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Abstract. We have studied the transmission of 5 keV protons through graphene. Proton dynamics was
modeled by classical theory. Proton trajectories define a mapping of the set of initial proton positions to
the set of scattering angles. Singularities of the Jacobian associated with the introduced mapping form
curves known as the rainbow lines. The differential cross section is infinite along the rainbow lines, making
the proton count significantly larger along the rainbow pattern. Hence, rainbows dominantly determine
the shape and size of the angular distribution of transmitted protons. It was found that reorientation
of the graphene with respect to the incident beam direction and deformation of the graphene crystal
lattice induce the transformation of the proton rainbow pattern. We thoroughly studied the morphological
properties of the proton rainbow pattern. It was shown that angular distribution and the corresponding
rainbow pattern could be used to determine the covariance matrix of atomic thermal displacements and
to characterize point defects present in graphene.

1 Introduction

The existence of two-dimensional materials has been
a highly disputed topic over the last century. The
decrease in the melting point of thin films with the
reduction in film thickness supported the claims that
two-dimensional materials are unstable and, therefore,
cannot exist [1, 2]. Discovery of graphene in 2004.
proved that two-dimensional materials can exist [3].
Graphene is composed of carbon atoms arranged in a
planar honeycomb lattice. It has extraordinary proper-
ties and potential applications [4–8].

It was found that isolated graphene samples are
not perfectly flat. The direction of the normal to the
graphene surface varies by a couple of degrees, and its
surface is rippled [9]. Thermal vibrations of graphene
were studied experimentally by electron diffraction
[10]. Variances of in-plane and out-of-plane atomic
displacements were measured at room temperature.
Found values are 15.2 and 104 pm2, respectively.
Results presented in studies [9], 10 differ significantly.
It was speculated that the influence of the substrate or
the presence of impurities could be the cause of this
discrepancy [10]. Monte Carlo simulations of graphene
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thermal vibrations were also performed [11]. The aver-
age length of individual ripples of the graphene sur-
face was found to be around 80 Å, which is in agree-
ment with the results presented in the study [9]. On
the contrary, the average height of the ripples was
calculated to be around 0.7 Å, differing significantly
from the results presented in the reference [9]. The
incompatibility of results obtained by theoretical and
experimental investigations of graphene thermal motion
motivated the further study of this topic. The results
presented in this paper could be helpful in devel-
oping a completely novel technique for studying the
thermal motion of atoms in graphene-like crystals.
The presence of structural defects often has a nega-
tive effect on the properties of two-dimensional crys-
tals [12–15]. In some cases, lattice defects are desir-
able because of their positive effect on some mate-
rial characteristics. Therefore, controlled implementa-
tion of defects could enable fine-tuning of the desired
properties of two-dimensional crystals. Micro-Raman
spectroscopy and high-resolution transmission elec-
tron microscopy are practical and often used tech-
niques for characterizing crystal defects. However, clas-
sic Raman spectroscopy cannot distinguish some defect
types [14, 16, 17]. High-resolution transmission electron
microscopy can be used to characterize crystal structure
defects with outstanding resolution. However, energetic
electrons used in beams of transmission electron micro-
scopes can degrade the crystal lattice. It is worth
mentioning that analysis of the obtained images via
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transmission electron microscopes is far from straight-
forward [18–20].

Therefore, available characterization techniques of
atomically thin crystals are not without limitations.
We have inspected the possibility of characterizing two-
dimensional crystals by studying the proton rainbow
scattering . The rainbow scattering effect arises when
particles from adjacent subsets of the impact param-
eter plane scatter in the same subset of the scatter-
ing angle plane. Consequently, the differential cross-
sectional diverges along curves called rainbows. The
shape of these lines determines the morphological prop-
erties of a transmitted proton angular yield. It was
found that the rainbow scattering effect occurs in the
classical axial transmission of protons through a very
thin Si crystal [21]. The effect was experimentally ver-
ified soon afterward [22]. It was theoretically demon-
strated that the transmitted ion rainbow pattern could
be used to determine a more accurate model of the
interaction potential between incident ions and atoms
constituting the crystal lattice [23]. A bundle of parallel
carbon nanotubes effectively forms a series of parallel
circular and triangular axial channels. It was theoreti-
cally shown that morphological properties of the trans-
mitted proton rainbow pattern could be used to deter-
mine the radius and length of nanotubes [24] and the
density of topological defects present in such a bundle
[25]. We have investigated whether a similar morpholog-
ical analysis of transmitted protons’ angular yield could
lead to the characterization of atomically thin crystals,
such as graphene.

The plan of this paper is as follows. First, we present
the constructed model for the interaction potential
between protons and graphene. Then the theory of rain-
bow scattering and momentum approximation is intro-
duced. Proton rainbow scattering is analyzed afterward.
Angular distributions of protons transmitted through
the perfect graphene sheet and corresponding rain-
bow patterns are analyzed afterward. Then, the depen-
dence of angular yields and rainbow patterns on the
model of thermal vibrations is analyzed. A study of
rainbow patterns generated by protons transmitted
through graphene with three different kinds of point
defects is presented afterward. The subsequent discus-
sion explains how the shape and size of the rainbow
lines could be used to extract the covariance matrix of
atomic vibrations and identify defect types present in
the graphene sample.

2 Theory

2.1 The interaction potential

We have studied the transmission of a parallel pro-
ton beam through graphene. The energy of each inci-
dent proton is 5 keV. Our goal was to understand the
relations between morphological aspects of transmitted
proton angular yield and properties of the correspond-
ing graphene. It is worth highlighting that we have

studied proton scattering in the transmission regime
only. Consequently, the developed model is inapplica-
ble for studying large-angle scattering processes, such
as backscattering.

Interaction between graphene and incident proton
was modeled as a sum of binary proton-carbon inter-
action potentials. If the initial energy of transmitting
protons is set to 5 keV, proton-carbon interaction can
be accurately modeled by: Ziegler–Biersack–Littmark’s
[26], Moliere’s [27] or Doyle-Turner’s [28] approxi-
mation. Molière derived a simple analytical approx-
imation of the interaction potential starting from
the Thomas–Fermi statistical model of an atom,
in which electrons are treated as a free gas.
Ziegler–Biersack–Littmark and Doyle-Turner’s models
are both based on the Hartree–Fock model of an atom,
making it suitable for modeling interactions between
ions and atoms of small atomic numbers. Doyle-
Turner’s analytical expression has been used for model-
ing interactions between ions and carbon atoms forming
nanotubes [29]. Ziegler–Biersack–Littmark’s model is
divergent. On the contrary, Doyle-Turner’s approxima-
tion is a sum of Gaussian functions, making it suitable
for numerical and analytical calculations as well. For
these reasons, we have modeled proton-carbon interac-
tion potential by Doyle-Turner’s approximation:
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where r is the proton-carbon distance, � is reduced
Planck’s constant, me is electron mass, while
α = (0.07307, 0.1951, 0.04563, 0.01247) nm and β =
(0.369951, 0.112966, 0.028139, 0.003456) nm2 are fitting
parameters for proton-carbon interaction.

The interaction time between 5 keV protons and
graphene is significantly shorter than the period of
atomic thermal oscillations. This means that transmit-
ted protons interact with static carbon atoms randomly
displaced around respective equilibrium positions of
the graphene lattice. Thermal vibrations of atoms can
be modeled in the following way. The distribution of
atomic displacements relative to the equilibrium posi-
tion is given by multivariate normal distribution:
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where Σ stands for the covariance matrix of atomic dis-
placements. The covariance matrix of atomic thermal
vibrations can be calculated by the Debye theory [21,
30]. In this approach, atomic displacements are assumed
to be isotropic, and the following expression gives the
variance of atomic thermal displacements:
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where Mc = 12.0107 kg is carbon atomic weight,
mu = 1.6605×10−27 is the universal atomic mass unit,
ΘD = 2000 K is the Debye temperature of diamond
[31], kB = 1.3806 × 10−23 J/K is Stefan–Boltzmann’s
constant, T is the graphene absolute temperature, and
Df is the Debye’s function. At the temperature T = 300
K, according to Eq. (3), the variance of carbon atomic
displacements equals 17.3663 pm2. We will refer to this
model of graphene as the Debye graphene. We per-
formed molecular dynamics calculations to provide a
more realistic model of atomic vibrations [31]. We mod-
eled a graphene sheet by a rhombic supercell with peri-
odic boundary conditions applied in the graphene plane
and fixed boundary conditions applied in the normal
direction. The obtained covariance matrix of atomic
thermal displacements is

Σ = diag
(
σ2

ρ, σ2
ρ, σ2

z

)
= diag(17.67, 17.67, 2619.10) pm2.

(4)

We modeled graphene nanoribbons [32] by a super-
cell combining periodic and fixed boundary conditions
in two orthogonal planar directions and fixed bound-
ary conditions in the normal direction. The obtained
covariance matrix of atomic thermal displacements is

Σ = diag
(
σ2

x, σ2
y , σ2

z

)
= diag(18.14, 35.45, 3698.18) pm2.

(5)

Thermally averaged proton-carbon interaction
potential is obtained by integration of the Doyle-
Turner’s potential (1) over the distribution of atomic
displacements (2):

Vth(r) =
∫

d3 2r′VDT (r − 2r′)Pth(2r′). (6)

Obtained integral is analytically solvable. Thermally
averaged proton-carbon interaction potential is:
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where r is the proton-carbon separation vector, and rT

is transposed vector, and I is the identity matrix,
The proton graphene interaction potential is modeled

as the sum:

U(r) =
N∑

n=1

Vth(r − Rn). (8)

where r is the proton position vector, and Rn (n =
1, .., N) are position vectors of carbon atoms that dom-
inantly participate in the scattering process. In the case
of perfect graphene, carbon atoms form a honeycomb
lattice with primitive vectors a1 = l

(−√
3/2, 3/2, 0

)
,

and a2 = l
(√

3/2, 3/2, 0
)
, where l = 0.144 nm is the

distance between two neighboring carbon atoms. Rela-
tive positions of carbon atoms that constitute repeating
motifs relative to the center of the unit cell are given by
vectors g1 = l(0,−1/2, 0), g2 = l(0, 1/2, 0). It is worth
mentioning that constructed proton-graphene interac-
tion potential has a translational symmetry of a mod-
eled graphene lattice. This means that each unit cell
contributes equally to the overall angular distribution.
This insight drastically reduced the time necessary to
perform numerical calculations.

2.2 Rainbow scattering

The energy of the incident protons is set to 5 keV.
The associated proton de Broglie wavelength of
4.0476 × 10−4 nm is negligible compared to the dis-
tance of adjacent carbon atoms in the graphene lat-
tice. Hence diffraction effects can be neglected, and
solutions of the classical equations of motion well
approximate proton trajectories. According to the
Ziegler–Biersack–Littmark theory of energy loss [26],
the total proton energy loss and scattering angle dis-
persion due to interaction with electrons are small. It is
worth emphasizing that the developed model does not
describe an electron capture process. We have studied
the scattering of the non-neutralized part of a transmit-
ted beam only. Consequently a theoretical distribution
calculated by this model of scattering and an experi-
mentally measured distribution are mutually incompa-
rable unless an electrostatic analyzer is implemented to
ensure the detection of non-neutralized protons only.
This remark is crucial since 5 keV proton neutraliza-
tion probability is approximately 40%, which is non-
negligible.

Let us define the coordinate system such that the
z-axis coincides with the direction of the incident pro-
ton beam. The direction of the proton beam relative to
the graphene surface normal is specified by polar and
azimuthal angles Θ and Φ. Proton-graphene interaction
potential U is defined by the expression (8). Proton tra-
jectories are solutions to the equations of motion:

mr̈(t) = −∇U [r(t)], (9)

where m is the proton mass, ∇U [r(t)] is the gradient
of the interaction potential U in the proton position
r(t) at the time t, r̈(t) is the proton acceleration at the
time t. If proton transmission is a single scattering pro-
cess and proton scattering angles are sufficiently small,
transmission can be accurately modeled by the momen-
tum approximation [33]. Then scattering law reduces to
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the closed form:

θ = − 1
2Ek

∇⊥ϕ(bx, by), (10)

where ϕ is the reduced interaction potential defined by
the expression:

ϕ(bx, by) =

+∞∫

−∞
dzU(r(z)). (11)

Let (vx, vy, vz) be the velocity of a transmitted pro-
ton. The following expressions define proton scattering
angles θx and θy:

tan θx =
vx

vz
, tan θy =

vy

vz
. (12)

The angular yield of transmitted protons Y (θx, θy)
is the number of protons scattered in the element
dθxdθy centered at the (θx, θy). Proton impact parame-
ter (bx, by) is a projection of the initial proton position
to the transverse, i.e., (x, y) plane.

Proton trajectories define a mapping of the pro-
ton impact parameters to the set of proton scattering
angles:

f(Θ,Φ) : (bx, by) → (θx, θy), (13)

Θ and Φ are treated as parameters of the function
f(Θ,Φ). For differential cross section holds the following
approximation:

σ(bx, by; Θ,Φ) ∼ ∣∣det J(θx,θy)(bx, by)
∣∣−1

, (14)

where J(θx,θy)(bx, by) is the Jacobian matrix of the map-
ping (13). σ is infinite at points for which holds:

det J(θx,θy)(bx, by) = 0. (15)

Singularities of J(θx,θy)(bx, by) form curves in the
impact parameter plane, which are called rainbows in
the impact parameter plane. Images of these curves
obtained by mapping (13) are called rainbow lines. It
will be shown that, as singularities of the differential
cross section, rainbows significantly influence the shape
of the angular distribution of transmitted protons. A
rainbow pattern in the case of momentum approxi-
mation is obtained by substituting expression (10) in
Eq. (15), which leads to the following expression:

∂2ϕ

∂b2
x

∂2ϕ

∂b2
y

−
(

∂2ϕ

∂bx∂by

)2

= 0. (16)

Momentum approximation provides an interesting
geometrical interpretation of the rainbow pattern.
Notice that reduced interaction potential ϕ defines a

surface over the (bx, by) plane. The curvature of this
surface is proportional to the determinant of the hes-
sian matrix of a function ϕ, given in the lefthand side of
the expression (16). Therefore, rainbows are zero cur-
vature contours of a reduced potential ϕ.

A study of crystal rainbows generated by protons
transmitted through thin crystals could be helpful for
the determination of a more accurate interaction poten-
tial [34, 35]. Theoretical investigation of the proton
rainbow scattering on graphene revealed that the shape
and size of the rainbow lines formed by protons strongly
depend on the adopted interaction potential model [36].
This paper explores the possibility of studying graphene
thermal vibrations and point defects by analyzing the
rainbow pattern of transmitted protons.

3 Results and discussion

The first ever measured crystal rainbows were gener-
ated by the 7 MeV proton beam transmitted through
a Si crystal’s 198 nm long 110 channels [21]. A crys-
tal rainbow pattern is observed in the measurements of
the angular distributions of 2 MeV protons transmit-
ted through 55 nm thick Si crystal [23]. The following
experimental setup is proposed for the measurement of
proton rainbow scattering on graphene.

We assume the graphene sample is a single sheet of
the perfect freestanding graphene situated on top of
the high-quality TEM grid [32]. The experimental setup
required to measure the graphene rainbow patterns is
presented in Fig. 1. It consists of a proton source, an
accelerator, a collimation system, an interaction cham-
ber containing a sample holder with a goniometer, an
angularly resolved electrostatic analyzer, a microchan-
nel plate amplifier, and an image acquisition system [32,
37, 38]. The experiment must be performed in a high
vacuum to prevent energy and angular distortion of the
proton beam caused by transport lines and to have a
target as clean as possible [32, 37].

The collimation system and the electrostatic ana-
lyzer are essential for the successful measurement of
the proton rainbow pattern. The transmitted proton’s
exiting position is proportional to the scattering angle.
Microchannel plate provides spatial information and
amplification of signals generated by transmitted pro-
tons. Electrostatic analyzer exclusively permits pas-
sage of particles with certain charge, hence enabling
the distribution of non-neutralized protons to be mea-
sured solely. Proton beam angular divergence influences
the measured image’s sharpness. To observe the rain-
bow’s dark side to bright side transition in the mea-
sured proton angular distributions, collimation of the
proton beam is necessary. The width of this transition
is approximately 1 mrad. Therefore, the detector of this
resolution should be able to measure proton rainbow
patterns [38–41].
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Fig. 1 Scheme of the
experimental setup

3.1 Proton rainbow scattering

This section presents angular distributions of protons
transmitted through the graphene sheet for different
relative orientations of the graphene surface and the
incident beam. Graphene sheet thermal vibrations are
modeled by the covariance matrix (4). All results will
be presented in the transverse plane of the incident
beam. Particle counts will be expressed in the logarith-
mic scale.

Calculated angular distributions of protons transmit-
ted through graphene sheet for zero azimuthal angle Φ
and values of the polar angles Θ = 0, Θ = 600 mrad,
and Θ = 900 mrad, are presented in Fig. 2a–c, respec-
tively. In the case of the normal incidence Θ = 0, the
outer part of the distribution has a circular shape. It is
formed by protons that scatter in the vicinity of indi-
vidual carbon atoms and reflects the spherical symme-
try of a potential in these regions of space. The inner
part of the distribution has a hexagonal shape, which
reflects the symmetry of the reduced potential relative
to the center of the graphene hexagon. Figure 2a’ is the
enlarged view of the central part of the angular plane.
In the case of a sample tilted by the Θ = 600 mrad, the
inner part of the distribution stretches along the verti-
cal direction, and the outer part splits into two overlap-
ping elliptical areas. In Fig. 2c inner part is composed
of two triangular regions, while the outer part has an
ellipse-like shape.

Solid black and purple lines in Fig. 2 are rainbow lines
calculated by solving Eqs. (15) and (16), respectively.
In both cases, the rainbow pattern in Fig. 2a has two
parts. The inner part of the rainbow pattern is made
of a single hexagonal line. Black and purple outer rain-
bows are circular lines of different diameters. The black

rainbow outlines the distribution perfectly. The diame-
ter of the purple line is larger by 10.24%. If the tilt angle
is Θ = 600 mrad, the inner rainbow gets stretched in
the vertical direction. As in the case of the normal inci-
dence, the black and purple lines are indistinguishable
and outline the shape of the inner part of the distribu-
tion perfectly. In this case, the outer rainbow pattern is
composed of two elliptic curves. Proton rainbow scat-
tering on two carbon atoms forming a graphene unit
cell generates two outer rainbows [37, 38]. Black and
purple outer rainbows differ by the less amount than in
the case of the normal incidence. In the case of Θ = 900
mrad, the inner part of the rainbow pattern consists
of two triangular lines and one ellipse-like line. Black
and purple lines are practically indistinguishable from
each other. The momentum approximation can provide
a very accurate model of proton-graphene scattering if
scattering angles are sufficiently small. Figure 2 demon-
strates that angular yield is significantly larger along
the rainbow lines. In that sense, the rainbow pattern
determines the shape and size of the angular distribu-
tion of transmitted protons.

The momentum approximation provides an under-
standing of the observed rainbow pattern transforma-
tion from a topological perspective. Reduced interac-
tion potential ϕ is an integral of the interaction poten-
tial along the z -axis, making it dependent on the pro-
ton beam incident direction. Reduced potential maxima
coincide with transverse atomic projections. In the case
of a normal incidence, at the center of a unit cell is a
global minimum of the function ϕ, surrounded by six
of its maxima. Hence, for topological reasons, the sur-
face associated with the function ϕ must have at least
one zero curvature contour encircling the central min-
imum. The regular arrangement of six potential max-
ima around the center of a unit cell imposes hexagonal
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Fig. 2 a–c Angular distributions of 5 keV protons transmitted through graphene with Σ = diag(17.67, 17.67, 2619.10)
pm2, tilted for Θ = 0, 600, and 900 mrad, respectively. The inset (a’) shows an enlarged view of the distributions in the
vicinity of the coordinate origin. Black and purple lines are rainbow lines obtained by solving equations of motion and
momentum approximation, respectively. The associated color map shows the relative yield levels

symmetry on this curve. Scattering law (10) maps this
zero curvature contour to the purple rainbow line visi-
ble in Fig. 2a’. Tilting graphene changes atomic trans-
verse projections, which breaks the reduced potential’s
hexagonal symmetry and transforms the inner rainbow
line. The inner rainbow’s most abrupt change is split-
ting into two rainbows, observable in Fig. 2b. This pro-
cess reflects a bifurcation of the reduced potential cen-
tral minimum into two minima [42].

Reduced potential maxima are surrounded by zero
curvature contours, each giving rise to one outer rain-
bow line. Sufficiently close to the individual carbon
atoms, reduced proton-graphene interaction potential
is indistinguishable from the reduced proton-carbon
interaction potential. Notice that proton-carbon inter-
action potential (7) is not spherically symmetric since
atomic thermal vibrations are not isotropic. Suppose
that the proton beam incidence direction is normal
to the graphene surface. The integral of potential (7)
along the beam incidence direction has circular sym-
metry since the associated covariance matrix is given
by expression (4). Therefore, the zero curvature con-
tour surrounding the potential’s maximum has to be
circular. Since the graphene unit cell is diatomic, there
are two such curves, each surrounding one transverse
atomic projection. From the symmetry standpoint,
these two “atomic” zero curvature contours have to be
nearly identical in the normal incidence case. The scat-
tering law (10) maps these two curves into a single cir-
cular outer rainbow line in Fig. 2a. For tilted graphene,
reduced proton-carbon interaction potential does not
have a circular symmetry, which is reflected in the shape
of the associated outer rainbow lines. The merging of
two outer rainbows into a single rainbow line observed

in Fig. 2 is explained as follows. As graphene tilts, trans-
verse positions of two adjacent carbon atoms approach
each other. Eventually, two associated reduced poten-
tials’ maxima bifurcate into one, leading to a single
outer rainbow line in Fig. 2c [42].

The outer rainbow line might seem to be an artifact
of the thermal averaging procedure (6). To demonstrate
that it is not the case, we have analyzed proton angular
yields corresponding to static graphene. For simplicity,
scattering was modeled by the momentum approxima-
tion. Proton-carbon interaction potential is modeled by
the expression (1). Obtained angular proton yield in the
normal incidence case is presented in Fig. 3a. The dis-
tribution is enclosed by the circular rainbow line C . The
yield cross section in the relevant interval of scattering
angles is presented in Fig. 3b. The position of the rain-
bow line is marked by the purple arrow and labeled by
the letter C . Particle count is zero outside the region
enclosed by the outer rainbow line C .

Therefore, the existence of the outer rainbow line is
not predicated on the thermal averaging procedure. Suf-
ficiently close to the individual carbon atoms proton-
graphene interaction potential is well approximated by
the Doyle-Turner’s proton-carbon interaction, i.e., by a
sum of Gaussian functions. Hence, the reduced proton-
carbon interaction potential has a zero curvature con-
tour which generates a rainbow line according to the
expression (16). This feature of the Doyle-Turner’s
approximation reflects a screening effect. Therefore,
the presented results are valid as much as the applied
Doyle-Turner’s approximation is accurate. We acknowl-
edge that it is an open question whether a similar large-
angle rainbow line exists in the case of other mod-
els of interatomic potential. However, it lies beyond
the scope of the carried investigation. The presented

123



Eur. Phys. J. D (2023) 77 :86 Page 7 of 14 86

Fig. 3 a Angular distribution of 5 keV protons transmitted through static graphene in the case of normal incidence.
Corresponding rainbow pattern is presented by purple lines. The associated color map shows the relative yield levels.
b Particle count Y as a function of scattering angle θx. Purple arrow marks the position of the rainbow line C

research aims to demonstrate how the morphological
analysis of rainbow patterns could be used to charac-
terize two-dimensional crystals.

3.2 Graphene thermal vibrations and proton
rainbow scattering

First, we will study angular distributions and corre-
sponding rainbow patterns generated by 5 keV pro-
ton beam transmission through perfect graphene with
different covariances of atomic thermal vibrations. We
analyzed proton rainbow scattering on the Debye
graphene, graphene sheet, and graphene nanoribbons.
Covariances of the respective graphene models are given
by the expressions (3)–(5). As in the previous section,
all results are presented in the transverse plane of the
proton beam. Proton count is expressed in the logarith-
mic scale and presented by the associated colormap.

The angular distribution of protons transmitted
through the Debye graphene in the case of the normal
incidence and sample tilted by the angle Θ = 0.065π
rad are presented in Fig. 4a’, a”, respectively. Distri-
bution in the case of the sample tilted and rotated by
the angles Θ = 0.065π rad and Φ = 0.25π rad is shown
in Fig. 4a”’. Insets of these figures represent enlarged
views of the central regions of the corresponding angu-
lar yields. Solid black lines in Fig. 4a’, a”, and a”’ are
rainbow lines calculated by solving Eq. (15). The parti-
cle count is significantly larger along the rainbow lines.
As expected, the rainbow pattern determines the shape
and size of the angular distribution. In all considered
cases, a rainbow pattern is composed of the outer and
the inner rainbow. Outer rainbows O′

1, O′′
1 , and O′′′

1
are nearly identical circles of radii Dc = 305.27 mrad,

Dc = 305.29 mrad, and Dc = 305.25 mrad, respec-
tively. Note that the outer rainbow is circular regard-
less of the direction of the incident beam [31]. On the
contrary, the rainbow pattern’s inner part changes with
the graphene’s reorientation. Inner rainbows I ′

1, I ′′
1 and

I ′′′
1 have hexagonal symmetry. In each vertex point of

line I1 three singular points form a pattern known as
the butterfly. It was shown that the transformation of
the inner rainbow I1 is qualitatively equivalent to the
transformation of the graphene hexagon transverse pro-
jection due to the graphene reorientation [31].

The angular distribution of protons transmitted
through the graphene sheet in the normal incidence
case and sample tilted by the angle Θ = 0.065π rad
are presented in Fig. 4b’, b”, respectively. Distribution
in the case of the sample tilted and rotated by the
angles Θ = 0.065π rad and Φ = 0.25π rad is shown in
Fig. 4b”’. Solid black lines in Fig. 4b’, b”, and b”’ are
rainbow lines calculated by solving Eq. (15). Particle
count is significantly larger along the calculated rain-
bow lines, which outline the entire distribution. The
rainbow pattern is again composed of two parts: the
outer rainbow and the inner rainbow. Outer rainbow
O′

2 is a circle of diameter Dc = 256.81 mrad [31]. How-
ever, one can notice that, in the case of the graphene
sheet, the circular shape of the outer rainbow is not
conserved after the reorientation of the graphene. Blue
horizontal and vertical lines in Fig. 4b” and b”’ are
symmetry axes of the corresponding outer rainbows O′′

2
and O′′′

2 . Major and minor cross sections of the rain-
bow O′′

2 along its symmetry axes are DM
e = 196.21

mrad and Dm
e = 153.04 mrad, respectively. Major and

minor cross sections of the rainbow O′′′
2 along its sym-

metry axes are DM
e = 196.05 mrad and Dm

e = 153.03
mrad, respectively. It was shown that inner rainbows
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Fig. 4 Angular yields of normal incident protons transmitted through Debye graphene, graphene sheet, and graphene
nanoribbons are presented in figures a’–c’. Yields in the case of targets tilted by the angle Θ = 0.065π rad are presented in
figures a”–c”. Yields in the case of targets tilted by the angle Θ = 0.065π rad and additionally rotated by Φ = 0.25π rad
are presented in figures a”’–c”’. Solid black lines are rainbow lines. Blue lines in figures b”, c”, b”’, and c”’ are symmetry
axes of the corresponding outer rainbows. Proton count is expressed in the logarithmic scale and by the associated colormap

I ′
2, I ′′

2 and I ′′
2 ′ are practicaly indistinguishable from the

rainbows I ′
1, I ′′

1 and I ′′′
1 , respectively [31].

The angular distribution of protons transmitted
through the graphene nanoribbon in the case of the
normal incidence and sample tilted by the angle Θ =
0.065π rad are presented in Fig. 4c’ and c”, respectively.
Angular proton distribution in the case of the sample
tilted and rotated by the angles Θ = 0.065π rad and
Φ = 0.25π rad is shown in Fig. 4c”’. Solid black lines
in Fig. 4c’, c”, and c”’ are rainbow lines calculated
by solving Eq. (15). Rainbows determine the shape
of these distributions. Rainbow patterns are composed
of two parts: the outer rainbow and the inner rain-
bow. Outer rainbow O′

3 is an ellipse [31]. This ellipse’s

major and minor diameters are DM
e = 227.11 mrad

and Dm
e = 215.06 mrad, respectively. Shape and size of

the outer rainbow change with the reorientation of the
graphene nanoribbon. Its symmetry axes are parallel
with the vertical and horizontal directions. The major
and minor diameters of rainbow O′′

3 are DM
e = 165.11

mrad and Dm
e = 121.26 mrad. Additional rotation by

the angle Φ = 0.25π rad, outer rainbow tilts. Blue
mutually orthogonal lines in Fig. 4c”’ are symmetry
axes of the rainbow O′′

3 ′. Its major and minor cross-
sections along the symmetry axes are DM

e = 160.36
mrad and Dm

e = 120.01 mrad, respectively. It was
shown that the inner rainbow I ′

3 is practically iden-
tical to the rainbow I ′

2, making it indistinguishable
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Fig. 5 Red and orange arrows present the incident and transmitted proton beam, respectively. Black spheres are carbon
atoms. a–d are depictions of vacancy, Stone–Wales defect, adatom defect and adatom in the bridge-like configuration defect,
respectively. Corresponding angular distributions of the transmitted normal incident proton beam are presented in figures
a’–d’. Black lines represent rainbows. Dashed cyan lines enclose characteristic segments of the corresponding rainbow
patterns. Angular yield is expressed in the logarithmic scale and presented by the associated colormap

from the line I ′
1. Similarly holds I ′′

3 = I ′′
2 = I ′′

1 , and
I ′′′
3 = I ′′′

2 = I ′′′
1 [31].

From the previous paragraphs, one can conclude that
the shape and size of the inner rainbow line, and there-
fore the shape of the inner part of the angular proton
yield, do not depend on the covariance matrix of atomic
thermal vibrations. This can be explained in the follow-
ing way. Inner lines are formed by the synergic action of
all carbon atoms that constitute the graphene hexagon.
Protons that form inner rainbows scatter sufficiently
far from the carbon atoms in the regions where ther-
mal vibrations of individual atoms have an insignificant
influence on the scattering process. However, the inner
rainbows’ shape depends on the relative orientation
of the crystal and proton beam. Different crystal ori-
entations have different atomic transverse projections,
generating different inner rainbow patterns. Hence, the
inner rainbow pattern depends on the spatial distribu-
tion of carbon atoms, i.e., crystal structure. This claim
will be explored further in the next section.

Outer rainbows depend strongly on the covariance
of atomic thermal vibrations. The circular shape of
the outer rainbow in the case of the Debye graphene,
regardless of the incident beam direction, can be
explained in the following way. An outer rainbow is
formed by trajectories of those protons that scatter in
the close vicinity of individual atoms. It was pointed out
that in this region of space, due to the isotropic motion
of carbon atoms, interaction potential has spherical

symmetry. Hence, regardless of the incident beam direc-
tion, protons effectively scatter in the spherical poten-
tial giving rise to the circular angular yield.

Similar arguments could be used to explain the
shapes of all studied outer rainbows. An outer rainbow
line can be modeled by an elliptical line which is qual-
itatively equivalent to a normal projection of the ellip-
soid associated with the matrix Σ−1 [31]. In the case of
the Debye graphene, the ellipsoid associated with the
matrix Σ−1 is a sphere. Any projection of this sphere is
a circle, and such are the corresponding outer rainbow
lines O′

1, O′′
1 , and O′′

1 ′. In the case of the graphene sheet,
covariance is given by the matrix (4). Corresponding
ellipsoid Σ−1 has equal semi-axes in the x and y direc-
tion. The transverse projection of this ellipsoid in the
normal incidence case is a circle, and such is the shape
of the corresponding rainbow O′

2 in Fig. 4b’. Tilting the
graphene sheet by the angle Θ = 0.065π rad transforms
the transverse projection of the ellipsoid Σ−1 into an
ellipse. Qualitatively similar is the rainbow transforma-
tion O′

2 → O′′
2 . Transverse projections of the ellipsoid

Σ−1 are invariant under the additional azimuthal rota-
tions, leaving the outer rainbow practically unchanged
in Fig. 4b”’. Transformation of the rainbow O′

3 can be
explained in the same way. Covariance in the case of
nanoribbons is given by the matrix (5). Corresponding
ellipsoid Σ−1 has all semi-axes different. In the case
of the normal incidence, the transverse projection of
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ellipsoid Σ−1 is an ellipse. Tilting nanoribbons by the
angle Θ = 0.065π rad deforms transverse projections of
the ellipsoid Σ−1, leaving it oriented along the vertical
and horizontal axes. Additional azimuthal rotation by
the angle Φ = 0.25π rad causes the additional tilt of the
transverse projection. Rainbow O3 follows qualitatively
equivalent transformation: O′

3 → O′′
3 → O′′

3 ′ observed
in Fig. 4c’, c” and c”’.

3.3 Graphene defects and proton rainbow scattering

In this section, we will study the influence of graphene
defects on the angular distribution of transmitted pro-
tons and the corresponding rainbow pattern. There
are three types of graphene point defects: vacancies,
topological defects, and additional carbon atoms [13].
The removal of any carbon atom forms a vacancy.
A structural defect characterized by the absence of a
single atom is sometimes called monovacancy . Diva-
cancy is formed by the removal of two adjacent car-
bon atoms or by the merging of two monovacancies.
The rearrangement of graphene atoms forms topologi-
cal defects. E.g., rotation of the atomic pair transforms
four graphene hexagons into two pentagon-heptagon
pairs. An obtained structural defect is often called
Stone–Wales or 55–77 defect. A carbon–carbon pair
rotation in the divacancy defect leads to the topologi-
cal defect consisting of three graphene pentagons and
three graphene septagons. This point defect is known as
the 555–777 defect. The third class of graphene point
defects is the presence of additional off-plane carbon
atoms in the graphene lattice. There are two most sta-
ble such configurations. An additional carbon atom
could be positioned right above the carbon–carbon
bond in the so-called bridge defect configuration. The
second stable position of the additional carbon is right
on top of the graphene’s carbon atom. This defect is
known as adatom.

Structurally imperfect graphene can be modeled by
periodic in-plane translation of the graphene segment
containing at least one point defect. Such unit cell
with the minimal possible area we named the defect
cell . Areas of defect cells in the case of monova-
cancy, adatom, Stone–Wales, and bridge defect are
Sd = 3Su, 3Su, 4 Su and 4 Su, respectively. Note that
in this approach, although imperfect, modeled defec-
tive graphene has a periodic crystal structure. Con-
sequently, the constructed proton-graphene interaction
potential has the translational symmetry of a modeled
imperfect graphene lattice. Therefore, each defect cell
contributes equally to the overall angular distribution.

The previous section demonstrated that the inner
part of the rainbow pattern changes with the reorien-
tation of the sample and therefore depends on the spa-
tial distribution of graphene atoms relative to the beam
direction. The rainbow pattern’s inner part depends on
the graphene lattice’s structural properties. Hence, in
this section, we will focus solely on the inner part of the
angular yield and the corresponding inner rainbow pat-
tern. The results in Fig. 2 demonstrate that the inner

part of the angular yield and the corresponding rainbow
pattern’s inner part can be accurately modeled by the
momentum approximation. For this reason, all results
presented in this section are obtained by the momen-
tum approximation.

Figure 5 presents angular distributions and corre-
sponding rainbow patterns generated by transmitted
5 keV proton beam through graphene with different
point defects. Red and orange arrows indicate the
incident and transmitted proton beam, respectively.
Vacancy, Stone–Wales, carbon adatom, and carbon
adatom in the bridge-like configuration defect are illus-
trated in Fig. 5a–d, respectively. Black spheres rep-
resent carbon atoms. Carbon–carbon bonds are pre-
sented by thin black lines connecting neighboring car-
bon atoms. Thermal vibrations of graphene atoms are
modeled by the covariance matrix (4).

Corresponding angular distributions of transmitted
protons in the case of normal incidence are presented
in Fig. 5a’–d’. The densities of the modeled defects are
maximal. Proton count is expressed in the logarith-
mic scale and presented by the associated colormap.
s. Blue transparent surfaces are drawn to highlight spe-
cific point defects. Solid black lines represent rainbow
lines calculated by solving Eq. (16).

One can notice that rainbow patterns I1, I2, I3 and
I4 outline the shape of calculated angular distributions.
Pattern I1 is composed of four rainbow lines [43]. All
four lines surround the coordinate origin of the scat-
tering angle plane. Central rainbow has a cusped trian-
gular shape. The other three rainbows are pentagonal
lines with a cusp and butterfly pattern decorating their
vertices. Pattern I2 is formed by two pentagonal and
two heptagonal lines [43]. Each pentagonal line has two
cusps, two butterfly patterns, and a wigwam pattern
at its vertices. Septagonal lines have two cusp patterns
and five butterfly patterns at their vertices. Pattern I3

is formed by three hexagonal lines elongated in direc-
tions π/3, π, and 5π/3 [43]. Each of these three rain-
bows has one large and three smaller butterfly patterns
and two cusp patterns at the vertices of the hexagons.
Rainbow pattern I4 is formed by a hexagonal line, cor-
responding to the perfect graphene, and two symmet-
rically equivalent rainbows composed of two butterfly
patterns and seven cusps. θx and θy axes are the sym-
metry axes of the rainbow pattern I4. Rainbow pattern
I4 stretches furthest in the vertical direction and is sig-
nificantly larger than patterns I1, I2, and I3.

4 Characterization of graphene
by the rainbow scattering pattern

4.1 Extraction of the covariance matrix

This section will demonstrate how the covariance
matrix of graphene atomic displacements could be
extracted from the parameters of the outer rainbow
line. From the results presented in Fig. 4, it is evi-
dent that the outer part of the rainbow pattern con-
tains information about the spectrum of the covariance
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Fig. 6 a Diameter of the outer rainbow as a function
of the variance of atomic displacements σ2 in the case of
isotropic thermal vibrations of graphene atoms. The black
square represents the value of the rainbow O′

1 s diameter
shown in Fig. 4a’. b Blue lines are contours of the func-
tion Dc

(
σ2

ρ, σ2
z

)
, which is the diameter of the outer rainbow

generated by the protons transmitted through the graphene
sheet in the case of the normal incidence. Red lines are con-
tours of the function Dm

e

(
σ2

ρ, σ2
z

)
representing the minor

diameter of the outer rainbow in the tilted graphene sheet
by angle Θ = 0.065π rad. The computation cell is outlined
by the black dashed line. Contour values are expressed in
mrad. Thicker blue and red lines represent contour levels of

the diameters of rainbows O′
2 and O

′′
2 shown in Fig. 3b’, b”,

respectively

matrix. Reorientation of the graphene sample trans-
forms the outer rainbow. In turn, this shape evolution
can be used to determine the degeneracy of the covari-
ance matrix spectrum [31].

Let us start with the simplest case, the Debye
graphene. We observed that the outer rainbow is a cir-
cle independent of the graphene orientation. We cal-
culated the diameter of the outer rainbow for different
variances in the interval [15.20, 20.60] pm2. Obtained
results are presented in Fig. 6a. The minimal con-
sidered variance value corresponds to the variance of
atomic displacements at the zero temperature. The
black square indicates the diameter of the rainbow O′

1
shown in Fig. 4a’, Dc = 305.27 mrad. Diameter is a
monotonically decreasing function of the variance of
atomic vibrations. Hence, Fig. 6a could help determine
the unknown variance from the diameter of the corre-
sponding outer rainbow. In the case of the rainbow O′

1

shown in Fig. 4a’, the graphically determined variance
is σ2 = 17.37 pm2.

Covariance in the case of the graphene sheet has two
distinct eigenvalues σ2

ρ and σ2
z . Therefore, the deter-

mination of the unknown variances requires two inde-
pendent measurements. Here we used information con-
tained in the diameter of the outer rainbow generated
in the case of the normal incidence and minor diam-
eter of the outer rainbow in the case of the tilted
graphene sheet by the angle Θ = 0.065π rad, i.e.,
Dc

(
σ2

ρ, σ2
z

)
, and Dm

e

(
σ2

ρ, σ2
z

)
, respectively. A system

of two equations is obtained: Dc = Dc

(
σ2

ρ, σ2
z

)
, and

Dm
e = Dm

e

(
σ2

ρ, σ2
z

)
with unknown variables σ2

ρ and
σ2

z . The problem can be solved by calculating values
of the functions Dc

(
σ2

ρ, σ2
z

)
, and Dm

e

(
σ2

ρ, σ2
z

)
in a spe-

cific subset of the two-dimensional parametric space(
σ2

ρ, σ2
z

)
. We restricted our calculations to the subset

[15.20, 20.60] pm2 × [2000, 4000] pm2. Blue and red
lines In Fig. 6b are contours of the functions Dc

(
σ2

ρ, σ2
z

)
,

and Dm
e

(
σ2

ρ, σ2
z

)
in the selected domain, respectively.

Thicker blue and red lines indicate contour levels that
correspond to the cases presented in Figs. 4b’, b”,
respectively. Inside the computational region, each of
the functions Dc

(
σ2

ρ, σ2
z

)
, and Dm

e

(
σ2

ρ, σ2
z

)
has exactly

one contour of a certain level. Thicker contours cross
at the single point. Coordinates of that point are(
σ2

ρ, σ2
z

)
= (17.67, 2619.10) pm2, which are equal to the

eigenvalues of the covariance matrix used in the calcu-
lation of the corresponding rainbow lines, presented in
Figs. 4b’, b.” It was shown that a slightly more compli-
cated procedure is required to extract the covariance
matrix of atomic vibrations in the case of graphene
nanoribbons, where atoms perform totally anisotropic
motion [31].

4.2 Characterization of graphene point defects

This section will demonstrate how angular yield and the
rainbow pattern can be used to determine the type and
density of the point defects present in the graphene. To
demonstrate the procedure, we confine the analysis to
different classes of point defects: vacancy, Stone–Wales,
and adatoms defects. A similar analysis could also be
used to determine the density of the bridge-like adatom
defect. In the perfect graphene case, the rainbow pat-
tern’s inner part is a single line, as shown by the insets
of Figs. 4a’, a”, and a”’. The inner rainbow pattern has
a hexagonal symmetry in the normal incidence case. In
the analyzed cases of imperfect graphene, none of the
obtained patterns poses a hexagonal symmetry. One
can quickly notice that rainbow patterns I1, I2, and
I3 in Fig. 5a’–c’ differ significantly. Patterns I1 and I3

share a triangular symmetry, while pattern I2 does not.
On the other hand, patterns I1 and I3 differ by the area
of angular space they enclose. It was concluded that
each defect type produces a distinctive rainbow pat-
tern. Therefore, just by studying the shape of the inner
rainbow pattern, one could characterize defect types
present in the sample [43].
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Fig. 7 a Calibration curves for the determination of the unknown densities of defects. Black points show the calculated data
points for the vacancy, adatom, and Stone-Wales defects. Red, green, and blue lines show their respective fits. Figure 7a’
shows the inner rainbow pattern of perfect graphene. Relative to it, characteristic regions for the vacancy, adatom, and
Stone-Wales defect are outlined by red, green, and blue dashed rectangles, respectively. The angular distributions inside
the characteristic rectangles for the maximal defect densities are presented in figures b–d, and for the minimal detectable
densities of considered defects in figures b’–d’

Let us denote the angular distribution of protons
transmitted through the perfect graphene by Y0(θx, θy),
and by Y (θx, θy) the angular distribution of protons
transmitted through imperfect graphene. The proce-
dure’s first step is identifying the scattering angle plane
regions in which rainbow patterns I1, I2, and I3 have
distinct properties, and the angular yield Y0(θx, θy)
is featureless. Secondly, we identified subsets of these
regions in which rainbow patterns I1, I2, and I3 do not
cross each other. The second requirement enables one to
consider the contributions of each defect type indepen-
dently. An identified characteristic region in the case of
a vacancy defect is the central triangle enclosed by the
cyan dashed line in Fig. 5a’. In the case of Stone–Wales
defects, a characteristic segment of the rainbow pat-
tern is formed by two cusped lines inside the dashed
cyan rectangle in Fig. 5b’. In the case of the adatoms,
the characteristic feature of the rainbow pattern is a
large butterfly pattern inside the cyan dashed rectan-
gular line in Fig. 5c’.

Inside each characteristic region, we constructed the
regular grid θij = θc + iθ1 + jθ2, where θ1 and θ2 are
orthogonal vectors, and θc is the center of the char-
acteristic region. Corresponding angular yields Y (θij)
were calculated using Eq. (10). A quantitative measure
of the difference between distributions Y0 and Y was
introduced by defining the following parameter:

ς2(ρ) =
1

N1N2

N1∑

i=1

N2∑

j=1

(
1 − Y (θij)

Y0(θij)

)2

. (17)

where N1 and N2 are the numbers of grid points in
the directions specified by vectors θ1 and θ2, respec-
tively. Parameter ς2 is the root-mean-squared relative
difference between yields Y and Y0 over the character-
istic region. Figure 7a’ shows the inner rainbow pat-
tern of perfect graphene. Relative to it, characteris-
tic regions for the vacancy, adatom, and Stone–Wales
defect are outlined by red, green, and blue dashed rect-
angles, respectively. The used calculation grid consisted
of 75 × 75 points. Black dots in Fig. 7a are calcu-
lated ς2 values for different densities of each consid-
ered defect type. Densities are expressed in the loga-
rithmic scale. Note that the defined parameter ς2 does
not contain information about the shape of the cor-
responding distribution. Knowledge about the shape
of the distribution was already exploited while defin-
ing the characteristic regions themselves. If defect den-
sity is sufficiently low, contributions to the parameter
ς2 that originate from the presence of defects in the
graphene lattice may not be distinguishable from the
statistical fluctuations and signal noise. Point in the
calculations at which the naked eye could not iden-
tify a characteristic property of the distribution defined
the minimal defect density achievable by this proce-
dure. Angular distributions inside the characteristic
regions for the maximal density of vacancies, adatoms,
and Stone–Wales defects are presented in Figs. 7b–d,
respectively. Corresponding yields in case of the mini-
mal defect densities are presented in Fig. 7b’–d’, respec-
tively. Determined minimal defect densities in the case
of vacancy, adatom, and Stone–Wales defect type are
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0.2730, 0.4318, and 0.1893 nm−2, respectively. Notice
that minimal detectable densities could be lowered if a
human element in the procedure could be superseded.
Linear fits of the obtained data points in case of vacan-
cies, Stone–Wales, and adatom defects are presented by
red, blue, and solid green lines. The goodness of each
performed linear fit is 0.9999. Furthermore, the study
[43] demonstrated how a developed procedure could be
used to determine the densities of different defect types
present in the sample simultaneously.

5 Conclusions

We showed that the outer rainbow pattern determines
the shape and size of the angular distribution of trans-
mitted protons. A rainbow pattern is generally com-
posed of two parts, the outer and the inner. It was
shown that the rainbow pattern’s inner part changes
with the reorientation of the graphene sample rela-
tive to the incident proton beam. However, this change
is independent of the covariance matrix Σ of atomic
thermal displacements. We showed that outer rainbow
lines have an elliptical shape and transform qualita-
tively the same as the transverse projection of the
ellipsoid associated with the inverse of the covariance
matrix. These insights proved helpful in building the
complete solution to the inverse problem—extraction
of the covariance matrix Σ from the size and orien-
tation parameters of the outer rainbow line. We ana-
lyzed proton rainbow scattering by imperfect graphene.
It was found that the rainbow pattern’s inner part
differs significantly from the case of perfect graphene.
We found that different defect types produce different
inner rainbow patterns. Furthermore, we have shown
that rainbow patterns and angular distributions of pro-
tons transmitted through imperfect graphene could be
used to determine the densities of the unknown defects.
The developed procedure is applicable even when dif-
ferent defect types are present in the sample simulta-
neously. In all considered cases, the outer and inner
parts of the rainbow pattern do not interact, making
simultaneous characterization of both graphene ther-
mal vibrations and graphene crystal structure possi-
ble.
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