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Abstract. The values of transport coefficients near a critical point are typically enhanced compared to the
values in the classical region far away from a critical point. We report on the impact of the asymptotic
behavior of the mass diffusion near the critical region on the Soret separation of the components in a model
binary mixture. Concentration patterns are numerically investigated in the case of a spatially varying
temperature. The Soret separation in ordinary mixture leads to the establishing of a linear concentration
distribution in a steady state. The presence of the critical point redistributes the concentration field, it
creates a thin layer with sharp concentration change at the critical region which can be seen as a horizontal
plateau on vertical profiles. Large concentration gradients are established across this layer. The analysis
showed that the kinetic of the separation significantly depends on whether the critical temperature is
inside or outside of the applied temperature region, which is Tcold ≤ T ≤ Thot. Critical separation road is
suggested for the case when Tcr is located inside this region, Tcold ≤ Tcr ≤ Thot.

1 Introduction

Thermodiffusion (also called thermal diffusion or Soret ef-
fect) is a molecular transport of substance in response to
a thermal gradient. Concentration gradients appear in an
originally uniform mixture and produce molecular diffu-
sion, which aims at eliminating concentration variations.
A steady state is reached when the separating effect of
thermodiffusion is balanced by the remixing effect of mass
diffusion. Then, in steady state the mass flux JC vanishes

JC = −ρ0[D∇C + DT C(1 − C)∇T ] = 0, (1)

∇C = −ST C(1 − C)∇T. (2)

Here D is the mass diffusion coefficient, DT is the ther-
modiffusion coefficient and ST = DT /D is the Soret coef-
ficient. In a linear approach performed in the frame of the
thermodynamic of irreversible process, the diffusion and
thermodiffusion coefficients are supposed to be constant
or weakly dependent on temperature and concentration.
When approaching the critical region this simplification
cannot be valid. The main effect near the critical point is
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the critical slowing down, i.e., the increase of the relax-
ation time in the system to reach equilibrium. The princi-
ple of critical-point universality requires that the critical
behavior of binary fluid mixtures be in the same univer-
sality class as that of one-component fluids [1–3].

When a binary liquid mixture approaches the critical
point, the amplitude of the fluctuations grows according
to characteristic power laws. Let us denote the distance
from critical point as

ε = (T − Tcr)/Tcr.

The mass diffusion D tends to zero when the temperature
is approaching the critical region. There are several ex-
perimental results confirming this theoretical prediction.
For example, measurements of the diffusion coefficients in
critical mixture aniline-cyclohexane [4] provided scaling
D = D0ε

0.61.
The experimental techniques to measure Soret and

diffusion coefficients in ordinary mixtures are continu-
ously advancing [5, 6] while much less works have been
dedicated to thermodiffusion in a mixture with critical
point. The measurements near the consolute critical point
of the aniline-cyclohexane mixture by Giglio and Ven-
dramini [7] confirmed the earlier obtained trends by Bergé
and Dubois [4] for mass diffusion and indicated that the
Soret coefficient diverges as a function of ε, with a crit-
ical exponent close to that of the long-range correlation
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length, while DT is practically constant. It suggests that
the Soret coefficient ST = DT /D may even diverge at the
critical point. Presently, the active experimental study of
the ternary mixture with consolute point are conducted
in the frame DCMIX (Diffusion Coefficients in MIXtures)
program of European Space Agency [8, 9].

The only known experiments on thermodiffusion near
the critical plait point by Rutherford and Roof [10] are
dated back to the ’50s. They performed measurements at
two compositions of methane-n-butane mixture at five dif-
ferent temperatures. The authors reported about a strong
increase of the Soret coefficient (thermodiffusion factor in
their definition) approaching the critical temperature for
both compositions.

Using thermogravitational column, Ecenarro et al. [11]
studied separation of component as a function of compo-
sition near the plait critical point. In the system, in which
the component densities are very different (nitrobenzene +
n-hexane), they observed large separations near the criti-
cal composition. In the system with similar densities of the
pure components (isobutyric acid + water) no separation
was observed.

In light of the experimental results available, it is de-
sirable to analyze the evolution of the Soret separation in
course of time. It seems that such experiments have so
far received limited attention on theoretical and numeri-
cal sides. The present work is therefore motivated by the
lack of investigations of the dynamics of a binary mixture
in the critical region with the presence of a temperature
gradient. We have performed a numerical study of the ki-
netic of the Soret separation in a model binary mixture
near its critical plait point.

The paper is organized as follows. First, we construct
a simple numerical model. The mathematical formulation
and the numerical scheme are discussed in sect. 2. Using
this model, we examine the concentration field and dy-
namics of Soret separation as a function of the location
of critical temperature with respect to the temperature of
bounding walls.

2 Problem description and formulation

We examine mass transport in a cubic Soret cell filled with
a binary mixture. A sketch of the cell and coordinate sys-
tem are shown in fig. 1 which corresponds to the typical
experimental configuration [12]. The horizontal walls of
the cell, let us call them as bottom and top walls, are kept
at constant temperatures Tcold and Thot, respectively. The
mean temperature is defined as Tmean = (Thot − Tcold)/2.
An imposed temperature difference ΔT = Thot − Tcold is
kept constant, ΔT = 3 K. The temperature T0 = 298 K,
is chosen to be the reference temperature at which all
the physical properties of the liquid mixture are fixed.
The physical properties of the model liquid are listed in
table 1 which correspond, for definiteness, to ordinary
water-isopropanol mixture. The critical temperature is
prescribed to be Tcr = 301 K.

The working liquid is placed in a cubic cell of inter-
nal size L = 10 mm. Let us chose C as the mass fraction

Fig. 1. Schematic of a cubic cell of height L and coordinate
system.

Table 1. Physical properties of the model mixture at 298K
(similar to 50%water-50%IPA): density ρ, thermal diffusivity
χ and diffusion D and Soret ST coefficients.

ρ χ D0 ST Tcr ΔT

(kg/m3) (10−7m2/s) (10−10m2/s) (10−3 K−1) (K) (K)

902.4 0.85 1.6 5.87 301 3

of one component in binary mixture then the mass frac-
tion of the other component will be (1 − C). Hereafter
in a model binary mixture we choose C as mass fraction
of the denser component, and C0 is its initial concentra-
tion in the mixture. When pressure diffusion is negligible,
the diffusion flux JC is driven by concentration and tem-
perature gradients. Then the equations of heat and mass
transport can be written as

∂tT = χ∇2T, (3)

∂tC = ∇(D(T )∇C) + C0(1 − C0)DT∇2T, (4)

The typical approximation for such a class of problems,
C(1 −C) ∼ C0(1 −C0), was used in the last term for the
mass flux, see eq. (1). The study is focused at the mix-
ture with positive Soret effect ST > 0. In this case the
temperature gradient and the flux due to thermodiffusion
have the same direction, so the chosen denser component
is driven by thermodiffusion towards the hot wall. The fol-
lowing boundary conditions are imposed:
Constant temperature on top and bottom walls:

z = 0 : T = Tcold, z = L : T = Thot.
The lateral walls are thermally insulated:

x = 0 and x = L : ∂T/∂x = 0.
On the rigid cell boundaries the mass flux should vanish
and then the relations between concentration and temper-
ature variations are similar to that in eq. (2)

∇C = −ST C(1 − C)∇T. (5)

Equations (3) and (4) have one way coupling. From eq. (5)
it follows that ∇C = 0 on the lateral walls. So, even if we
consider the problem in finite size cell, the obtained results
are similar for an infinite layer.

Initial conditions at t=0: T = Tmean, C = C0 = 0.5.
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Fig. 2. Dependence of the diffusion coefficient on temperature,
Tcr = 301K.

Fig. 3. Computational mesh for the case when Tcr = Tmean.

In the considered model liquid all the phenomenologi-
cal coefficients are assumed to be constant except for dif-
fusion D. Following the theoretical predictions [2], the dif-
fusion coefficient obeys a power law with an exponent 2/3
close to critical temperature

D(T ) = D0

[
D∗ + α

(
|T − Tcr|

Tcr

)2/3
]

= D0

(
D∗ + α |ε|2/3

)
. (6)

The absolute value of |ε| is used in eq. (6) because the
critical behavior of the diffusion coefficient is the same
below and above Tcr. Figure 2 presents the variation of the
diffusion coefficient with temperature around the critical
point. The value D∗ in eq. (6) is very small and is used
to avoid numerical instability at the critical point, D∗ ∼
10−3. The coefficient α = 21.2522 is chosen in a way that
at T = 298 K the diffusion coefficient is equal to D0 =
1.6 · 10−10 m2/s, see table 1.

We use a numerical approach similar to that one devel-
oped in [13] using the commercial solver FLUENT v.6.3.
Computations in system with strong gradients require
complicated computational mesh. The mesh was gener-

ated by the commercial code GAMBIT and for the case
when Tcr = Tmean is shown in fig. 3. The results were ob-
tained using 100 × 200 grid points on non-uniform mesh
for z-axis. The mesh has stretched factor 0.975 toward the
critical point. A new mesh was generated for each spa-
tial location of the critical temperature. Numerical simu-
lations using mesh without stretching were also conducted
in the same computational domain for a different number
of grid points but the results were grid-dependent.

3 Results

In the absence of bulk motion, the joint action of the Soret
and diffusion processes leads to the establishing of a linear
concentration profile similar to that of the temperature.
Here, however, we show that unexpectedly non-linear sep-
aration of the components between cold and hot walls can
occur due to presence of critical region.

The most intriguing issue in the development of the
Soret separation is the choice of the critical temperature
Tcr with respect to the temperature of the cold and hot
walls. If Tcr < Tcold then the results are suitable for the
consolute and plat critical points. In the case when Tcold <
Tcr < Thot the study can be valid only for the plait point.

3.1 Critical point outside of the applied temperature
range, either Tcr > Thot or Tcr < Tcold

In this section we consider that critical point is above
the temperature of the hot wall, Tcr > Thot. This case
is similar to the problem of the components separation in
ordinary mixtures with temperature-dependent diffusion.

As soon as a constant temperature difference is im-
posed to the horizontal walls, the concentration fronts
originate at the boundaries and propagate into the bulk.
The temperature field reaches rapidly a steady state, the
thermal characteristic time is τth = L2/χ ∼ 10 min. Al-
though the diffusion is much slower than the transfer of
heat (by the order of inverse Lewis number Le−1 = χ/D),
in the first instants a substantial concentration field de-
velops in the vicinity of the solid walls. The condition of
zero mass flux at the solid walls (eq. (5)) results in a rapid
concentration change near the walls.

Figure 4 compares the evolution of the concentration
profiles in ordinary mixture (dashed curve) and mixture
with the critical point (solid curve) when Thot = 298 K.
The left plot illustrates that at time t = 3 h the concen-
tration near the hot side is larger for D = D(T ) than for
D = D0. However, on the cold side the concentrations are
equal in both cases as D(T ) ≈ D0. The difference between
concentration profiles advances with time as can be seen
by comparing the curves at t = 3 days (right plot). As
expected, the profile C(z) is linear for ordinary mixture
(dashed curve) while critical separation has a substantial
effect on the shape of the concentration profile, even at
temperatures well below Tcr.
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Fig. 4. Concentration profiles at t = 3 h (left) and t = 3 days
(right) when (Tcr − Thot) = 3 K; D = D0 (dashed curves) and
D = D(T ) (solid curves).

The five curves in fig. 5 show the components separa-
tion between walls ΔC = (Cz=L −Cz=0) with time at dif-
ferent distances from the critical point. With the decrease
of (Tcr−Thot) the components separation progresses faster
at the short time scale and attains a larger value at the
steady state. When the temperature difference between
the hot wall and the critical point is reduced from 3 K to
0.1 K, the separation increases by almost 3 times: from
ΔC =0.0035 to ΔC= 0.0093. The growth rate of ΔC also
increases with approaching the critical point.

3.2 Critical point inside of the applied temperature
range, Tcold ≤ Tcr ≤ Thot

To set the base of the discussion that follows we begin our
study by considering the case Tcr = Tmean, i.e. the crit-
ical temperature is in the middle of the cell. On a short
time scale (τth), the concentration fronts progressively ex-
pand from the walls to the interior driven by the Soret
effect. Figure 6(a) shows that at t = 3 h the mixture in
the central part of the cell still keeps the initial concen-
tration C0 while near the walls the concentration fronts
are well developed. Two concentration distributions C(z)
across the cell, dashed curve for D = D0 and solid curve
for D = D(T ), are similar in fig. 6(a). The concentration
on the walls is slightly larger for the case of variable dif-
fusion coefficient, because the proportionality coefficient
(∼ 1/D) in the boundary condition (eq. (5)) is larger.

An unusual behavior associated with the critical point
starts to be visible one day after the beginning of the
Soret separation, see fig. 6(b). The symmetric concentra-
tion fronts moving from the opposite walls come into con-
tact at the region where the diffusion coefficient has its
smallest value, i.e. asymptotically vanishing. The separa-
tion of the components, driven by the linear temperature
gradient, continues but remixing slows down due to weak
diffusion. Consequently, a horizontal plateau is formed in
the middle of the cell where the plane T = Tcr tends to
block the diffusion flux.

Figure 6(c)-(d) illustrates that over time the plateau
advances in horizontal direction leading to a significant in-
crease of the concentration difference between cold and hot
walls in comparison with mixture without critical point,
as seen from comparison of dashed and solid curves. The

Fig. 5. Soret separation approaching the critical point. The
values (Tcr − Thot) are written on the plot.

increase of the components separation can be expected as
the Soret coefficient strongly increases with the decrease
of diffusion, ST ∼ 1/D. This striking behavior is observed
over long time, and the concentration profile keeps the
shape with horizontal plateau at the steady state. Note,
that in the case of D = D0 the concentration distribution
approaches a linear profile, similar to that of the tem-
perature during one day. The large difference in the time
constants is a consequence of working close to a critical
point (critical slowing down). A narrow and sharp con-
centration profile formed due to heating by a laser beam
was observed in polymer blends near the consolute critical
point [14].

The concentration field in the entire cell is shown in
fig. 7 in the steady-state regime. In the case of ordinary
mixture, D = D0 (left plot) the concentration linearly de-
creases from the hot to the cold side. The presence of the
critical point (right plot) redistributes the concentration
field, it creates in the critical region a narrow zone with a
sharp change in the concentration, which is seen as hor-
izontal plateau on vertical profiles. Strong concentration
gradients are established across this layer. The effect of
varying the position of the critical temperature between
the hot and cold walls on the dynamics of mixture sep-
aration is investigated next. Remind that Tcr is constant
(301 K) and here Thot and Tcold are changed. Figure 8
shows the vertical concentration distribution for seven dif-
ferent positions of the critical point: one of them is the case
considered above when Tcr is in the middle of the cell when
Tmean = 301 K (dashed-dotted curve) and three curves be-
low and three curves above corresponds to the variation
of Tmean with step δT = 0.5 K. The temperature distribu-
tion becomes linear at relatively early times (∼ 15 min)
while the concentration profiles are shown at t = 50 days.
On the basis of the linear temperature distribution, the
locations of Tcr inside the cell are shown by large dots on
the vertical axis while the values of the mean temperature
are written on the plot. All the curves with critical point
in the interval Tcold < Tcr < Thot exhibit a concentration
plateau at z-location of Tcr. The decrease of Tcr from the
hot side (when Tmean = 299.5 K) shifts the plateau down
and its center is displaced to the right with respect to the
initial concentration C0. This leads to the development of
the pattern shown in fig. 8 when the set of similar shape
curves forms a “critical separation road”.
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(a) (b) (c) (d)

Fig. 6. The concentration profiles C(z) at different time instants: (a) t = 3h; (b) t = 1 day; (c) t = 3 days; (d) t = 20 days.
Dashed curve corresponds to constant diffusion coefficient D0; solid red curve corresponds to D = D(T ) when Tcr = Tmean,
ΔT = 3 K.

(a) (b)

Fig. 7. Concentration field after (a) 3 days separation with
constant diffusion coefficient D = D0; (b) 50 days separation
when D follows eq. (6). (Each plot consists of 70 levels of con-
centration and these levels are the same at both plots.)

These curves also show that in the critical region with
asymptotically small diffusion the concentration gradient
(∂C/∂z) tends to infinity at T = Tcr. The dashed curves,
in which Tcr is equal either to Tcold or Thot, present half
of the horizontal plateau on the interior curves. Imag-
inary shifting the curve with ponding Tmean = 302.5 K
(when Tcr is on the cold wall) would form the horizontal
plateau. Note that these surprisingly narrow and sharp
concentration layers are induced by a broad temperature
distribution.

Figure 9 shows the time evolution of the concentra-
tion difference (i.e. the Soret separation) between hot and
cold walls, ΔC = Cz=L − Cz=0. The figure comprises the
same seven curves shown in fig. 8 but only four are vis-
ible. Curves on which Tcr is symmetric with respect to
the cell center are overlapped: Tmean = Tcr ± δT (curve
2); Tmean = Tcr ± 2 δT (curve 3). Consequently, curve 1
presents separation when Tcr is in the middle of the cell
and curve 4 when Tcr is equal to the temperature of one of
the solid walls. Identical behavior of the separation curves
symmetric with respect to the location of Tcr to the cell
center is not surprising. It is associated with the tempera-
ture dependence of the diffusion coefficient which is sym-
metric with respect to Tcr as seen from fig. 2.

The unexpected result is that the separation ΔC in
the steady state does not depend on the location of Tcr

Fig. 8. Critical separation road: concentration profiles over
the cell height after 50 days of separation. Different curves
correspond to various locations of Tcr between Thot and Tcold.
The values of Tmean are written on the plot, ΔT = 3K.

inside the major part of the cell. The separation first un-
dergoes a strong transient period (t < 10 days) and then
slowly approaches a steady value. At the earlier times the
growth rate of the separation depends on the location of
the critical point: the smaller the difference between Tcr

and the temperature of the closest wall, the larger the
growth rate. After ≈ 25 days all the curves in fig. 9 attain
the same asymptotic value.

Another noteworthy result is the strong increase in
the separation as soon as the critical point is placed in
the interior of the cell. Indeed, in the case when Tcr is on
the bounding walls (curve 4) ΔCwall = 0.0128, while for
all other curves in fig. 9 separation is almost twice larger,
ΔCinterior = 0.0201. However, we noticed that when the
location of Tcr approaches from inside to the wall as close
as z/L ≈ 0.015, the separation starts decreasing sharply.
Comparison of fig. 9 and fig. 5 shows that ΔC continues
to decrease below ΔCwall when Tcr is outside of the cell,
i.e. above the temperature of the hot wall.
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Fig. 9. Evolution of the Soret separation ΔC with time for dif-
ferent locations of Tcr between Thot and Tcold. Curve 1 presents
separation when Tcr is in the middle of the cell and curve 4
when Tcr is equal to the temperature of one of the bounding
walls, ΔT = 3K.

4 Conclusions

In the present work, we performed an extensive computa-
tional study of the kinetic of the components separation
in a model binary mixture with critical point and com-
pared the results with that of an ordinary mixture. In
order to isolate the effects of an asymptotic behavior of
mass diffusion in a critical region, the thermal diffusivity
χ is assumed to be constant.

Our analysis identified that, unlike ordinary mixtures,
non-linear concentration profile across the cell is estab-
lished in a steady state due to presence of a critical re-
gion. A thin layer, associated with strong concentration
gradient ∂C/∂z, forms in the critical region.

The Soret separation occurs in the mixture in the pres-
ence of a temperature gradient and the definition of “dis-
tance” to the critical temperature is ambiguous. The dif-
ference (Tcr −Thot) was used as a control parameter mea-
suring the distance to the critical point. Replacing Thot

by Tcold does not provide any quantitative changes as
ΔT = 3 K and is constant throughout the study.

We show that the kinetic of the separation depends
not only on the distance to the critical point but also on
the location of the critical point: inside or outside the

Soret cell. When Tcr is outside the cell (e.g., Tcr > Thot)
the Soret separation in a steady state continuously in-
creases with diminishing the difference Tcr − Thot. A sur-
prising finding is that, if Tcr is inside the cell, then the
Soret separation does not depend on the location of Tcr be-
tween the hot and cold walls. A sharp decrease in the sep-
aration occurs when Tcr is extremely close to the bounding
walls. Furthermore, the value ΔC is almost twice as large
in the case when Tcr is inside the cell than when Tcr is
outside the cell.

Let us note that we have used a simplified model.
Other models taking into account the critical behaviour
of thermal diffusivity could be investigated in future stud-
ies along the same lines.
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