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Abstract. It is commonly admitted that in liquids the thermal diffusion and Dufour coefficients DT and
DF satisfy Onsager’s reciprocity. From their relation to the cross-coefficients of the phenomenological
equations, we are led to the conclusion that this is not the case in general. As illustrative and physically
relevant examples, we discuss micellar solutions and colloidal suspensions, where DT arises from chemical
reactions or viscous effects but is not related to the Dufour coefficient DF . The situation is less clear for
binary molecular mixtures; available experimental and simulation data do not settle the question whether
DT and DF are reciprocal coefficients.

1 Introduction

Onsager’s theory for irreversible processes provides a for-
mal framework for non-equilibrium phenomena like diffu-
sion, electrokinetic effects, and heat conduction. The phe-
nomenological equations relate thermodynamic fluxes to
forces, for example heat flow to a temperature gradient,
or diffusion to a concentration gradient. Intriguing phys-
ical properties arise from the cross-terms, such as ther-
mally driven electric currents. Onsager established recip-
rocal laws between conjugate cross-coefficients [1], thus
completing Thomson’s derivation for the thermoelectric
effects and showing why the Seebeck and Peltier coeffi-
cients Π and S differ merely by a temperature factor,
Π/S = T [2].

As another classical example, the Soret and Dufour ef-
fects describe the mass transport in a temperature gradi-
ent, and heat flow due to a concentration gradient. There
is, however, a long-standing discussion whether, and even-
tually under which conditions, the corresponding coeffi-
cients obey a reciprocity relation. Thus it has been pointed
out that the reciprocal laws impose rather strong condi-
tions on the choice of fluxes and forces, which are not
always easily verified [3].

The Soret and Dufour effects are often discussed in
terms of Onsager’s phenomenological equations for the
heat and particle currents with cross-coefficients L′

1Q and
L′

Q1. It is then assumed that the measured thermal dif-
fusion and Dufour coefficients DT and DF correspond to
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L′
1Q and L′

Q1, such that the reciprocity relation for the
latter applies equally well to the former. This approach
has been taken by various authors, when discussing bi-
nary gases [4], organic liquids [5], molecular isotope mix-
tures [6], premelting solids with colloidal inclusions [7],
and far-from-equilibrium systems [8].

Available experiments do not provide clear evidence
for or against this assumption. Comparing thermal diffu-
sion and Dufour data for gas mixtures, suggests qualita-
tive agreement [4]. Regarding liquids, DT and DF seem
to agree well for mixtures of cyclohexane and carbon-
tetrachloride [9–11], yet significant discrepancies were re-
ported for benzene-cyclobenzene and other systems [9,10].
In recent years the Soret effect of colloidal suspensions has
been investigated in great detail [12–15]; unfortunately,
there is a lack of corresponding Dufour data. Molecular
dynamics simulations show a good agreement of the ther-
mal diffusion and Dufour coefficients, at least for simple
model systems [16–19].

Here we discuss the validity of the reciprocity assump-
tion for DT and DF on the basis of non-equilibrium ther-
modynamics. We consider regular systems where Onsager
cross-coefficients are identical, e.g., L′

1Q = L′
Q1. Then the

title of this paper reduces to the question whether, and
eventually under which conditions, thermal diffusion is de-
scribed by L′

1Q. This is formalized in sects. 2 and 3, where
we define DT and DF , and present Onsager’s phenomeno-
logical equations. In sect. 4 we discuss the case where the
entropy production is given by the vector fluxes, i.e., by
the heat flow and particle currents. In sects. 5 and 6 we add
chemical reactions and viscous effects; the corresponding
contributions to DT are evaluated for the examples of mi-
cellar suspensions, polymers, and colloidal particles. The
final sections discuss and summarize our main results.
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2 Thermal diffusion and Dufour coefficients

We consider a binary system with non-uniform temper-
ature and composition. Closely following [2], we present
the linear equations for heat and particle flows of a binary
system with volume fractions φ1 and φ2 = 1 − φ1.

Then the currents of the two components satisfy J1 +
J2 = 0; the first one is defined as

J1 = −D∇φ1 − φ1φ2DT ∇T. (1)

Besides gradient diffusion with the coefficient D, it com-
prises thermal diffusion with coefficient DT . In the steady
state J1 = 0, a finite temperature gradient imposes a
non-uniform concentration ∇φ1 = −φ1φ2ST ∇T , with the
Soret coefficient ST = DT /D.

Similarly, the heat flow is driven by both temperature
and concentration gradients,

J′
Q = −λ∇T − φ1μ̂

φ
11DF ∇φ1, (2)

where λ is the thermal conductivity, DF the Dufour coeffi-
cient, and μ̂φ

11 the derivative of the chemical potential [2].
The hat indicates volume specific quantities, such as the
molecular chemical potential divided by the molecular vol-
ume, μ̂k = μk/vk. The choice of volume fraction variables
φk implies that J1 has the dimension of a velocity; one
readily finds that DT has the units m2 s−1 K−1, whereas
DF has those of a diffusion coefficient, m2 s−1.

The heat flow J′
Q comprises two contributions, ordi-

nary heat diffusion with conductivity λ, and the Dufour
effect which is driven by a concentration gradient in an
anisotropic medium. Note that J′

Q does not account for
enthalpy transport due to the particle current but is de-
fined at J1 = 0. In the case of a finite particle current, the
total heat flow reads

JQ = J′
Q + ĥ1J1 + ĥ2J2 = J′

Q + (ĥ1 − ĥ2)J1, (3)

with the specific enthalpies ĥk of the two components.
In many instances it is assumed that the off-diagonal

coefficients DT and DF are related through Onsager’s re-
ciprocal laws according to

DT
?=

DF

T
. (4)

The temperature factor is due to historical convention,
similar to that between the Seebeck and Peltier coeffi-
cients, S = Π/T . Kinetic theory confirms this relation to
be satisfied in ideal gas mixtures [20], and there is evi-
dence for its validity in liquid isotope mixtures [6]. Little
can be said on ordinary binary liquids [9–11] and complex
fluids.

3 Phenomenological equations

The above eqs. (1) and (2) provide the experimental def-
inition of the thermal diffusion and Dufour coefficients.
Closely following ref. [2], we summarize the corresponding

theory, that is, Onsager’s linear relations for thermody-
namic fluxes and forces. We do not discuss the regres-
sion hypothesis [21] and suppose that the fluxes are linear
functions of the forces; note this assumption is often not
justified for chemical reactions.

3.1 Entropy production

Like any thermodynamic function, the entropy is constant
in an equilibrium state. Non-equilibrium phenomena are
intimately related to entropy production. For example,
gradient diffusion according to Fick’s law J1 = −D∇φ1

tends to smear out any composition inhomogeneity and
produces entropy at a rate σ ∝ D(∇φ1)2. By the same
token, a non-uniform temperature induces a heat flow
JQ = −λ∇T from the hot to the cold and augments
the entropy as σ = λ(∇T/T )2. Similar relations arise for
chemical reactions and for viscous flow.

In the case of an initial perturbation, the system re-
laxes toward an equilibrium state (∇φ1 = 0, ∇T = 0, . . .)
of constant entropy. On the other hand, if the inhomo-
geneity is maintained through continuous heat or matter
supply, the system reaches a stationary non-equlibrium
state and produces entropy at a constant rate.

With the mentioned dynamic variables, the rate of en-
tropy production per unit volume reads as

σ = JQ ·∇ 1
T
−

∑

k

Jk ·∇
μ̂k

T
−

∑

i

JiAi −
Π : G

T
, (5)

where JQ is the heat flux, Jk are the volume currents
of the molecular species, Ji are the compositon changes
due to chemical reactions, and Π is the viscous pressure
tensor. The corresponding thermodynamic forces are the
gradients of the inverse temperature and the Planck po-
tential μ̂k/T , the affinities Ai, and the symmetrized rate
of change of the fluid velocity field v(r), with components
Gmn = 1

2 (∂mvn + ∂nvm).
For sufficiently weak deviations from the equilibrium

state, Onsager established linear relations between the
fluxes and forces. Because of the Curie symmetry prin-
ciple, the phenomenlogical relations do not mix scalar,
vector, and tensor quantities. Thus the coefficient ma-
trix of the phenomenological equations is block-diagonal
and decays in parts that are characterized by their tensor
properties.

3.2 Vector currents

The vector quantities JQ and Jk describe heat and mass
diffusion. For a binary system (n = 2) they form 3 gener-
alized fluxes which are, however, not linearly independent
and can be reduced to 2 independent flows. When de-
scribing the composition in terms of volume fractions, the
particle currents cancel each other, J2 = −J1; eliminating



Eur. Phys. J. E (2014) 37: 96 Page 3 of 11

that of the second component one obtains

J1 = L1Q∇ 1
T

− L11∇
μ̂1 − μ̂2

T
, (6a)

JQ = LQQ∇ 1
T

− LQ1∇
μ̂1 − μ̂2

T
. (6b)

The last term of each equation gives rise to both thermal
and concentration gradients,

∇ μ̂k

T
= ĥk∇ 1

T
+

∇T μ̂k

T
, (7)

where ĥi is the enthalpy and ∇T the gradient at con-
stant temperature. Thus the thermodynamic force ∇T μ̂k

involves the derivative of the chemical potential with re-
spect to composition.

In many instances it turns out convenient to regroup
all temperature gradients according to

J1 = L′
1Q∇ 1

T
− L′

11

∇T (μ̂1 − μ̂2)
T

, (8a)

J′
Q = L′

QQ∇ 1
T

− L′
Q1

∇T (μ̂1 − μ̂2)
T

. (8b)

Comparison with (5) readily provides relations between
unprimed and primed coefficients, e.g. L′

1Q = L1Q − L11

(ĥ1 − ĥ2).
The heat flow J′

Q is defined such that the entropy pro-
duction involves products of conjugate forces and currents;
for a binary system with J1 + J2 = 0, the contribution of
the vector quantities reads

J′
Q · ∇ 1

T
− J1 ·

∇T (μ̂1 − μ̂2)
T

.

According to (3) the primed heat flux accounts for diffu-
sive transport only, whereas JQ comprises in addition the
enthalpy carried by the particle current J1. In the steady
state of a closed system, the latter vanishes and one has
JQ = J′

Q.

3.3 Scalar and tensor quantities

Now we turn to the remaining terms of the entropy pro-
duction rate. That involving chemical reactions is de-
scribed by scalar fields,

Ji = −
∑

j

lijAj/T, (9)

where the coefficients lij relate the reaction products to
the affinities Ai.

Finally, the linear relation between the viscous pres-
sure and the velocity gradient,

Π = −ηG, (10)

involves the fourth-rank viscosity tensor η, which struc-
ture is rather simple in isotropic liquids, yet becomes more
complex in liquid crystals [22]. For compressible fluids, the
contraction Π : G comprises also a scalar term, which is
small for most liquids and thus will be discarded.

3.4 Reciprocal laws

According to Onsager’s reciprocal laws, the coefficient ma-
trices l, L, L′, and η are symmetric, and in particular

L′
1Q = L′

Q1. (11)

In many works on thermal diffusion, both chemical reac-
tions and viscous flow are discarded from the beginning.
Then the different terms in (8) are readily identified with
those in (1) and (2),

λ
?=

L′
QQ

T 2
, D

?=
μ̂φ

11L
′
11

φ2T
,

DT
?=

L′
1Q

φ1φ2T 2
, DF

?=
L′

Q1

φ1φ2T
, (12)

where μ̂φ
11 is the usual derivative with respect to compo-

sition [2]. Since L′
1Q and L′

Q1 are reciprocal coefficients,
these relations confirm (4) for the thermal diffusion and
Dufour coefficient.

The above decomposition of the linear relations ac-
cording to their tensorial properties does not imply, how-
ever, that the underlying physical phenomena are decou-
pled. Whether each of the fluxes (8), (9), and (10) can be
treated independently from the others, cannot be deter-
mined on formal grounds, but has to be inferred from the
physical properties of the system under consideration.

In the following we evaluate DT for different mod-
els and determine in each case whether or not eq. (12)
is satisfied.

4 Diffusion

Here we consider the case of a binary system where both
chemical reactions and viscous effects are absent. Then
the entropy production and phenomenological relations
reduce to the vector quantities JQ, J1, and J2, imply-
ing that DT and DF are reciprocal coefficients according
to (4). Still, the remaining three independent coefficients
have to be determined from physical considerations. The
general theory parallels chapt. XI § 8 of ref. [2]; the nota-
tion with volume fractions and examples are developed in
ref. [23].

4.1 Vector fluxes

It turns out instructive to eliminate the heat current JQ,
contrary to (8) where we eliminated the current of the
second component J2. Then one obtains the particle fluxes
as linear functions of the thermodynamic forces ∇(μ̂k/T ),

J1 = −φ1φ2T

(
B1∇

μ̂1

T
− B2∇

μ̂2

T

)
, (13)

where the coefficients Bi depend on composition and on
temperature. (As compared to the notation in [23], a fac-
tor φ1φ2T has been introduced for convenience.)
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Note that the currents Jk have the dimension of a ve-
locity. Our choice of volume fraction variables φi is mo-
tivated by the volume conservation in incompressible liq-
uids, which results in the relation J1 + J2 = 0. For gases,
where momentum is conserved, one would prefer to take
mass fractions.

Equation (13) implies that diffusion and thermal dif-
fusion are given by the gradient of the Planck potentials
μ̂k/T . Spelling out the gradients,

∇ μ̂k

T
= − ĥk

T 2
∇T +

μ̂φ
kk

T
∇φk, (14)

recollecting the terms in J1 and comparing with (1) one
obtains the diffusion coefficient

D = (φ1B1 + φ2B2) φ1μ̂
φ
11. (15a)

Similarly one finds for the thermal diffusion and Dufour
coefficients [2]

DT =
ĥ2B2 − ĥ1B1

T
=

DF

T
. (15b)

Equations (8) and (15) provide formally equivalent ex-
pressions for the particle current (1): The former depends
on two unknowns L′

11 and L′
1Q, and the latter on B1 and

B2. These coefficients can not be derived from equilib-
rium properties; they have to be taken from experiment
or molecular dynamics simulations, or inferred from mod-
els for the molecular mobility.

On the other hand, the equilibrium quantities appear-
ing in (15), that is, the thermodynamic factor φ1μ̂

φ
11 and

the specific enthalpies ĥi, can be calculated from first prin-
ciples [24], or can be taken from numerical simulations [18]
or experiment [23].

4.2 Comparison to experiment

Thermal diffusion is usually discussed in terms of (8a).
When comparing to experiments, however, eqs. (15) turn
out to be a more promising starting point. Two mobilities
Bk appear in both D and DT and thus provide a strong re-
lation between thermal diffusion and diffusion data. When
taking the parameters Bk as constants, they can be de-
termined from the tracer diffusion coefficients of the two
species,

B2 = D(φ1)/φ1μ̂
φ
11 for φ1 → 0,

B1 = D(φ1)/φ1μ̂
φ
11 for φ1 → 1.

(16)

A slightly different scheme has been used for Soret
data of several molecular mixtures such as benzene-
cyclohexane [23]. Together with measured values for the
partial enthalpies ĥ2, this allows comparison with the ther-
mal diffusion coefficient DT .

A particularly interesting situation arises for isotope
mixtures. Molecular isotopes show similar thermodynam-
ics, yet differ in dynamical properties such as the at-
tempt frequency of activated jumps. Thus any differ-
ence in the mobilities Bk can be related to a specific
model. Such approaches have been developped for mass
effects. For mixtures such as CCl4-CBr4 the Bk have
been expressed through the activation free energy [6, 25].
The isotope effect observed upon deuteration in benzene-
cyclohexane mixtures, has been related to the molecular
collision rates [26].

4.3 Alkane mixtures

Thermal diffusion behavior according to (15) is expected
in mixtures of similar molecules, such as short alkanes.
Indeed, small molecules induce weak hydrodynamic flow,
which is rapidly superseded by the molecular diffusion.
Then the Soret coefficient ST = DT /D depends on the
partial enthalpies ĥk, the chemical potentials μ̂k, and the
molecular mobilities Bk.

Assuming that the latter are identical, independently
of the molecular weight, we thus have [23]

ST =
1
T

ĥ2 − ĥ1

φ1μ̂11
(B1 = B2). (17)

Refining early work by Haase [27], similar relations have
been discussed by several authors [28–30]. In fig. 1 we com-
pare this expression with Soret data for equimolar alkane
mixtures, which are taken from refs. [31,32].

The theoretical curve has been calculated from (17),
with the thermodynamic factor equal to unity such that
φ1μ̂11 = kBT/(φ1v2 + φ2v1), and the specific enthalpy
ĥn = hn/vn given by

hn = −(n + 0.65) × 4.64
kJ
mol

, (18a)

vn = (n + 2.02) × 16.35
cm3

mol
. (18b)

These simple laws perfectly fit the measured vaporization
enthalpy [33] and molecular volume vn. The theoretical
curve in fig. 1 strongly depends on the off-set parameters
0.65 and 2.02, as discussed in appendix A.

The particularly simple fit arises since the Soret co-
efficient ST = DT /D depends on the ratio B1/B2 only
(which, moreover, has been put to unity.) A more com-
plex situation occurs when considering thermal diffusion
and diffusion data separately. The many data on the com-
position dependence of DT and D [34, 35] should unam-
biguously determine the mobilities Bk and verify whether
the assumption B1 = B2 is justified. On the other hand,
if the data for DT and D turned out not to be compatible
with (15), this would suggest that DT cannot be explained
in terms of the vector fluxes (6) but depends on other phe-
nomena such as viscous stress.



Eur. Phys. J. E (2014) 37: 96 Page 5 of 11

-6

-4

-2

0

2

4

6

4 8 12 16 20

S
T (1

0-3
K-1

)

Number of carbon atoms n

Alkanes C
n
 - C

10

Fig. 1. Soret data for mixtures of normal alkanes C10-Cn ,
where the number n of carbon atoms of the second component
varies from 5 to 20. The experimental data are from Leahy-Dios
and Firoozabaadi [31] (squares) and Blanco et al. [32] (circles).
The theoretical curve is calculated from (17) as discussed in the
main text.

4.4 Comparison with heat conductivity

So far we discussed the relation between diffusion and
thermal diffusion coefficients in terms of the quantities
Bk. As shown by de Groot and Mazur, a more general
formulation of the heat and particle flows relates the co-
efficients D and DT to the heat conductivity λ. To this
purpose, we note that the thermodynamic forces on com-
ponent k can be written as

∑
l akl∇(μ̂l/T ), with a mo-

bility matrix that is symmetric (a12 = a21) and positive
definite (a11a22 ≥ a2

21).
The Bk appearing in (13) depend on these mobilities

through

B1 =
φ2a11 − φ1a12

φ1φ2T
, B2 =

φ1a22 − φ2a21

φ1φ2T
. (19)

Insertion in (15) provides the diffusion and thermal dif-
fusion coefficients in terms of the akl. Similarly, the heat
conductivity is given by the mobilities according to [2]

λ =
a11ĥ

2
1 + 2a12ĥ1ĥ2 + a22ĥ

2
2

T 2
. (20)

Thus the three transport coefficients D, DT , and λ are ex-
pressed through three paramaters a11, a22, and a12. These
quantities vary with composition, such that a set of exper-
imental data for D(φ1), DT (φ1), and λ(φ1) determines the
mobility matrix akl(φ1).

Here one should remind that (15) and (20) rely on the
assumption that vector fluxes and forces entirely deter-
mined the heat and particle currents. Thus in the first
place, these relations provide a criterion for the validity
of this assumption. As a crude estimate, we replace the
mobilities by akl ∼ a, neglect composition factors φi ∼ 1,
and thus obtain D ∼ akB/v and λ ∼ a(H/v)2/T 2, where

H and v are the molar enthalpy and volume. Eliminating
a leads to λ ∼ H2D/vkBT 2; inserting typical values of
H, D, v, as measured e.g. for benzene, one finds a ther-
mal conductivity λ ∼ 0.03W m−1 K−1 which is about five
times smaller than the experimental value.

This estimate suggests that it could be instructive to
fit experimental or simulation data for D, DT , and λ with
eqs. (15) and (20). The elements of the mobility matrix
akl do, however, not necessarily provide a good starting
point; thus according to (19) and (16), constant diagonal
elements akk would result in a diverging diffusion coeffi-
cient D. In view of (16) one would rather prefer to replace
the akl with well-behaved quantities; as a possible choice
we note B1, B2, and

B3 =
a12

φ1φ2T
.

Then the expressions in (15) are completed by the thermal
conductivity

λ =
φ1ĥ

2
1B1 + φ2ĥ

2
2B2 + (φ1ĥ1 + φ2ĥ2)2B3

T
. (21)

The positivity condition for the mobility matrix imposes

B1B2 + (φ2B1 + φ1B2)B3 ≥ 0.

We recall that the Bk depend on composition. The rela-
tions (15) and (21) suggest that, in a simple model, these
quantities could be taken as constants.

5 Chemical reactions

Here we discuss how chemical reactions modify heat and
mass flow. In physical terms, it is clear that they affect
the local composition and thus induce diffusion currents;
inversely, thermal diffusion creates a non-uniform compo-
sition which in turn perturbs the chemical equilibrium and
thus provokes reactions.

Because of the Curie principle, the phenomenological
equations (8) and (9) do not contain cross-terms between
the scalar and vector quantities, and thus do not mix the
reaction kinetics and diffusion. This does not imply, how-
ever, that scalar and vector fluxes are independent of each
other, nor that diffusion is simply determined by the ma-
trix L.

5.1 Reaction-diffusion coupling

Consider the case of a single chemical reaction between
two components. Then the entropy production (5) com-
prises the scalar fluxes Ji = φ̇i. The reaction kinetics obey
the rate equations

φ̇1 = γφ2 − Γφ1 = −φ̇2, (22)

where the point indicates time derivatives and the transi-
tions 1 ↔ 2 occur with rates γ and Γ . According to the
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principle of detailed balanced, their ratio γ/Γ = e−G/kBT

is determined by the free enthalpy difference G of the two
states.

In addition to the reaction velocity φ̇k, the total change
of the volume fraction with time comprises the divergence
of the diffusion current Jk,

d
dt

φk = φ̇k + ∇ · Jk, (23)

where the last term corresponds to a source or sink for
the considered species. Equation (23) provides a coupling
between the scalar and vector fluxes φ̇k and Jk, and thus
induces a relation between the a priori independent phe-
nomenological equations (8) and (9).

Here we consider the steady state where dφk/dt = 0.
The resulting equation

φ̇k + ∇ · Jk = 0 (24)

does not imply the arrest of the reaction nor that the cur-
rents Jk vanish. It simply requires that a local creation of
molecules (φ̇1 > 0) is balanced by a net outgoing parti-
cle flow, and annihilation (φ̇1 < 0) by an incoming flow.
In general the solution of (24) cannot be given in closed
form, especially if the rate ratio γ/Γ = e−G/kBT depends
on temperature.

Thermal conductivity of a binary system with constant
rates has been studied in detail by de Groot and Mazur in
chapt. XI § 8 of ref. [2]. As a main result these authors find
that the diffusivities are not simply given by the matrix
L, but depend on the reaction parameters; moreover, the
explicit result for the thermal conductivity shows an intri-
cate spatical variation. This leads to the conclusion that
eq. (12) is not valid in the presence of chemical reactions.

5.2 Micelle kinetics

As an instructive example, we consider a solution of ten-
sioactive molecules that partly aggregate to micelles. The
micellar and molecular states occupy volume fractions φ1

and φ2, with φ1 + φ2 � 1. For the sake of simplicity we
suppose that the cross-coefficients in the vector fluxes are
small and thus put

L′
kQ = 0 = L′

Qk. (25a)

Then the particle currents take the form Jk = −Dk∇φk,
where

Dk =
L′

kkφkμ̂φ
kk

φ1φ2T
, DT = 0 (25b)

implies the absence of thermal diffusion.
Now we take the kinetics of micelle formation into ac-

count [36]. Micellar aggregation of N molecules and dis-
solution through the inverse process, as described by the
rate equation (22). This “chemical reaction” occurs on a
time scale of nanoseconds, and thus is much faster than
diffusion over macroscopic lengths L, which occurs on a

time scale L2/D that by far exceeds seconds. This means
that the second term in (24) is small.

The steady state of a homogeneous system is deter-
mined by the equilibrium of the chemical reaction (φ̇1 = 0)
which reads as φ1/φ2 = γ/Γ = e−G/kBT . Yet here this
ratio is not constant in space but varies because of the
non-uniform temperature T (r). Expanding the rate equa-
tion (22) to linear order in the coordinates r, we have

γφ2 − Γφ1 + r · ∇ (γφ2 − Γφ1) + ∇ · J1 = 0. (26)

The first term describes the equilibrium state at r = 0.
Since diffusion is much slower than the chemical reaction,
D/L2 � γ, the last term is negligible. Evaluating the
gradient of the remainder we find

0 = Γφ1
H

kBT 2
∇T + γ∇φ2 − Γ∇φ1, (27)

where we have inserted the Gibbs-Helmholtz relation
d

dT

G

kBT
= − H

kBT 2
,

with the enthalpy H.
Thus chemical equilibrium in the presence of a non-

uniform temperature gradient imposes gradients of the
micellar and molecular volume fractions, which in turn
drive the diffusion currents Jk = −Dk∇φk. Inserting
J1 + J2 = 0 in (27) we find the steady-state composition
gradients

∇φst
1 = φ1

D2Γ

D1γ + D2Γ

H

kBT 2
∇T (28)

and ∇φst
2 = −(D1/D2)∇φst

1 . This implies a finite station-
ary current of micelles

Jst
1 = −φ1

D1D2Γ

D1γ + D2Γ

H

kBT 2
∇T = −φ1DT ∇T, (29)

and the opposite flow of the molecular state. The second
equality defines a thermal diffusion coefficient DT for the
first component. Its dependence on the rates γ and Γ , and
on the micellar enthalpy H, indicates that this current is
driven by the chemical reaction. The micelle and molecu-
lar currents Jst

1 and Jst
2 are shown in fig. 2 and related to

the gradient of the chemical equilibrium condition (27).
Finally we define the Soret coefficient of the solution

through the gradient of the total surfactant content φst =
φst

1 + φst
2 ,

∇φst + φstST ∇T = 0.

Rearranging the above expressions one finds

ST =
D1 − D2

D1γ + D2Γ

γΓ

γ + Γ

H

kBT 2
. (30)

This contribution could be relevant for thermophoresis ex-
periments on SDS solutions [37].

As a summary of this section, the non-uniform equi-
librium condition (27) imposes the steady-state composi-
tion gradient ∇φst

1 , which in turn, induces the thermally
driven micellar current Jst

1 . Thus we have DT �= 0 in spite
of L′

kQ = 0, which clearly invalidates eq. (12).
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J2

J1
cold hot

Γ γ

Fig. 2. Steady-state currents resulting from the equilibrium
between micellar and molecular states in a surfactant solu-
tion. For H > 0, micelle formation is favored at high tempera-
tures, and the dissolved molecular state at lower temperatures.
This temperature-dependent equilibrium feeds stationary mi-
celle and molecular currents J1 and J2. For H < 0 all arrows
point in the opposite direction.

6 Viscous effects — thermophoresis

Now we turn to the case where the entropy production (5)
comprises a viscous term. We repeat that the phenomeno-
logical equations are block-diagonal, and thus do not mix
viscous and particle fluxes Π and Jk. Yet there is am-
ple experimental evidence that thermally driven motion in
colloidal dispersions is essentially determined by viscous
effects. In physical terms the moving particle engenders in
the surrounding fluid a velocity field v(r), which produces
entropy according to the last term in (5). Accordingly,
most theoretical works on colloidal thermophoresis rely
on a hydrodynamic approach which deals with the cou-
pling of the mass flux J1 in (8) and the viscous pressure
tensor (10).

We consider colloidal particles dispersed in continuous
solvent without molecular structure. The chemical poten-
tial per particle μ = h − Ts, or partial free enthalpy, is
given by the interaction enthalpy h and the translational
entropy s = −kB ln φ1; the former is proportional to the
particle surface and the latter decreases with the particle
content φ1. From the thermodynamic force (7) one ex-
pects that D and DT arise from the volume fraction and
temperature derivatives, respectively.

In this section we sketch the derivation of D and DT in
terms of Stokes’ equation η∇2v = ∇P , with the solvent
viscosity η, velocity field v, and pressure P . A rather sim-
ple physical picture emerges for the diffusion coefficient,
where the hydrodynamic flow corresponds to the Stokes
drag of a particle subject to an entropic force −kBT∇φ1.
Regarding the thermophoretic mobility DT , the relation
between the thermodynamic force and the particle veloc-
ity is less straightforward, but relies on an argument devel-
opped by Derjaguin and on the concept of an effective slip
velocity close to a solid surface [38]. The latter provides a

hydrodynamic boundary condition with links viscous flux
with the particle motion.

6.1 Stokes-Einstein diffusion coefficient

Gradient diffusion in a collodial dispersion is determined
by the interplay between thermal noise and Stokes drag;
in the present notation the coefficient reads

D =
φ1μ

φ
11

6πηR
=

kBT

6πηR
. (31)

The numerator results from the thermodynamic force ∇μ
exerted by a concentration gradient, whereas the denomi-
nator accouts for Stokes friction for a sphere of radius R.
In the second equality we have used that in a dilute sus-
pension the thermodynamic factor simplifies according to
φ1μ

φ
11 = kBT [2].
In the absence of viscous effects and for φ1 → 0,

eq. (15a) gives

D = B2φ1μ̂
φ
11 = kBTB2/v1,

with the solvent molecular mobility B2 and the particle
volume v1 [23]. In the present macroscopic hydrodynam-
ics approach (31), the mobility B2 has disappeared, or
rather is subsumed in the viscosity parameter η. The de-
pendence on the particle size R is characteristic for the
solvent velocity field associated with the diffusing parti-
cle.

6.2 Surface forces and slip velocity

Now we turn to the thermophoretic mobility DT , which
describes colloidal motion driven by a temperature gradi-
ent. For the case of thermal diffusion, the coefficient (15b)
was obtained as the product of the thermodynamic forces
with the molecular mobilities. Thermophoresis is more
complex since the motion is related to a velocity field v(r)
in the surrounding fluid; the resulting viscous pressure Π
contributes significantly to the entropy production.

As pointed out by Anderson [38], the fundamental
principle of thermophoresis is similar to electrophoresis
and to motion in concentration gradients. As shown in
fig. 3, the temperature gradient induces a shear stress
within a boundary layer of thickness λ. At distances be-
yond λ, the resulting flow profile saturates at the effective
slip velocity vS . Matching the far-field v(r) to the bound-
ary condition vS , one finds that the particle moves at a
velocity

u = −DT∇T = −2
3
vS . (32)

Thus calculating DT is reduced to the hydrodynamic
problem of evaluating the flow around the particle.

In the phenomenological equations, there are no cross-
terms between the particle current Jk and the viscous flux
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Fig. 3. a) Colloidal particle in a temperature gradient. The
boundary layer is characterized by the excess specific enthalpy
ĥ (grey-blue). b) The case of a thin boundary layer (λ � R) is
equivalent to a flat surface where, at distances beyond λ, ther-
moosmosis leads to an effective slip velocity vS . c). Heat and
volume flows in a capillary. The pressure gradient ΔP/L re-
sults in Poiseulle flow with parabolic velocity profile v(z). Since

ĥ = 0 in the core of the capillary, the excess heat flow (36)
occurs in the boundary layers of thickness λ. A temperature
gradient ΔT/L results in thermal creep flow along the solid
boundary; the velocity profile in the boundary layer depends on
the detail of h(z). The constant velocity in the core of the cap-
illary can be determined from Onsager’s reciprocal law for the
coefficients in (33). Then the resulting slip velocity (38) applies
equally well at the surface of a colloidal particle and, finally,
determines the thermophoretic mobility according to (32).

Π. Yet the hydrodynamic boundary conditions couple the
particle motion to the fluid velocity field. In the following
we give Derjaguin’s evaluation for this coupling.

6.3 Onsager relation for enthalpy and volume flows

In their 1941 paper on the thermoosmotic effect, Derjaguin
and Sidorenkov consider the conjugate heat flow instead
of the thermally driven velocity [39,40]. In a second step,
the latter is obtained from a reciprocity relation. This is
achieved in the geometry shown in fig. 3c, where the height
D of the capillary is much smaller than its length L and its
width w. The thermophoretic coefficient DT is obtained
by mapping the boundary problem on the surface of a
colloidal particle to the capillary flow velocity, according
to (32).

The thermodynamic forcers, that is the temperature
gradient ∇T = ΔT/L and pressure gradient ∇P = ΔP/L,
are constant and oriented along the capillary axis. The

corresponding fluxes, that is the flows of heat and volume,
are linear functions of the forces,

JV =
V̇

wD
= −LV Q

∇T

T
− LV V ∇P, (33a)

JQ =
Q̇

wD
= −LQQ

∇T

T
− LQV ∇P. (33b)

Here V̇ and Q̇ are the integrated volume and heat flows
through the capillary, whereas JV and JQ are the average
current densities, like JQ in previous sections. The dimen-
sion of Q̇ is energy/time, and that of V̇ is volume/time.

The diagonal coefficients LV V and LQQ are described
by the Hagen-Poiseuille law for laminar flow and the ther-
mal conduction of the liquid, respectively. The off-diagonal
coefficients account for the cross-currents; LQV gives the
pressure-driven heat flow, and LV Q the temperature-
driven volume flow. According to Onsager’s reciprocal re-
lations, these coefficients are identical,

LQV = LV Q. (34)

The transport coefficients are calculated from Stokes’
equation η∇2v = ∇P for the velocity field v(z), completed
with the boundary conditions v(0) = 0 = v(D).

First consider the flows driven by a pressure difference.
In a narrow capillary, the velocity depends on the verti-
cal coordinate z only. Then Stokes’ equation reduces to
η∂2

zv = ∇P ; it is solved by

v(z) =
z(z − D)

2η
∇P (0 ≤ z ≤ D) (35)

and results in the volume flow V̇ = −(wD3/12η)∇P and
LV V = D2/12η. The heat flow consists of the excess en-
thalpy of the liquid close to the upper and lower bound-
aries of the capillary

Q̇ = w

∫ D

0

dzĥ(z)v(z). (36)

The specific enthalpy ĥ is measured with respect to that
of the bulk liquid, ĥ∞, such that ĥ → 0 outside the inter-
action layers. Dividing the integral by wD and identifying
with JQ = −LQV ∇P , we find the transport coefficient

LQV = −1
η

∫ D/2

0

dzzĥ(z). (37)

Here we have used that the lower and upper boundaries
of the capillary carry identical amounts of heat, and have
inserted the velocity profile close to the lower boundary,
v(z) = −zD∇P/2η for z � D.

Now we turn to the temperature-driven volume flow
at constant pressure. Except for the boundary layer, the
velocity profile is constant across the capillary; to leading
order in λ/D, the volume current reads JV = vS . Identify-
ing this with JV = −LV Q∇T/T and using the reciprocal
relation (34), we find

vS = −∇T

ηT

∫ ∞

0

dzzĥ(z). (38)
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We have used that ĥ is finite in the boundary layer of
thickness λ � D only and vanishes in the core of the cap-
illary; thus we have replaced the upper bound D/2 with
infinity. (In passing we note that the additional factor 2
occurring in previous work [40,41] is related to the missing
1
2 in the Poiseuille velocity profile used there.)

6.4 Thermophoretic and Dufour coefficients

The above cross-coefficient LQV applies to any surface
with an excess enthalpy ĥ within a thin boundary layer.
In particular, vS describes the quasislip velocity vS oc-
curing close to the surface of a colloidal particle, as illus-
trated in fig. 3b. From the hydrodynamic boundary condi-
tion (32) one readily obtains the thermophoretic mobility
of the particle

DT = − 2
3ηT

∫ ∞

0

dzzĥ(z) =
2
3

LQV

T
. (39)

In the second equality we have used (37) with λ/D → 0.
Note that DT does not depend on the particle radius R.
(This is valid as long as the particle radius is larger than
the interaction length, R � λ. In the opposite case, the
numerical prefactor 2

3 has to be replaced with unity [15].)
Thus thermophoresis stems from the volume flow V̇

driven by thermo-osmosis along a solid-liquid interface.
The coefficient LV Q = LQV has been evaluated through
the conjugate phenomenon, that is, the heat flow Q̇ due
to a Poiseuille flow. The second equality in eq. (39) relies
explicitly on the Onsager reciprocity law (34). It is clear
that DT as defined above, has no relation with the Dufour
effect DF . In physical terms, the above argument does not
lead to heat flow induced by a non-uniform colloidal vol-
ume fraction, and the actual conjugate flux Q̇ has nothing
do with a non-uniform composition.

Still, in a colloidal suspension with non-uniform vol-
ume fraction φ, there may be an additional heat flux
Q̇F ∝ L′

Q1∇φ, and the reciprocal coefficient L′
1Q is ex-

pected to contribute an additional term to (39). The many
data collected for colloidal thermophoresis suggest, how-
ever, that this extra term is small. In particular, experi-
ments show that DT is independent of the particle size; it
would be rather surprising if the heat flow Q̇F , and thus
the thermal diffusion and Dufour coefficient L′

Q1 = L′
1Q,

did not vary with the particle size.

7 Discussion

7.1 Are DT and DF reciprocal coefficients?

Reciprocicity is an undoubted property of the cross-
coefficients in Onsager’s equations, such as L′

1Q and L′
Q1

in (8), or LQV and LV Q in (34). This paper addressed the
question to what extent these reciprocal relations imply
DT = DF /T for the thermal diffusion and Dufour coeffi-
cients in liquids, and under which conditions the identifica-
tion of eq. (12) is valid. In the absence of scalar and vector

fluxes, we find that the model equations (1) are identical
to Onsager’s linear relation (8), implying DT = DF /T .

Adding a chemical reaction and coupling to the vector
fluxes through (24), we obtain a finite DT even for L′

1Q =
0. The corresponding micelle current (29) is driven by the
equilibrium composition of the chemical reaction. Thus
we find that eq. (12) is not satisfied in the presence of
chemical reactions, in agreement with the more formal
study by de Groot and Mazur [2].

A similar result is obtained for viscous effects. Ther-
mophoresis in colloidal suspensions is governed by hydro-
dynamic flow in the vicinity of the particle, as shown in
general by Anderson [38] and worked out in detail for
electric-double layer interactions [15,42]. The mobility DT

is given by the interaction enthalpy in the boundary layer.
The corresponding Onsager coefficient LQV is not related
to Dufour effect and its coefficient L′

Q1.
Our analysis suggests that the mobility DT defined

in (1) and measured in many experiments, comprises dif-
ferent contributions: thermal diffusion, thermophoresis,
spatially varying chemical reaction rates, etc. In each case,
there is a conjugate effect with a reciprocal coefficient.
Above we have discussed the relation between thermal
diffusion and the Dufour effect (L′

1Q = L′
Q1), and ther-

mophoresis and the pressure-driven heat flow (LV Q =
LQV ). Similarly, the equilibrium between the molecular
and micellar states in a surfactant solution, feeds a steady
micelle current (29) that is proportional to the temper-
ature gradient; the coefficient DT is determined by the
reaction rates of micelle formation.

7.2 Thermal diffusion or thermophoresis?

Most authors use “thermal diffusion” for molecular mix-
tures and “thermophoresis” for colloidal suspensions,
though in both cases the coefficient DT is defined by (1).
The above discussion gives a more precise meaning to this
distinction. In the case of thermal diffusion, viscous ef-
fects are absent, and DT and the Dufour coefficient are
related by reciprocity. In the stationary state the particle
currents vanish, J1 = 0, and so does the corresponding
entropy production.

Thermophoresis, on the other hand, is determined by
viscous flow. Then the mobility DT is given by the On-
sager cross-coefficient LV Q which describes volume flow
due to a temperature gradient. As worked out in a pre-
vious paper [43], the entropy production related to the
particle fluxes vanishes in the steady state J1 = 0, the
viscous flux continues to dissipate energy. The hydrody-
namic flow around each particle maintains a finite rate of
entropy production Π : G > 0.

7.3 Comparison with experiment and simulations

According to the preceding discussion, the reciprocity re-
lation between DT and DF is valid for thermal diffu-
sion only. In other words, reciprocity requires that dif-
fusion and thermal diffusion coefficients can be expressed
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through the mobilities Bk as in (15). In view of the fit
of ST = DT /D in fig. 1, the alkane data are not in con-
tradiction with the thermal diffusion picture. In order to
obtain conclusive evidence, one would have to consider
the coefficients DT and D separately, and this at different
composition. On the contrary, data on polymer solutions
and particle suspensions rather agree with thermophore-
sis mechanism, indicating that viscous effects prevail if the
solute is much larger than the solvent molecules [44, 45].
Yet the break-down of the thermal diffusion picture may
occur well before viscous behavior in the sense of macro-
scopic hydrodynamics sets in.

In technical terms, (15) ceases to be valid if the
molecules respond differently to the thermal and concen-
tration gradients in the thermodynamic force (14). Yet
nothing is known about the underlying mechanisms and
the relevant parameters. At present it is not even clear
whether the thermal diffusion picture applies to mixtures
of organic molecules of similar size and weight, such as
benzene, cyclohexane, and alkanes. Whereas thermal dif-
fusion data are available for many systems [5,46–49], there
are only few studies on the Dufour effect [9–11]. Com-
parison of measured DT and D with (15) could provide
valuable information.

In recent years, molecular dynamics simulations have
become a powerful tool for studying the thermal diffu-
sion and transport properties. Besides the dependencies
on molecular enthalpy, mass, and size [50–52], both diag-
onal and off-diagonal Onsager coefficients have been evalu-
ated [16–19]. For the investigated Lennard-Jones systems,
the simulations confirm reciprocity of the thermal diffu-
sion and Dufour coefficients. So far there is no systematic
numerical study of the validity of (2) and (15). The above
discussion suggests a break-down of the thermal diffusion
picture upon differentiating the two components in molec-
ular size or shape.

8 Summary

In this paper we discussed the coefficient DT of thermally
driven transport in three situations, where the entropy
production is dominated by diffusion, chemical reactions,
or viscous flow. In the first case, DT is determined by the
molecular enthalpy and diffusion constants Bi according
to (15). The conjugate effect is the Dufour effect, and DT

and DF are reciprocal coefficients.
As an example of chemical reactions, the temperature-

dependent equilibrium between micellar and molecular
states in a surfactant solution, imposes a steady-state dif-
fusion current. The resulting coefficient DT in (29) is given
by reaction rates and the micelle enthalpy H. As the re-
ciprocal effect, an externally imposed micelle current feeds
a stationary reaction flux J = φ̇1.

If dissipation is dominated by viscous stress, as for
colloidal suspensions in (39), DT depends on the inter-
action enthalpy and the solute viscosity. The reciprocal
cross-coefficient LQV accounts for advective heat flow in
a pressure gradient.
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Fig. 4. Molar volume of normal alkanes. The circles give the
measured values at room temperature, the solid line has been
calculated from eq. (18b).

Thus in the presence of chemical reactions or viscous
effects, DT is not related to the Dufour effect. In future
work, it would be interesting to study whether and to
which extent, the thermal diffusion picture (15) is valid in
binary molecular mixtures.

This work was supported by Agence Nationale de la Recherche
through contract ANR-13-IS04-0003.

Appendix A. Alkane enthalpy and volume

The fit of alkane Soret data in fig. 1 relies heavily on the
variation of the molecular enthalpy and volume (18) with
the number n of carbon atoms. In particular, the relative
off-set values of 0.65 and 2.02 determine to a large extent
the theoretical curve. If these numbers were identical, the
specific enthalpy ĥ = h/v would be independent of n,
and ST would vanish for all mixtures; exchaning the off-
set values would result in a positive Soret effect for the
lighter component.

An at least qualitative explanation for the off-set of
0.65 × 4.64 ≈ 2.9 kJ/mol is given by a simple geometrical
argument for polymers on a 3D cubic lattice. A monomer
has 6 couplings with next nearest-neighbor molecules and
a dimer has 10

2 = 5 such couplings per unit. For a rigid
high polymer there are 4(n + 2) couplings, that is, about
4 per monomer, and a slightly smaller value occurs for
flexible polymers. These numbers are very close to the
factor in (18a).

The volume off-set accounts for the fact that the den-
sity of shorter alkanes is smaller; it is related to the larger
entropy of short chains. Figure 4 shows measured values
of the molecular volume vn. The solid curve, calculated
from (18b), provides a very good fit to these data.
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