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Abstract. We analyzed the asymmetry of Autler–Townes doublets in the calculated photoelectron energy
spectra for the two-photon ionization of the hydrogen atom by an intense short laser pulse that resonantly
couples its ground state with the excited 2p state. The spectra are calculated applying the method of time-
dependent amplitudes using two approaches of different level of approximation. The first approach involves
solving a complete set of equations for amplitudes, which, in addition to amplitudes of coupled (1s, 2p) and
continuous states, also includes the amplitudes of other discrete (nonessential) states. The second approach
is the three-level model that includes only the amplitudes of the two coupled states and those of continuum
states. By comparing the spectra obtained using these two approaches it is confirmed that the shift of the
Autler–Townes doublets, which exists only in the spectra obtained by solving the full set of equations,
can be attributed to the AC Stark shift, which is a consequence of the coupling with nonessential states.
Finally, it was found that the asymmetry in the intensity of the Autler–Townes doublet components, which
appears in the spectra obtained using both computational approaches, is primarily due to the decrease in
the transition probability between the 2p and continuum states with increasing photoelectron energy.

1 Introduction

Multiphoton ionization of an atom by a laser field that
resonantly couples its ground state to an excited state
can serve as a probe for the field induced Rabi dynamics
of the coupled states. In the time-dependent picture this
dynamics is manifested as the periodic transfer of pop-
ulation from one state to another—the so-called Rabi
flopping (see e.g. [1]), but in the frequency domain it
leads to a splitting of the resonant peak in the pho-
toabsorption spectrum, known as the Autler–Townes
(AT) doublet. Before the availability of coherent light
sources this splitting was first detected in the absorp-
tion spectrum of a molecule using radiation from the
radio frequency domain [2].

Apart from the photoabsorption spectra, the AT
splitting can also be detected in the energy spectra
of photoelectrons produced at multiphoton ionization
of atoms and molecules. However, despite theoretical
predictions to observe it at short wavelengths [3–8],
its direct observation at XUV wavelengths has been
reported only recently, after the free-electron lasers
with high temporal and spatial coherence became avail-
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able [9]. Applying intense pulses from such a source,
one-photon Rabi oscillations are successfully induced
between the ground state and an excited state of the
atom, particularly if the carrier frequency of the source
is resonant for the transition between these states. A
second photon from the same pulse can further ionize
the atom from the excited state, so finally we have res-
onant two-photon ionization. The emitted photoelec-
trons coherently probe the dynamics of the coupled
states and the photoelectron energy spectrum (PES)
reveals the AT doublet.

A detailed theoretical analysis of the AT splitting,
instead of a simple doublet, predicts a multiple-peak
pattern in the PES [5–8], as well as additional effects
such as energy shift and asymmetry of the pattern
[3,4,7,8]. An explanation for the multiple-peak struc-
ture, which has been proposed in previous studies [6],
is the so-called dynamic interference of photoelectrons
emitted on the rising and falling sides of the pulse with
a time delay. However, subsequent analysis has shown
that this explanation is not adequate in the general case
[10,11], which is also confirmed by our recent calcula-
tions [12].

In this paper, we focus on the analysis of shift and
asymmetry of AT doublets, taking as an example the
resonant two-photon ionization of hydrogen atoms by
short laser pulses. In order to get more pronounced
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effects, we have chosen pulses of higher intensity and
shorter duration than previously used. In the next sec-
tion we present two computational approaches with dif-
ferent degrees of approximation for calculating the pop-
ulations of atomic states and the photoelectron energy
spectra. Both approaches are based on the method of
time-dependent amplitudes, whereby the first solves
the full set of equations for amplitudes, while the sec-
ond takes into account only two resonantly coupled
states and continuum states. In Sect. 3 we present the
results obtained within these approaches and analyze
the above effects in the AT splitting. A summary and
conclusions are given in Sect. 4.

2 Model and computational approaches

The populations of atomic states during the interac-
tion of the atom with the laser pulse, including their
final values when the pulse has expired, and the pho-
toelectron energy spectra, that are the subject of the
analysis carried out in the next section, were obtained
by solving the time-dependent Schrödinger equation (in
atomic units)

i
d
dt

|ψ(t)〉 = (H0 + zE(t))|ψ(t)〉. (1)

Here |ψ(t)〉 is the non-stationary atomic state at time
t, H0 is the Hamiltonian of the field-free (bare) atom,
E(t) is the electric field component of the laser pulse
and z is the projection of the electron-nucleus distance
in the field direction. The term z E(t) describes the
atom-field interaction in the dipole approximation using
the length gauge. We consider a linearly polarized laser
pulse whose electric field component reads

E(t) = E0 g(t) cos ωt, (2)

where E0 is the peak value of the field strength, ω is the
laser carrier frequency and the function g(t) determines
the shape of the pulse envelope.

Equation (1) is solved numerically assuming that the
atom is initially in its ground state, i.e. |ψ(t0)〉 = |1s〉,
where t0 is a time before the beginning of the interac-
tion. Since the atom interacting with the field (2) has
axial symmetry, the z-projection of the electron angular
momentum lz is a constant of motion and the magnetic
quantum number m is a good quantum number. Thus,
the state |ψ(t)〉 is at any time t characterized by the
value m = 0, which characterizes the ground state of
the bare atom. Unless otherwise stated, atomic units
(a.u.) are used throughout the paper.

2.1 The full set of equations for amplitudes

The state of the hydrogen atom at time t interacting
with a laser field can be written as the superposition of
eigenstates of the commuting observables H0, l2, and lz

|ψ(t)〉 =
∑

n,l

cnl(t)|nl〉 +
∫ ∑

l

cεl(t)|εl〉dε, (3)

where cnl(t) and cεl(t) are the time-dependent ampli-
tudes for the population of discrete and continuum
eigenstates, |nl〉 ≡ |nlm〉 and |εl〉 ≡ |εlm〉 with m = 0,
respectively.

By substituting expansion (3) in Schrödinger equa-
tion (1) and projecting the result onto each eigenstate,
one obtains the following set of equations for the ampli-
tudes

iċnl = En cnl(t) + E(t)
∑

n′,l′
〈nl|z|n′l′〉cn′l′(t)

+E(t)
∫ ∑

l′
〈nl|z|εl′〉cεl′(t)dε,

iċεl = εcεl(t) + E(t)
∑

n′,l′
〈εl|z|n′l′〉cn′l′(t)

+E(t)
∫ ∑

l′
〈εl|z|ε′l′〉cε′l′(t)dε′, (4)

where En and ε are the values of the discrete and con-
tinuum energy levels of the bare atom, respectively.

By representing the integral over ε by the sum over
a set of its discretized values εi and neglecting the
continuum-continuum interaction, the set of integro-
differential equations (4) reduces to the following set
of differential equations

iċnl = En cnl(t) + E(t)
∑

n′,l′
〈nl|z|n′l′〉cn′l′(t)

+E(t)
∑

i,l′
〈nl|z|εil

′〉cεil′(t)Δε,

iċεil = εcεil(t) + E(t)
∑

n′,l′
〈εil|z|n′l′〉cn′l′(t). (5)

At the laser peak intensities up to few hundred
TW/cm2 that we consider here, in the expansion (3)
it is sufficient to use the set of discrete states |nl〉
with n ≤ 7 and l = 0, . . . , n − 1, and s and d dis-
cretized continuum states (see Fig. 1) with energies in
the interval from 5 to 8.6 eV with the step Δε = 0.01 eV.
The restriction to s and d continuum state justifies the
neglect of the continuum-continuum interaction since
the matrix elements between states of the same parity
(here s and d) are equal to zero. The expressions for
matrix elements 〈nl|z|n′l′〉 and 〈nl|z|εl′〉 are given in
Appendix A.

The quantities |cnl(t)|2 can be interpreted as the pop-
ulations of atomic states |nl〉 after the interaction of
the atom with the laser field which has ended at time
t. Thus, the populations of states |nl〉, after time tex
when we assume that the laser pulse has expired, are
|cnl(tex)|2. Analogously, the quantity |cεl(tex)|2 repre-
sents the probability density of finding the atomic elec-
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Fig. 1 Energy level scheme of the hydrogen atom and the
two-photon absorption paths for transitions from the ground
(1s) state to the final continuum states (εs and εd) via one-
photon resonant excitation of 2p state

tron in the continuum state |εl〉 after the pulse has
expired.

Since the photoelectron yield at a given energy ε is
proportional to the total probability density of find-
ing the electron in continuum states corresponding to
this energy, the photoelectron energy spectrum (PES)
is adequately represented by the distribution

w(ε) =
∑

l

|cεl(tex)|2, (6)

which in the considered case practically reduces to for-
mula w(ε) = |cεs(tex)|2 + |cεd(tex)|2.

2.2 The three-level model

In the case of resonant or near resonant excitation of
an intermediate state (here 2p), the other excited states
are nonessential and at weak fields their role in the ion-
ization process may be neglected, i.e. the process may
be adequately described within the three-level model
(E1, E2, ε) [6]. Then, the atomic state at time t reads

|ψ(t)〉 = C1s(t)|1s〉 + C2p(t)e−iωt|2p〉
+e−2iωt

∫
[Cεs(t)|εs〉 + Cεd(t)|εd〉]dε, (7)

where C1s(t), C2p(t) and Cεl(t) are the time-dependent
amplitudes for the population of states |1s〉 (ground
state), |2p〉 (intermediate state) and |εl〉, l = 0, 2
(continuum states), respectively. In this expansion the
states |2p〉 and |εl〉 have been multiplied with the
phase factors e−iωt and e−2iωt in order to simplify
the set of equations for the amplitudes. By compar-
ing Eqs. (3) and (7), one sees that C1s(t) = c1s(t),
C2p(t) = eiωtc2p(t) and Cεl(t) = e2iωtcεl(t). Since the

difference between the C and c sets of amplitudes is only
in the phase factors, both sets adequately determine the
populations of atomic states and photoelectron yield.

If we set the ground state energy to zero (E1 = 0, as
shown in Fig. 1), by inserting Eq. (7) in the Schrödinger
equation (1) and applying the rotating wave approxi-
mation [1], we obtain the following system of equations
for the amplitudes

iĊ1s =
1
2

D∗E0 g(t)C2p(t),

iĊ2p =
1
2

DE0 g(t)C1s(t) + (E2 − ω)C2p(t)

+
1
2

E0 g(t)
∫

[d∗
εsCεs(t) + d∗

εdCεd(t)]dε,

iĊεs =
1
2

dεs E0g(t)C2p(t) + (Ip + ε − 2ω)Cεs(t),

iĊεd =
1
2

dεd E0g(t)C2p(t) + (Ip + ε − 2ω)Cεd(t).

(8)

Note that, by taking E1 = 0, the energies of the 2p and
final continuum states are E2 = 0.375 a.u. = 10.204 eV
and Ip+ε, respectively, where Ip = 0.5 a.u. = 13.606 eV
is the ionization potential of the hydrogen atom. Here
D = 〈2p|z|1s〉 and dεl = 〈εl|z|2p〉 are the dipole transi-
tion matrix elements for the excitation of the 2p state
and for its subsequent ionization, respectively.

Using formal solutions of the third and fourth of
Eq. (8)

Cεl(t) = − i

2
E0 dεl

∫ t

−∞
e−i(Ip+ε−2ω)(t−t′)g(t′)C2p(t′)dt′,

(9)

where l = 0, 2, and the local approximation which
assumes that the main contribution of the integral over
t′ stems from the times around t′ ∼ t [13,14], the last
term in the second of Eq. (8) reduces to

1
2

E0 g(t)
∫

[d∗
εsCεs(t) + d∗

εdCεd(t)]dε

= −πi
|dε0 |2E2

0

4
g2(t)C2p(t), (10)

where |dε0 |2 = |dε0s|2 + |dε0d|2 and ε0 = 2ω − Ip. Note
also that the third and the forth of Eq. (8) are equiv-
alent. Namely, dividing them by dεs and dεd, respec-
tively, they reduce to the same equation for the scaled
amplitude C̃ε(t) = Cεs(t)/dεs ≡ Cεd(t)/dεd (which also
follows from Eq. (9)).

Finally, one obtains the set of equations

iĊ1s =
1
2

Ω∗
0 g(t)C2p(t),

iĊ2p =
1
2

Ω0g(t)C1s(t) +
[
E2 − i

2
Γg2(t) − ω

]
C2p(t),
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Fig. 2 The squares of modula of the dipole matrix ele-
ments for transitions from the 2p state to continuum states
εs and εd (dashed and dash-dot lines, respectively), deter-
mined by Eq. (18), and their sum |dε|2 (full line) in the
energy interval ε ∈ (6.4, 7.2) eV. The vertical and horizon-
tal dotted lines mark the resonant energy ε0 = 6.803 eV
and the corresponding value of |dε|2 (|dε0 |2 = 0.1663 a.u.),
respectively

i ˙̃Cε =
1
2

E0g(t)C2p(t) + (ε − ε0)C̃ε(t), (11)

where Ω0 = DE0 is the frequency of Rabi flopping
between the populations of states 1s and 2p at the peak
value of laser intensity and

Γ = 2π

∣∣∣∣
dε0E0

2

∣∣∣∣
2

(12)

is the ionization rate of the intermediate resonant state
|2p〉. The imaginary term − i

2 Γg2(t) describes the losses
of the population of the intermediate state by the ion-
ization into all final electron continuum states |εl〉.

The PES can be determined applying formula (6),
which here takes the form

w(ε) = |dε|2|C̃ε(tex)|2, (13)

where |dε|2 = |dεs|2 + |dεd|2. The values of the dipole
matrix elements for transitions from the 1s to the 2p
state and from the 2p state to continuum states are
determined using Eqs. (17)–(21). The matrix element
for the transition 1s → 2p is D = 0.7449 a.u., while the
values of |dε|2 for ε ∈ (5, 8.6) eV are shown in Fig. 2.
The resonant excitation of the 2p state and the sub-
sequent ionization occurs if the laser carrier frequency
is ω = 0.375 a.u., which coincides with the transition
frequency between the 1s and 2p states (in the weak
field limit). The photon energy corresponding to this
frequency is 10.204 eV and the expected kinetic energy
of the ejected electrons is ε0 = 0.25 a.u. = 6.803 eV.

In the next section it will be shown that the approx-
imate results obtained using the three-level model, in
which the exact values for |dε|2 are replaced by the
value of |dε0 |2, as it was the case in previous stud-
ies [6], are sufficient for a qualitative analysis of spec-
tra. The values of the matrix elements for transitions
from the 2p state to continuum s and d states at the
energy ε0 are dε0s = (0.1469 − 0.0296 i) a.u. and dε0d =
(−0.0749−0.3717 i) a.u., respectively. These values give
|dε0 |2 = 0.1663 a.u. and the quotient |dε0s|2/|dε0d|2 =
0.1563 which estimates the relative ratio of s and d-
electrons in the photoelectron yield.

3 Results

Using the methods described in the previous section,
we analyze the populations of atomic states and photo-
electron energy spectra for the two-photon ionization of
the hydrogen atom by the laser pulse (2) of the gaussian
form

g(t) = e−t2/τ2
(14)

with τ = 6 fs and the carrier frequency ω = 0.375 a.u.
which is resonant for the transition 1s → 2p.

Figure 3 shows the evolution of the populations of
atomic states 1s and 2p, calculated for the pulse of peak
intensity I0 = 25 TW/cm2 (I0 = E2

0/(8πα), α = 1/137)
for which approximately 1.5 Rabi cycles during the
pulses are completed. The populations shown in panel
(a) were obtained using the method of time-dependent
amplitudes described in Sect. 2.1, i.e. by solving the
system of Eq. (5) for the recommended set of ampli-
tudes, while those in panel (b) were obtained applying
the three-level model described in Sect. 2.2, i.e. by solv-
ing the system of Eq. (11). Beside the populations of
the 1s and 2p states, in the panel (a) the populations of
the states 2s and 3d are shown, too. The populations of
other states are significantly smaller and, for this rea-
son, not shown in the figure. A good agreement between
the results for the populations of the states 1s and 2p in
the panels (a) and (b), as well as relatively small values
for populations of other (non-essential) states, confirm
the validity of the three-level model, particularly for
describing the electron dynamics in the discrete-state
subspace.

Figure 4 shows the final populations of the ground
and intermediate states, using tex = 3τ for the gaus-
sian pulse (14), as functions of the peak intensity
I0 in the domain of 0.02–400 TW/cm2. The values
obtained using the computational approaches described
in Sects. 2.1 and 2.2 practically coincide and for this
reason they are represented in the figure by the same
lines. The vertical dashed lines indicate the values of
I0 at which the atom manages to complete an integer
number of Rabi cycles during the pulse.

Figure 5 shows the photoelectron energy spectra cal-
culated for the laser peak intensities which are in Fig. 4
indicated by the vertical dashed lines. The spectra
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Fig. 3 a Populations of the ground state (1s) and the
excited states 2s, 2p and 3d of the hydrogen atom during
the action of the gaussian laser pulse of 25TW/cm2 peak
intensity, τ = 6 fs and ω = 0.375 a.u., calculated by solving
the set of Eq. (5). b Populations of the ground state (1s)
and the excited state 2p of the hydrogen atom during the
action of the same pulse, calculated by solving the set of
Eq. (11) (the three-level model). The dashed line represents
the envelope of the laser pulse. For the chosen peak inten-
sity the populations perform approximately 1.5 Rabi cycles
during the pulse

Fig. 4 Populations of the ground (1s) and the excited
2p state of hydrogen, after the laser pulse has expired,
as functions of the laser peak intensity. The results are
obtained using the gaussian pulse of the carrier frequency
ω = 0.375 a.u. (which corresponds to the photon energy of
10.204 eV) and τ = 6 fs. The vertical dashed lines indicate
the peak intensities at which an integer number of Rabi
cycles is completed during the pulse

in panel (a) are determined by solving the system of
Eq. (5) and applying Eq. (6), while those in panel (b)
are obtained by solving the system of Eq. (11) (the
three-level model) and applying Eq. (13) with |dε|2 val-
ues shown in Fig. 2 (solid red lines) and, alternatively,
with |dε|2 ≈ |dε0 |2 (dotted lines). It can be seen that,
regardless of the calculation method, for each value of
I0 the spectrum consists of a pattern exhibiting the AT

Fig. 5 Calculated photoelectron energy spectra for two-
photon ionization of the hydrogen atom by gaussian laser
pulses of 6 fs duration, 10.203 eV photon energy, and peak
intensities indicated in Fig. 4 by vertical dashed lines. The
spectra in panel (a) are determined by solving the full set of
Eq. (5) with recommended number of states (see the text in
Sect. 2.1), while those in panel (b) are obtained using the
three-level model with exact |dε|2 values (solid red lines)
and with |dε|2 ≈ |dε0 |2 (dashed lines). The weak field value
of the photoelectron energy ε0 = 6.803 eV is marked by
the vertical thin line. The dashed line in panel (a) shows
the shift of the spectral patterns (AT doublets) which is a
slowly increasing function of the laser peak intensity

splitting. An exception is the pattern for the laser peak
intensity corresponding to one Rabi cycle during the
pulse. Namely, the separation between the components
of the AT doublet (the edge peaks) is proportional to
the field strength [2], and in the one-cycle case this sep-
aration is of the same order as the widths of the com-
ponents.
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A notable difference between the spectra shown in
panels (a) and (b) of Fig. 5 is a shift of the AT dou-
blets to higher values of the photoelectron energy that
exists in the former and does not exist in the latter
spectra. The shift increases with the laser peak inten-
sity and can be attributed to the dynamic (AC) Stark
shift that is a consequence of coupling of the ground and
resonant states with nonessential states [7,8]. Since the
last states do not participate in the three-level model,
the AC Stark shift is not included and the AT dou-
blets calculated using such an approximate model are
not shifted.

Another difference between the spectra obtained
using approaches of different degrees of approximation
is in the intensity of the AT doublet components. In
the spectra obtained using the three-level model with
the approximation |dε|2 = |dε0 |2, the edge peaks are
of the same intensity, but in the spectra obtained by
the method of time-dependent amplitudes with a larger
number of states (panel (a)) and those obtained using
the three-level model with exact values for |dε|2, the
right peak is lower than the left one. According to Refs.
[7,8] the AC Stark shift could be an explanation for this
kind of asymmetry, too. Namely, the carrier frequency,
which is resonant for the transition 1s → 2p, is due to
the Stark shift slightly different from the field-free res-
onant frequency ω = 0.375 a.u., and this detuning may
be a reason for the asymmetry [5]. However, our cal-
culations performed within the three-level model with
exact values for |dε|2 reproduce very well the asym-
metry obtained by the full calculations. Therefore, we
conclude that, although the asymmetry in the intensity
of the AT doublet components may be partially caused
by the AC Stark shift, it is primarily due to the change
of the values of matrix elements dεl with the photoelec-
tron energy ε.

4 Summary and conclusions

In this paper we analyzed the shift and asymmetry of
Autler–Townes doublets observed in the photoelectron
energy spectra in the case of two-photon ionization of
the hydrogen atom by intense short laser pulses of the
carrier frequency which is resonant with the transition
1s → 2p. These doublets are a manifestation of the
field induced Rabi flopping of population between the
resonantly coupled 1s and 2p (essential) states, but also
they carry information about other atomic (nonessen-
tial) states and transitions to continuum states. The
spectra were calculated applying the method of time-
dependent amplitudes using two approaches of different
level of approximation. The first approach involves solv-
ing a complete set of equations for amplitudes, which,
apart from the amplitudes of essential and contin-
uum states, also include the amplitudes of non-essential
states. The second approach is the three-level model
that includes only the amplitudes of the two essential
states (1s, 2p) and those of continuum states. Thus, the
AC Stark shift which is a consequence of the coupling

of essential states with non-essential ones, can appear
only in spectra obtained using the first approach, which
was confirmed by the calculations. The asymmetry in
the intensity of the Autler–Townes doublet compo-
nents appears both in the results obtained by the first
approach and in the results obtained using the three-
level model with exact values of the dipole matrix ele-
ments for transitions between the 2p and continuum
states. Thus, we conclude that this asymmetry is pri-
marily a consequence of the decrease in the probability
of transitions between the 2p and continuum states with
increasing photoelectron energy.
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Appendix A: Matrix elements for dipole
transitions

The matrix elements that occur in Eqs. (4), (5) and (8)
are conveniently calculated using the coordinate repre-
sentation for the discrete and continuum energy eigen-
states of the bare atom

|nl〉 → ψnl(r) = Rnl(r)Yl0(Ω), (15)

|εl〉 → ψεl(r) =

√
2
πk

ile−iσl(k)
Fl(η, kr)

r
Yl0(Ω),

(16)

where Rnl(r) and Yl0(Ω) are the radial wave functions
of hydrogen and the spherical harmonics with m = 0,
respectively, whereas σl = arg Γ(l+1+iη) and Fl(η, kr)
are the Coulomb phase shift and the regular Coulomb
functions [15], where η = −1/k and k =

√
2ε (in atomic

units). Then

〈nl|z|n′l′〉 =
∫

ψ∗
nl(r) r cos ϑψn′l′(r) d3r = I

(dis)
nl,n′l′Jll′ ,

(17)
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〈nl|z|εl′〉 =
∫

ψ∗
nl(r) r cos ϑ ψεl′(r) d3r

=

√
2
πk

il
′
e−iσl′ (k)I

(cont)
nl,εl′ Jll′ , (18)

where

I
(dis)
nl,n′l′ =

∫ ∞

0

Rnl(r)Rn′l′(r) r3dr, (19)

I
(cont)
nl,εl′ =

∫ ∞

0

Rnl(r) Fl′(η, kr) r2dr, (20)

Jll′ =
∫

Ω

Yl0(Ω)Yl′0(Ω) cos ϑ dΩ. (21)
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