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Abstract
Next place prediction algorithms are invaluable tools, capable of increasing the
efficiency of a wide variety of tasks, ranging from reducing the spreading of diseases
to better resource management in areas such as urban planning. In this work we
estimate upper and lower limits on the predictability of human mobility to help
assess the performance of competing algorithms. We do this using GPS traces from
604 individuals participating in a multi year long experiment, The Copenhagen
Networks study. Earlier works, focusing on the prediction of a participant’s
whereabouts in the next time bin, have found very high upper limits (>90%). We
show that these upper limits are highly dependent on the choice of a spatiotemporal
scales and mostly reflect stationarity, i.e. the fact that people tend to notmove during
small changes in time. This leads us to propose an alternative approach, which aims
to predict the next location, rather than the location in the next bin. Our approach is
independent of the temporal scale and introduces a natural length scale. By removing
the effects of stationarity we show that the predictability of the next location is
significantly lower (71%) than the predictability of the location in the next bin.
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1 Introduction
The understanding of human mobility patterns has changed greatly in the last couple of
decades. This has mainly been due to new technologies enabling human displacements to
be studied with higher accuracy over a longer period of time. Starting with the tracking
of bank notes [] as a proxy for human movement, studies quickly evolved towards the
current use of hand held devices for tracking, using either GSM data [, ], connections to
wifi hotspots [] or GPS receivers [] to determine location. The main results from these
studies have been the discoveries of power laws governing step size and wait time dis-
tributions [], a universal probability density governing human mobility [], and simple
models capturing many statistical features of human mobility [–]. It has furthermore
been explored how mobility is affected by recency [], exploration [], and return to pre-
viously visited places [] and friends []. Such discoveries and models can help predict
the spread of diseases [] and cellphone viruses [], and also enhance socio-economic
forecasting [–], city planning [] and many other fields [, , ]. Further contribu-
tion to progress in these areas can be made if geolocation data can be used to accurately
predict an individual’s future whereabouts. A crucial part of this work is the construction
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of viable evaluation mechanisms, thereby raising the question: what are the upper and
lower limits, �max and �min, on the predictability of human mobility?

This question was initially investigated using call detail records from , cellphones
[]. Each call corresponded to a known location represented by a Voronoi cell, around
the closest cell tower, with an average area of  km. The known locations were grouped
into  hour bins, giving a history of locations Ti, for each user i. The work focused on
determining how well the best possible algorithm can predict the location of an individual
in the next time bin, given Ti. They reported an upper limit narrowly peaked at �max =
% and a lower limit of �min = %.

This work led to questions being raised about possible biases introduced when using
call detail records [] and about the influence of spatiotemporal scales []. The tempo-
ral resolution [, ] and spatial resolution [, , ] were investigated with GSM and
GPS data for smaller populations. Overall, it was found that the predictability increases
with temporal resolution and decreases with spatial resolution. The limits of predictabil-
ity, as defined in [], therefore depend on the choice of temporal resolution �t and spatial
resolution �s.

Here we make the following conjecture:

�(max,min)(�t,�s) →  when �t →  or �s → ∞. ()

The rationale behind this expression is that the location of the next time bin will almost
certainly not change in both limits. At small time scales and at large spatial scales you
always know where an individual is going to be in the next time bin: he/she will be in
the same spatial bin. We therefore argue that the current limits on the predictability of
mobility to a large extent reflect stationarity. Previous results therefore mix two different
questions, namely

– How long will an individual stay in his/her current location?
– Where will he/she go next?

Here we propose an analysis that is able to separate out the first question such that we
can concentrate on the second. This is achieved by focusing on the next location, rather
than the location in the next bin. This approach is independent of �t, provided a small
sampling rate. By introducing a natural length scale, we are able to get a single number for
the predictability of human mobility, rather than a function of spatiotemporal resolution.
Our new approach shows that the upper limit on the predictability of this type of mobility
is around ∼%, rather than the >% found in earlier works. We thereby show that the
high upper limits of previous works mostly reflect stationarity, rather than movement.

2 Data and methods
The Copenhagen networks study. Our dataset comes from a large scale study involving
approximately , students over multiple years []. Each participant was issued a
smartphone capable of recording across multiple channels, including calls, text, bluetooth,
and GPS coordinates. In addition to this, the participants answered a questionnaire that,
among others, allowed a psychological profile to be inferred. In this paper we mainly use
the location data, determined using a combination of the GPS sensors and the network
that the phone is connected to. Location data was only available for  participants and
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Figure 1 Population statistics. Left panel: the distribution of the number of days that the participants took
part in the experiment. Right panel: the distribution of the fraction of missing data for �t = 15 min.

consists of ≈ . ·  data points. The data was collected from February  up to March
of , thus covering a multi year span with a substantial fraction participating for more
than a year (see left panel of Figure ). Each data point consists of latitude and longitude
coordinates, together with a timestamp and the accuracy associated with the measure-
ments. These are converted into appropriate time series (see Mobility sequences and pre-
dictability for details), and the fraction of bins with unknown locations is denoted qmin.
For our analysis we need qmin ≤ % (see Methods). This reduces the number of partici-
pants with sufficient data to . The right panel of Figure  shows the distribution of qmin

at the lowest temporal scale ( minutes).
Mobility sequences and predictability. The raw GPS data needs to be filtered and con-

verted into a history of discrete locations, Ti, before the limits of predictability can be
determined. This can in principle be done in an infinite number of ways, meaning that the
GPS trace from a participant can give rise to many different time series Ti depending on
the filtering and mapping chosen. In this work we convert the raw data into two different
time series:

– Tbins
i : Series of time bins.

– T loc
i : Series of locations.

A detailed description of the filters and mappings are given in the Methods section.
An illustration of the conversion from GPS-trace into Tbins

i is shown schematically in
Figure . The two dimensional space is covered by a grid with a grid length given by �s.
Each square in the grid is represented by a symbol, such that a human trajectory may look
like this

Tbins
i = [A, B, B, A, A, A, C, . . .]. ()

Each symbol corresponds to the grid cell position of a time bin of length �t. The construc-
tion of this trajectory is equivalent to that of earlier works [, , –]. As noted earlier,
it depends on the spatiotemporal resolution and includes stationarity.

Next we introduce the new mobility encoding T loc
i , which aims to describe trajectories

by a sequence of unique locations. Details can be found in the Methods section. We start by
filtering all the GPS information such that travel between locations is removed. This leaves
us with a set of stationary GPS points that are distributed around the preferred places
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Figure 2 Converting the raw data for participant i into a suitable time series, Tbins
i . After filtering we

plot the data points onto a world map overlaid with square grid cells with side lengths �s. This converts each
data point into a location represented by a square grid cell and encoded by a symbol in Tbins

i . The location
data is then resampled such that each bin in Tbins

i corresponds to a time interval �t. This mobility encoding is
similar to that of earlier works and corresponds to the location in a sequence of time bins. We propose to look
at a the sequence of locations instead.

Figure 3 Choosing a length scale. We show the sorted distance to the fourth nearest stationary point for a
subset of the entire data set. Standard methods [27] propose setting the parameter εvicinity equal to the
distance where there is a sharp increase in the distance to the fourth nearest stationary point. Here we choose
ε = 5 meters as indicated by the dashed line.

of the individual. We then use a clustering algorithm (DBSCAN []) on the stationary
data points to determine the different locations automatically. This approach results in
locations, which better represent the places where individuals spend their time, than the
more commonly used Voronoi or square grid cells.

The clustering algorithm takes a length scale as input, which determines whether or not
a stationary data point belongs to a location cluster. Here we use εvicinity =  meters mean-
ing that if a stationary data points is more than five meters from all points in a location
cluster, then it is considered as not belonging to that location. This length scale is based
on an analysis of “the fourth nearest point”-distribution as proposed in [] (see Figure ).
For the second parameter of the DBSCAN-algorithm, min_pts, we also follow the stan-
dards given in the reference, which says to use min_pts = . This parameter value defines
a location cluster as a minimum of four stationary points, i.e. at least  hour must be spent
in a five meter vicinity during the full sampling period for a cluster to be considered a
location.
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We can now construct the trajectory of an individual among his/her locations, using
the clusters found by the DBSCAN algorithm. In this encoding we do not include the time
spent at the different locations, but represent each location by just a single symbol, e.g.:

T loc
i = [A, B, A, C, . . .]. ()

Compare this with the sequence in () and note that the stationarity has been removed,
i.e. no similar symbols in a row.

We expect the sequence of locations to be less predictable than the sequence of time
bins, since it encompasses the more complicated spatial dynamics. In order to quantify
this intuition, we need a measure of predictability. Here we use a slightly modified version
of the scheme developed by [] (see Methods for details). First, the entropy rate of the
mobility sequence is determined using an estimator based on the Lempel-Ziv compression
algorithm. Since all the sequences are affected by missing data, one must extrapolate the
entropy rate from missing data to full data. By testing our extrapolation on periods with
complete data, we find that we can predict the true entropy within %, even when %
of the sequence is missing. Having estimated the entropy rate Hest we are in a position to
determine the upper limit of predictability �max. This is done by solving []

Hest = –�max log
(
�max) –

(
 – �max) log

(
 – �max) +

(
 – �max) log(N – ), ()

where N is the number of unique locations in the time series. The upper limit found repre-
sents a tight upper bound attainable by an appropriate, but for now unknown, algorithm.

We also examine the lower limit of predictability. For the location sequence T loc
i , we use

a first order Markov chain to predict the next location [], i.e. we expect the location
that most often follows the current location. If the current location has not been explored
before, then we expect the most visited location as the next one. For the time bin sequence
Tbins

i we use a simple predictor, which expects the current location to continue into the
next time bin. This predictor will be referred to as “the trivial predictor” and it measures
the amount of stationarity in the mobility sequence.

3 Results
We start by presenting our results for Tbins

i , i.e. the mobility encoding that people have
been using previously. As noted earlier, the predictability of these sequences depend on the
spatiotemporal resolution. In the left panel of Figure  we fix �s =  m and vary �t to
determine how the upper and lower limits depend on the temporal scale. The predictabil-
ity grows towards  as the time scale is decreased, just as expected by our conjecture ().
Note the high performance of the trivial predictor (%-%).

Next we fix the temporal scale �t =  min and vary the spatial scale �s (Figure ,
right panel). Both the upper limit (squares) and lower limit (discs) increase when �s is
increased, again in agreement with (). We note that the upper limit is not very sensitive
to the spatial scales investigated here (�s >  m). We furthermore note the impressive
performance of the trivial predictor at large spatial scales. For comparison we also com-
pute the limits of predictability at the spatiotemporal scales considered in [] (�t = 
min and �s = . km). We find that the trivial predictor is successful in . ± .% of the
cases, while the upper bound is . ± .%, i.e. almost all of the predictability reflects the
fact that people do not change location.
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Figure 4 Next bin predictability depends on spatiotemporal resolution. Left panel: The temporal
resolution dependency of the upper limits (squares) and lower limits (discs) of predictability for the next bin
approach. Each location is represented by a square grid with �s = 400 m. Error bars are included but are
smaller than the symbols. Right panel: The spatial dependency at a fixed temporal resolution of �t = 15 min.
The lower limit shows that, depending on resolution, 85% to 94% of the predictability is due to people not
moving.

Figure 5 The distributions of the upper and
lower limits for next location predictions. Both
results, �max = 71.1± 4.7% and �min = 39.8
± 5.9%, are significantly smaller than the limits
found for next bin predictions (Figure 4). We
conclude that previous work overestimates the
predictability of dynamic human mobility.

The limits presented in Figure  follow our postulate and are in agreement with earlier
works with smaller populations. We now test what happens when we remove the stationar-
ity from the spatial dynamics, i.e. when we consider the predictability of the next location
instead. In Figure  we show the distributions of the upper and lower limits for next lo-
cation predictability. Both limits are strongly reduced when compared to the results for
next bin predictability. For the upper limit we find �max = . ± .%, i.e. a significant
reduction from the >% predictability found in previous works. We find that this value
is very robust to increases in the length scale and that it only changes by a few percent as ε

is increased towards  meters. The lower limit is found to be �min = . ± .%, which
is at least % lower than any of the lower limits found by the trivial predictor for next
bin sequences.

We note that another group has simultaneously been working on the same data set with
the same methods and they have found �max = . []. Despite the close match in results
they have actually been using very different DBSCAN paramters, namely εvicinity =  (we
use εvicinity = ) and min_pts =  (we use min_pts = ), thereby further underlining the
robustness of the results. Our main contribution relative to their work is to derive the
length scale from the data, to directly state and investigate conjecture (), and to relate the
predictability of the next location to psychological factors.
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Table 1 Examining which factors impact the predictability of human mobility patterns. rg is
the radius of gyration, effplaces is the effective number of places an individual chooses from
when changing to a new location and is defined as 2Hunc . We also examine the impact of basic
personality traits using the Big Five psychological profile [30]. Error bars are determined
using the bootstrap method

Measure Correlation with �max

rg –0.05 ± 0.05
effplaces –0.26 ± 0.05
�min 0.49 ± 0.04
Agreeableness –0.05 ± 0.06
Conscientiousness 0.04 ± 0.06
Extroversion –0.13 ± 0.05
Neuroticism 0.06 ± 0.06
Openess –0.004 ± 0.059

The above results raise the question: what factors impact the predictability of human
mobility? Our partial answer to this question can be found in Table , where we correlate
�max to a range of variables. We find that radius of gyration, representing typical distances
traveled, does not impact next place predictability. A related result has been reported ear-
lier, using next bin predictability []. While this result can seem counterintuitive, our next
result is able to shed more light on the matter. �max is anti-correlated with the effective
number of places an individual chooses from, when determining where to go next. There-
fore, the predictability of an individual does not depend on the reach of his/her travels,
but rather on the number of places visited.

Finally, utilizing the psychological profiles of the participants, we are able to examine
the impact of their psychological traits on their predictability. The only significant corre-
lation we find here is with extroversion, meaning that the next location of an extroverted
individual is statistically harder to predict.

4 Conclusion
Our results show that it is possible to extract a wide range of upper and lower limits of pre-
dictability of human mobility depending on the filtering and discretization scheme cho-
sen. We have shown the strong dependency of “next bin” predictability on spatiotemporal
scales. Furthermore, we have shown that the predictability at large spatial scales and small
temporal scales mostly reflect stationarity, namely that people stay in the same spatial bin.
This raises the need for an alternative approach to estimate the predictability of human
mobility patterns.

The task of predicting human mobility is two fold: how long will a person stay in a cer-
tain location and where they will go next. Here we determined an upper limit on the pre-
dictability of the latter. We found that the upper limit of this task is much lower than the
previously stated ones of ∼%. In particular, by using the natural length scale of human
locations we found an upper limit on predictability of . ± .%. A lower limit was like-
wise found using a first order Markov chain model with a success rate of . ± .%.
Overall, our results indicate that it might not be so trivial to predict human mobility after
all.

5 Methods
Converting the raw data into Tbins

i . We start by employing an accuracy filter, which re-
moves all the data points with an accuracy below  meter. The grid map used is char-
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acterized by two parameters: a length scale �s and the origin of the map. The Techni-
cal University of Denmark, where most of the participants were enrolled, was chosen
as the origin. This ensured that the grid cells had sides of approximately equal length
�s at the locations where most of the data was collected. The length scales used are
�s ∈ [, , , , ] meters.

Small changes in the origin of the grid map can effect the number of locations detected
[]. To mitigate the possible bias introduced by having a fixed origin of the grid map, we
add a random offset for each participant chosen randomly from a uniform distribution on
[,�s].

Our data was not sampled at a fixed rate. A time binning with a fixed temporal resolution
�t allowed us to convert the raw data into a time series. The binning is done such that for
each time bin we chose the most visited location. If two or more locations are the most
visited locations, then we chose one of them at random. The time scales used are �t ∈
[, , , , ] minutes. Time bins with no recorded locations are denoted using a
special ? marker. Thus we end up with a time series Tbins

i which depends primarily on �s
and �t.

Converting the raw data into T loc
i . Again we start by employing the accuracy filter. To

reduce the number of data points associated with travel, we employ a second filter inspired
by the pause-based model used in []. It detects all the data points which are  ± . min
apart and for which the distance between the two measurements are less than  m.
These two measurements are then averaged into a single data point representing a place
where a participant stood still for roughly a quarter of an hour. This filters out most of the
travel information in the dataset, except interruptions such as traffic jams and waiting for
public transport.

The list of locations is binned with a fixed temporal resolution �t =  min as described
above. After this we compress every time series such that all instances where a participant
stood still for more than one time bin are represented by just a single symbol. This is best
explained by an example. A time series obtained by the procedures described above could
look like: Ti = [A, ?, A, B, B, A, A, A, C, . . .]. After compression this time series is converted
into:

T loc
i = [A, B, A, C, . . .]. ()

The resulting time series are independent of �t provided that �t is small. The smallest
sampling rate that we dare use in this study is �t = , since smaller sampling rates would
make it difficult to distinguish stationarity from movement because of the limited accuracy
of the GPS.

Estimating the entropy rate. The entropy rate is found using an estimator based on the
Lempel-Ziv compression algorithm []:

Hrate =

(

n

·
n∑

i=

�i

log(n)

)–

, ()

where n is the length of the time series and �i is the length of longest substring in the time
series starting from position i and not encountered earlier from position  to i – . This
estimator has been shown to converge rapidly towards the entropy rate [].
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The fraction of missing data, q, changes the entropy rate estimate. By artificially re-
moving data in complete records we can study possible extrapolation methods. We have
used a subset of  individuals with a complete location record spanning at least  weeks.
For each of these complete records we determined Htrue using the estimator (). Remov-
ing data from these complete records and comparing the entropy rate determined by our
method, Hest, with Htrue, we found that we could estimate Htrue within ±% as long as
q ≤ .. Our method is thus able to determine the entropy rate even when we only know
half of the locations visited. Earlier this method has been used up to q ≤ . [], but our
tests show reliable results only when q ≤ ..

Our extrapolation works as follows. For each time series we determine the amount
of time the participants location was unknown. This fraction of the total time was de-
noted qmin. We then found both Hunc(q) and Hrate(q) for each q ∈ [qmin, qmin + ., qmin +
., . . . , . – qmin]. Here Hunc is the entropy of the time series, found using Hunc =
–

∑N
i= pi log(pi), where the sum runs over all the N different locations visited and pi is

the fraction of time spent at i. This enabled us to calculate σ (q) = Hrate(q)/Hunc(q). Ear-
lier it has been shown [] that σ (q) depends linearly on q. This linear relation has not
been found when using data with a higher sampling rate []. Our set of complete records
showed that σ (q) could be fitted well with an offset exponential function. Using these fits
we could extrapolate and determine σest = σ (q = ). The entropy rate was then found using

Hest = expσest ·Hunc(q). ()
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