28, 34]. However, stiffer
bead-spring models with intramolecular barriers [27,28] or
chemically realistic models [32,33] report deviations from
the Lindemann’s 10% value, depending on the strength of
the intramolecular barrier or on the atom considered along
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the real chain (see [33] for a comparative discussion). For
these cases it would be interesting to see whether chain
length also has a negligible effect only.

ii) Contrary to f sc
q the long-time correction coefficient

(Bs
q) for the incoherent scattering shows a pronounced N

dependence in the limit of small q (fig. 11). This can be
rationalized by the fact that Bs

0, the correction coefficient
entering the monomer MSD, is determined in the crossover
region between the escape from the monomer cage and the
subdiffusive regime (∼ tx) caused by chain connectivity.
For short chains the exponent x is larger than the Rouse
value x = 1/2 [7, 21, 96], but decreases toward 1/2 with
increasing chain length (compare fig. 12 and 13). This N
dependence is reflected by Bs

q in the small-q limit.
iii) For the coherent scattering a particular feature is

the shoulder in fc
q at q ≈ 4.5 ≈ 0.6q∗. This feature is ab-

sent in simple liquids [8,52], but found in many simulations
of polymer models [21,27,28,30,35]. Work on models with
intramolecular barriers shows that the amplitude of the
shoulder converges with increasing chain stiffness toward a
smaller value than for fully flexible chains [27,28]. Here we
find the opposite trend. The amplitude increases for small
chain lengths, but converges to an N independent value for
the largest chain lengths studied. These results show that
there are polymer-specific (stiffness and chain-length de-
pendent) slow modes in the collective density fluctuations
at intermediate wave vectors. These slow modes are not
captured by (current) MCT calculations based on static
input from the simulations (cf. fig. 9 and [21,28,29]). This
may be the reason why such calculations systematically
underestimate Tc (see fig. 15 and [21, 28, 29]), contrary
to similar calculations for binary mixtures [52, 64, 65, 74],
silica [97] or ortho-terphenyl [98], which yield larger Tc

values than the fits to the asymptotic MCT predictions.
The studies on silica and ortho-terphenyl also hint at an-
other possibility of how to improve on the theoretical cal-
culations. As in [21] the MCT calculation carried out here
neglect static three-point correlations that in principle en-
ter the MCT kernel (eq. (30)) as an additional term. For
silica [97] and ortho-terphenyl [98] these correlations con-
siderably increase Tc (while they are negligible for binary
mixtures [97]). Prompted by these results recent work on
bead-spring models with intrachain barriers included the
triplet correlations at the intramolecular level [29]. How-
ever, only very small modifications of the MCT predictions
were found.

iv) Consistent with the expectation from MCT we
find that one exponent parameter λ determines the shape
of the coherent and incoherent scattering functions. Our
analysis suggests that λ is independent of N and has a typ-
ical value λ = 0.735 as for simple liquids [8,9,52,58,65,73,
74] and other fully flexible polymer models [21, 27, 28].
By contrast, work on chemical realistic models [30–33]
and bead-spring models with large intramolecular barri-
ers [27–29] obtains higher λ values approaching the upper
limit λ = 1. Within MCT such large λ values are indica-
tive of the simultaneous occurrence of competing mecha-
nisms for dynamic arrest [3,17]. For polymer melts it has
been suggested that these mechanisms could correspond to

packing effects, as in simple liquids, and polymer-specific
intramolecular barriers [27–29, 31–33]. In this sense, our
work suggests that the increase of chain length does not
introduce an additional arrest mechanism, at least for the
nonentangled chains studied here.

v) The studies of the bead-spring models with intra-
molecular barriers show that Tc increases with chain stiff-
ness [27–29]. For the fully flexible model we find here that
Tc increases with chain length toward an upper limit T∞

c .
The increase is comparable to that of Tg [39] and may
be parameterized by T∞

c − Tc ∼ 1/N (fig. 15). This ef-
fect can be understood from the behavior of the monomer
density [42] by assuming that our polymer model corre-
sponds to an effective soft-sphere system characterized by
a constant coupling parameter Γc = ρcTc

−1/4 = 1.29. This
argument has also been employed in the past to interpret
the pressure dependence of Tc [43,93]. This suggests that
fully flexible LJ polymer models belong to the class of
“strongly correlating” liquids which have invariant struc-
ture and dynamics along specific curves (“isomorphs”) in
the ρ-T plane [88]. It would be interesting to explore this
suggestion in more detail.
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