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Abstract. By means of molecular dynamics simulations, we investigate the texture and local ordering
in sheared packings composed of cohesionless platy particles. The morphology of large packings of platy
particles in quasistatic equilibrium is complex due to the combined effects of local nematic ordering of
the particles and anisotropic orientations of contacts between particles. We find that particle alignment is
strongly enhanced by the degree of platyness and leads to the formation of face-connected clusters of expo-
nentially decaying size. Interestingly, due to dynamics in continuous shearing, this ordering phenomenon
emerges even in systems composed of particles of very low platyness differing only slightly from spheri-
cal shape. The number of clusters is an increasing function of platyness. However, at high platyness the
proportion of face-face interactions is too low to allow for their percolation throughout the system.

1 Introduction

In many particulate materials found in nature and indus-
try, scientists and engineers need to quantify the effect of
complex particle shapes. This is of major importance in
the context of civil engineering and powder technology,
where most processes need to be optimized or revised fol-
lowing the dramatic degradation of natural resources. For
instance, elongated and platy particles occur in pharma-
ceutical products, angular shaped particles are common in
rocks and soils, and nonconvex particles can be found in
metallurgical and sintered powders [1,2]. The grain shape
considerably affects the quasistatic mechanical behavior
of granular materials [3–10]. There is a multitude of po-
tential particle morphologies and recently a wide range
of nontrivial effects were —systematically— reported by
means of discrete numerical simulations [9,11–18]. Indeed,
one of the major interests of discrete approach is to make
it possible to control precisely the shape of the particles
with continuously variable parameters.

Most evident effects of particle shape concern the pack-
ing fraction and shear strength of granular materials. For
instance, packings of elongated [11–13, 15] and noncon-
vex [19, 20] particles have unusually high or low packing
fractions, while the shear strength is observed to grow
as the shape increasingly deviates from the disk or the
sphere. The shear strength in packings of polyhedral par-
ticles increases with angularity and saturates at a max-
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imum, whereas the packing fraction declines towards a
plateau [16,18].

Such remarkable properties of packings composed of
nonspherical particles are closely related to their specific
disorder induced essentially by steric exclusions and the
force balance condition for each particle. The contact net-
works resulting from various shapes appear to be highly
complex and hardly amenable to simple statistical mod-
eling. For example, face-face interactions are critical for
polyhedra whereas interlocking of the particles is impor-
tant in the case of nonconvex shapes [15, 16, 18, 20, 21].
In the same way, nematic order appears in packings of
elongated particles [8,11–13,15,21]. More generally, pack-
ings composed of shape-anisotropic particles (i.e., elon-
gated/prolate or flattened/oblate) have attracted increas-
ing interest in recent years [22]. Oblate particles prefer
facing along the major principal stress direction with the
flat side, while prolate particles prefer orientation of their
long axis along the minor principal stress direction [23–28].
It is also shown that, with increasing particle aspect ratio,
the weak force network transforms from a passive stabiliz-
ing agent with respect to strong force chains to an active
force-transmitting network for the whole system [21].

Nevertheless, it appears that the focus of most system-
atic investigations of particle anisotropic shape effects has
essentially concerned elongated particles while the effect
of platy shape remains still poorly investigated. Such par-
ticles occur, for example, in clayey soils, where the local
ordering is generally attributed to the cohesive interac-
tions between particles [10,29,30].
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Fig. 1. (a) Scheme of a spheroplate. (b) Definition of the max-
imum and minimum radii, R and r, respectively.

In this paper, we are interested in the texture and local
order in numerically sheared packings composed of platy
particles in three dimensions with increasing aspect ra-
tio. We focus on the particle orientations, particle-particle
interactions, and the emergence of locally ordered struc-
tures involving face-face contacts between particles. As we
shall see below, the spontaneous alignment of the parti-
cles is accompanied by a strong increase of the propor-
tion of face-face interactions leading to the formation of
face-connected clusters. These clusters are characterized
in terms of their number and size distributions. It is re-
markable that this ordering phenomenon emerges solely
as a consequence of particle shape even in the absence of
cohesion.

Our numerical setup is identical to that used for the
investigation of shear strength and volume-change behav-
ior in a previous paper by the same authors as a function
of the degree of platyness of the particles [31]. The sam-
ples are composed of square plates, which we approximate
as spheropolyhedra [7, 32, 33] and simulated by means of
the Molecular Dynamics (MD) method. In the following,
we introduce the numerical model in sect. 2. In sect. 3, we
present our results and, finally, in sect. 4, we end with a
summary of the most salient results and a brief discussion.

2 Numerical model

2.1 Platy particles

The particles are square plates with rounded edges, built
as spheropolyhedra resulting from sweeping a sphere
around a polyhedron. Mathematically, this corresponds to
a Minkowsky addition of a sphere with a polyhedron (for
some examples of aspherical particles built as spheropoly-
hedra, see refs. [34] and [33] for cylinders; ref. [35] for
particles with shapes as complex as that of a cow; ref. [7]
for cylinders, tetrahedra, and intersecting cylinders; and
ref. [36] for irregular polyhedra). Specifically, our particles
are spheroplates resulting from a Minkowsky addition of
a square plate and a sphere. Each particle has three fea-
tures: four vertices, four edges, and one plane, fig. 1(a).

The platyness η of these spheroplates is defined as

η =
R − r

R
, (1)

where R and r are, respectively, the maximum and mini-
mum radii of the spheroplate as defined in fig. 1(b) (r is
also called the spheroradius of the spheroplate). Note that
η varies from 0 for a sphere to 1 for an infinitely thin plate.
The platyness η is related to the thickness/width aspect
ratio λ through the simple expression η = 1− 1/λ. In the
following, η is varied systematically from η = 0, which
corresponds to spherical particles, to η = 0.94, which cor-
responds to particles 17 times longer than thick.

2.2 Simulation method

We employed the Molecular Dynamics method, as usu-
ally called in the context of granular simulations since the
pioneering work of Cundal and Strack [37, 38]. In apply-
ing Molecular Dynamics to spheroplates, we should dis-
tinguish the contacts between different elements (vertices,
edges, and faces) of two interacting particles. Each inter-
action represents single or multiple contacts, each contact
occurring between two elements belonging to either of the
two spheroplates. All possible contacts are determined by
considering two cases: a contact between two edges and a
contact between a vertex and a face [31,39].

As usual in molecular dynamics simulations, normal
dissipation is accounted for by viscous damping. The con-
tact forces are calculated using the linear spring-dashpot
model and the Coulomb friction law. Then, the interaction
forces are calculated by adding the contact forces exerted
at each contact point. A detailed description of the contact
laws can be found in ref. [31].

2.3 Sample construction and shear test

Twelve monodisperse samples made up of 8000 sphero-
plates of radius r are built. The difference between these
samples is their platyness, which varies from η = 0 to 0.94.
The damping parameter and the normal stiffness (force
per unit overlap) were adjusted in order to get a large time
step (10−6 s) and small overlaps within numerical stabil-
ity. The normal stiffness and the interparticle coefficient
of friction were 1.5 × 10−9 N/m and 0.58, respectively.

Initially, the particles are placed at the nodes of a cubic
grid of side 2

√
2R and each of them is randomly oriented.

Then the samples are isotropically compressed. Once the
static equilibrium is reached, the lateral walls are removed
and replaced by periodic boundaries. The samples are then
sheared by imposing a constant horizontal velocity vw and
a constant confining stress σw to the upper wall allowing
for the volume of the sample to vary during the test. The
particles in contact with the walls are “glued” to them in
order to avoid strain localization at the boundaries. In all
simulations presented in this paper the gravity is set to
zero in order to get homogeneous stress fields inside the
packings.
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Fig. 2. (a) Definition of the particle orientation vector m (nor-
mal to the particles face). (b) Orientation angles θ and φ of the
vector m at the reference system.

As mentioned in sect. 1, the focus of this work is on the
microstructural properties of the packings in the steady
state. Therefore, the samples are sheared up to a large
cumulative shear strain γ = xw/yw � 2.5, where xw is
the horizontal displacement of the upper wall and yw is its
vertical position. The shear stresses and velocities are such
that the test is carried out in the quasistatic limit [40]. All
packings reach the steady state where both the strength
and volume fluctuate around mean values, and the strain
is homogeneously distributed in the sample.

3 Simulation results

In this section, we present the results of our simulations
and analyses. All the data shown in this section represent
an average over the last 40% of cumulative shear strain
(i.e., from γ = 1.5 to 2.5).

3.1 Particle alignment and face-face interactions

The particle orientation is defined as the orientation of the
vector m, normal to the particle face, see fig. 2(a). The
distribution of particle orientations can be represented by
the probability density function P (Ω) of particles whose
vector m is along the solid angle Ω = (θ, φ), see fig. 2(b).
Figure 3 shows P (Ω) for all samples at a shear strain
γ = 2. We see that, as the particles platyness increases,
the distributions become more anisotropic, indicating that
the number of particles aligning their faces along a partic-
ular direction increases. We also see that, as the particle
platyness increases, the priviledged direction of the distri-
butions gradually changes from that of the major principal
stress to the vertical direction. It is interesting to note that
this type of ordering appears even in the samples com-
posed of particles of very low platyness (e.g., for η = 0.14),
whose shape deviates only slightly from that of a sphere.

Because of the planar symmetry of our simple shear
tests, it is practical to analyze the system in terms of the
restriction of P (Ω) to the xy plane, i.e., the function P (θ),
which can be approximated by its lowest order Fourier
expansion:

P (θ) � 1/π
[
1 + am cos 2(θ − θm)

]
, (2)

Fig. 3. Probability density functions P (Ω) of particle orien-
tations for all values of η, at shear strain γ = 2.

where am is the anisotropy of particle orientations and
θm is the principal direction of P (θ). Even though the
parameters am and θm can be calculated by fitting the
measured values of P (θ) to the approximation presented
in eq. (2), in practice it is more convenient to calculate
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Fig. 4. Anisotropy of particle orientations am as a function of
platyness η. Error bars indicate the standard deviation.
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Fig. 5. Principal direction of particle orientations θm as a
function of η. Error bars indicate the standard deviation.

these parameters using the nematic tensor defined by

M =
1
π

∫ π

0

mα(θ)mβ(θ)P (θ)dθ

≡ 1
Np

∑

p∈V

mp
αmp

β , (3)

where m = (cos θ, sin θ) is the particle orientation, Np is
the number of particles p in the volume V , and α and
β denote the components in the reference frame. The
anisotropy of particle orientations is am = 2(M1 − M3),
where M1 and M3 are the eigenvalues of M, and the princi-
pal direction θm is given by the eigenvector corresponding
to the largest eigenvalue of M.

Figure 4 shows the anisotropy of particle orientations
am as a function of platyness η. We see that am increases
with η, from 0 to � 0.7, confirming that, as platyness in-
creases, the number of particles aligning their faces also
increases. Figure 5 shows the principal direction θm as
a function of η. We see that θm decreases with η, ap-
proximately from 120◦ to almost 100◦, confirming that, as
platyness increases, the direction along which these parti-
cles align gradually changes from that of the major prin-
cipal stress (i.e., 135◦) to the vertical direction (i.e., 90◦).

The fact that an increasing number of particles tend
to align their faces along a preferential direction is closely
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Fig. 6. Proportion ζ of face-face interactions as a function of
platyness η. Error bars indicate the standard deviation.

related to one of the distinctive features of materials made
up of platy particles: the possibility of forming face-face
interactions (i.e., interactions in which the flat faces of two
particles touch each other). Figure 6 shows the proportion
ζ of face-face interactions as a function of η. We see that ζ
rapidly increases with η from 0 to � 0.15, confirming that
face-face interactions are enhanced by the degree of platy-
ness.

3.2 Local order

The increase of the proportion of face-face interactions
suggests the formation of locally ordered structures char-
acterized by face-face interactions. These structures can
be tracked by means of the radial distribution function
g(r′) of the radial positions r′ of particle centers, defined as

g(r′) =
〈

Np(r′ + Δr′)
ρVΔr

〉

p

, (4)

where ρ is the number of particles per unit volume, Np(r′+
Δr′) is the number of particles whose center of mass is
inside a differential volume VΔr′ (defined as a thin shell
of internal radius r′ and external radius r′ + Δr′), and
the average is computed using all the particles p in the
system.

Figure 7 shows g(r′) for all values of η. For the sphere
packing, i.e., for η = 0, shown in fig. 7(a), the local or-
der is characterized by peak values representing successive
shells of neighboring particles as illustrated by the schemes
inside the figure. At low values of η, shown in figs. 7(a)
and (b), the peaks of g(r′) gradually vanish as η increases.
This means that, as platyness increases, shell structures
disappear due to the aspherical shape of the particles. This
tendency goes on to the point where there are almost no
peaks in the function g(r′), e.g., see g(r′) for η = 0.57
and η = 0.66. For the systems with still higher values
of η, shown in fig. 7(c), the first peak of g(r′) reappears,
showing the emergence of a new kind of local order.

In order to characterize this evolution of local order
with platyness, we plot in fig. 8 the height gmax of the first
peak as a function of η. The height declines from gmax � 6
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(a)

(b)

(c)

Fig. 7. Radial distribution functions g(r′) of the radial po-
sitions r′ of the particle centers, for: (a) particle platyness η
between 0 and 0.33, (b) η between 0.40 and 0.57, and (c) η
between 0.66 and 0.94.

for η = 0 down to gmax � 1.1 for η = 0.66, then it increases
again for η > 0.66. Note that in this range the first peak
occurs at the same distance r′ � 2r. Since this distance
can only occur for face-face interactions, the new local
structures are mainly composed of face-face interactions
as shown in the schemes in fig. 7(c).

3.3 Cluster formation

Both the increase of the number of face-face interactions
and the nonlinear evolution of the pair correlation func-
tion suggest that higher-order correlations in the form of
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Fig. 8. Height gmax of the first peak of pair correlation func-
tions as a function of platyness η. Error bars indicate the stan-
dard deviation.

clusters should appear in the system at high degree of
platyness. Such clusters may be identified by consider-
ing the particles connected by a face-face interaction. All
such particles are defined to belong to the same cluster.
Moreover, it was verified that all particles belonging to a
cluster had the same angular velocity within a small tol-
erance. Figure 9 shows snapshots of all clusters composed
of two, three, and four or more particles, in four samples
with η = 0.25, 0.50, 0.80, and 0.94. At low particle platy-
ness, we observe mainly clusters of two particles whereas
at higher platyness larger clusters are observed. In fig. 9,
the color indicates the angular velocity of the clusters.
Although the data is not presented in this paper, this ve-
locity is strongly correlated with the particles’ orientation,
in such a way that the polar distribution of mean angular
velocity is orthogonal to the probability density function
P (θ). This means that the particles for which the orien-
tation is orthogonal to the privileged orientation θm have
the largest angular velocity. This finding is in agreement
with those reported in ref. [41].

Figure 10 displays the total number Nc of clusters and
the mean number 〈S〉 of particles per cluster as a func-
tion of η. Both Nc and 〈S〉 increase continuously with
η. In other words, as platyness increases, not only more
face-connected clusters appear but the clusters are also in-
creasingly larger. 〈S〉 grows from 2 at lowest platyness to
2.4 for our largest platyness. This rather low value reflects
the fact that there are many more clusters composed of
S = 2 particles than clusters of higher order.

In order to get insight into the nature of such clusters,
it is useful to consider the proportion n of clusters com-
posed of S particles, as in the percolation theory (where
the particles represent the sites and the face-face contacts
are the bonds). Figure 11 displays n(S) for S = 2, 3, 4, 5
and 6. It is interesting to see that, for all values of platy-
ness with at least three data points, the number of clusters
declines exponentially with S. This behavior is consistent
with the bond random percolation model well below the
percolation threshold [42]. Actually, by inspecting fig. 9,
we see that the high-order clusters (i.e., clusters with



Page 6 of 8 Eur. Phys. J. E (2014) 37: 116

Fig. 9. Sideview of clusters composed of two, three, and four or more particles in four samples with platyness η = 0.25, 0.50,
0.80, and 0.94. Colors indicate the relative angular velocity, where cold and hot colors represent static and rotating clusters,
respectively.

S ≥ 4) are quite rare and hence even at high platyness
the system is far from the percolation of face-face bonds.

4 Summary and discussion

In summary, we have analyzed the structural proper-
ties and the particle clustering of sheared packings com-
posed of platy particles, by means of molecular dynamic

simulations. The platyness was varied from 0, correspond-
ing to a sphere, to 0.94 for particles that are 17 times
longer than thick. The samples were sheared up to a large
shear deformation and analyzed in the steady state.

Our results indicate that particle platyness enhances
the spontaneous alignment of the particle faces. Due
to dynamics in continuous shearing, this ordering phe-
nomenon emerges even in systems composed of particles
with very low platyness with a shape differing only slightly
from spherical shape. This kind of ordering has previ-
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Fig. 10. (a) Total number of clusters Nc and (b) mean num-
ber 〈S〉 of particles per cluster, as functions of η. Error bars
indicate the standard deviation.
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Fig. 11. Proportion n of clusters composed of S particles as
a function of S for all values of η.

ously been observed in experiments [22,27] and numerical
simulations mainly with two-dimensional elongated parti-
cles [15,21,28]. Regarding the privileged direction of align-
ment, we found that, as platyness increases, this direction
gradually changes from that of the major principal stress
to a direction that is perpendicular to the shear direction.
In other words, the larger axis of the particles tends to
align with the average velocity field. This evolution of the
privileged direction of alignment is consistent with several
observations reported in refs. [22, 27,28].

The occurrence of face-face interactions may be at-
tributed to this alignment of the particles due to contin-
uous shearing. The increase of these interactions has also
been observed in experiments [43] as well as in numerical
simulations with elongated particles in 2D [15,21].

By analyzing the radial distribution functions of par-
ticle positions, we evidenced a transition between two
regimes characterized by different microstructures. In the
first regime at low values of platyness, the platy shape of
the particles disturbs the usual shell structure of spherical
particles by enhanced steric hindering between particles.
In contrast, in the second regime at high values of platy-
ness, the platy shape enhances local order characterized
by face-face interactions. The orientational and positional
orders evidenced in these systems are analogous to those
observed in liquid crystals. The first regime is mainly char-
acterized by orientational order, which is reminiscent of
nematic order, whereas in the second regime a positional
“smectic” order emerges in the form of face-face interac-
tions.

Finally, we showed that the random occurrence of such
interactions leads to the formation of face-connected clus-
ters with exponentially decaying size. But even at high
platyness, the proportion of face-face interactions is too
low to allow for percolating clusters throughout the sys-
tem. In addition, it is also surprising that these clusters
emerge here uniquely as a consequence of particle shape
even in the absence of attraction forces between the parti-
cles, even if it is obvious that they should be more stable
and reinforced in the presence of attraction forces as is the
case in clays [1]. The goal of our ongoing investigation is
to explore the effect of such interactions.

We acknowledge financial support by the Ecos-Nord program
(Grant No. C12PU01).
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6. E. Azéma, F. Radjai, R. Peyroux, G. Saussine, Phys. Rev.

E 76, 011301 (2007).
7. S.A. Galindo-Torres, F. Alonso-Marroquin, Y.C. Wang, D.

Pedroso, J.D. Munoz Castano, Phys. Rev. E 79, 060301
(2009).

8. R.-C. Hidalgo, I. Zuriguel, D. Maza, I. Pagonabarraga,
Phys. Rev. Lett. 103, 118001 (2009).

9. T. Kanzaki, M. Acevedo, I. Zuriguel, I. Pagonabarraga, D.
Maza, R.C. Hidalgo, Eur. Phys. J. E 34, 133 (2011).

10. A. Anandarajah, Comput. Geotech. 27, 1 (2000).
11. A. Donev, F.H. Stillinger, P.M. Chaikin, S. Torquato,

Phys. Rev. Lett. 92, 255506 (2004).



Page 8 of 8 Eur. Phys. J. E (2014) 37: 116

12. A. Donev, I. Cisse, D. Sachs, E. Variano, F. Stillinger,
R. Connelly, S. Torquato, P. Chaikin, Science 303, 990
(2004).

13. W. Man, A. Donev, F.-H. Stillinger, M.T. Sullivan, W.-
B. Russel, D. Heager, S. Inati, S. Torquato, P.M. Chaikin,
Phys. Rev. Lett. 94, 198001 (2005).

14. I. Zuriguel, T. Mullin, Proc. R. Soc. A 464, 99 (2008).
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