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Abstract. The propagation characteristics of weakly nonlinear electron acoustic waves in the presence
of nonisothermal (trapped) hot electrons are investigated in collisional plasmas. The dynamics of the
nonlinear waves are found to be governed by Schamel–Burgers and Schamel–Korteweg–de Vries–Burgers-
type equations depending on the strength of the nonisothermal parameter. Burgers’ terms appear due to
the anomalous dissipation introduced by the collisions between cold electrons and immobile ions in the
presence of collective phenomena (plasma current). The derived nonlinear equations are solved analytically
with the help of the Tanh method. The time-dependent computational results well agree with the analytical
results and predict the possibility of the oscillatory and monotonic shock-like structures depending on the
strength of the collisional drag and nonisothermality of hot electrons. The trapped electrons significantly
modify the amplitude and width of the nonlinear pulse. The results may explain the shock formation and
the particle acceleration mechanism in auroral plasma region.

1 Introduction

The electron acoustic waves (EAW) and its nonlin-
ear characteristics have become an interesting topic of
research because of its various applications in space [1–
4] and laboratory plasmas [5–7]. This mode was first
observed by Fried and Gould while solving the linear
electrostatic Vlasov dispersion equation in an unmag-
netized and homogeneous plasma [8]. From the disper-
sion relation, they identified the EAW mode along with
the Langmuir and ion-acoustic waves in the presence
of at least two species of electrons having higher and
lower temperatures. Two-electron-temperature plasmas
are frequently observed in the Earth’s bow shock plan-
etary space [9,10] and polar magnetosphere [2].

The EAW is a relatively low frequency (kVTc �
ω � kVTh) wave [where VTc(h) =

√
Tc(h)/m is the

thermal velocity of the cold (hot) electron, Tc(h) is the
cold (hot) electron temperature and m is the mass of
the electron] and its oscillation time scale ∼ ωpc

−1 is
much larger than that of hot electrons ∼ ωph

−1 (where
ωpc(h) =

√
4πnc(h)0e2/m is the cold (hot) electron

plasma frequency and nc(h)0 is the equilibrium num-
ber density of cold (hot) electrons). Thus for this wave
mode, cold electrons provide the inertia to maintain the
electrostatic oscillations and the restoring force comes
from the hot electron pressure. To avoid the strong
Landau damping for the existence of this mode, one
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needs Tc/Th � 0.1 and nh0/nc0 � 1 [11]. The EAWs
play a potential role in interpreting broadband elec-
trostatic noise (BEN) noticed in various regions of the
earth’s magnetosphere (detected by various satellites
like Viking Fast) [8–10,12–14] and also in geomagnetic
tail [15].

EAW excitations are also found by the Fast Auro-
ral Snapshot (FAST) observations in the intermediate-
altitude (<4000 km) auroral region, [16] and by the
POLAR observations [17] at higher auroral altitudes
(∼ 2RE , where RE is the Earth radius). Interestingly, in
the high-altitude POLAR observations, solitary struc-
tures have been detected in the regions of BEN in the
presence of two-temperature electrons [18]. These waves
are also identified experimentally in the presence of two
types of electron species (hot and cold) [7]. In response
to the relatively large amplitude disturbances, EAWs
become nonlinear and exhibit different coherent non-
linear structures [19–24].

EAWs are often studied by considering the Maxwell–
Boltzmann distributed hot electrons [12,22–24]. How-
ever, various satellite and experimental observations
reveal that the velocity distributions of the plasma par-
ticles deviate from the Maxwell–Boltzmann statistics
due to the presence of nonisothermal particles [25–28].
Several studies on the nonlinear character of various
acoustic modes have been performed incorporating non-
Maxwellian electron distributions [29–32]. Schamel pro-
posed a particular type of distribution function for the
trapped (nonisothermal) particles which follow vortex-
like distribution due to the formation of the phase
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space holes [33–37]. Effects of such trapped particles
on the nonlinear EAWs have been inspected by a few
authors [38,39]. The trapping of electrons connected to
the EAW excitation has also been noted in the labora-
tory during the interactions of plasma with laser and
electron beams [40,41]. Moreover, the FAST satellite
observations imply that particle acceleration in auroral
plasma is caused by the parallel electric field result-
ing from a monotonic potential ramp (double layer or
shock-like) and the drift of the accelerated electrons
across the ramp leads to the formation of electron
phase-space holes [42–45]. Since the presence of two
kinds of electrons (hot and cold) is fairly frequent in
such regions [13,16], these electrons may have signifi-
cant effects on the development of shock-like structures
and particle acceleration process.

Nonetheless, the collisions between plasma particles
can affect the evolution of EAWs substantially. It serves
an important role in plasma transport processes in lab-
oratory and space domains (e.g., at the auroral iono-
sphere altitude collisional process is considerable) [46].
Usually, collisions between two different species give rise
to the Korteweg–de Vries (KdV) equation with a lin-
ear damping term [47]. Moreover, these collisions under
certain physical conditions can also introduce Burg-
ers’ term in the KdV equation that exhibits shock-like
structures [22,48]. Studies on the different kinds of non-
linear plasma waves have been reported in the pres-
ence of various dissipative sources [49–52]. The electron
acoustic shock wave (EASW) has been studied recently
in the presence of Maxwell– Boltzmann distributed hot
electrons [22]. But the possibility of the shock structures
in collisional plasmas has not been investigated yet in
the presence of nonisothermal hot electrons. Thus it
is instructive to investigate the effects of nonisothermal
hot electrons on nonlinear coherent structures of EAWs
in collisional plasmas.

This work aims to investigate the impacts of non-
isothermal electrons on the one dimensional (1D)
weakly nonlinear dynamics of EAWs in weak collisional
plasmas under the assumption that the cold electron-
stationary ion collisional frequency (νc) is smaller than
the cold electron oscillation frequency (ωpc). To incor-
porate the nonisothermality in the plasma, we follow
the original works of Schamel [33–36] for hot electrons.
The presence of nonisothermal electrons introduces two
regimes of physical interests: weak [b ∼ O(

√
ε), b is

the nonisothermal parameter and ε is a parameter
that determines the amplitude of the perturbation] and
strong [b � O(

√
ε)] [33–36]. The reductive pertur-

bation technique (RPT) is used to study the weakly
nonlinear dynamics which shows that in the cases of
weak and strong nonisothermality, the EAW dynamics
are governed by Schamel–Korteweg–de Vries–Burgers
(SKdVB) and Schamel–Burgers (SB)- type equations,
respectively. These two equations are solved analyti-
cally using ‘Tanh method’ [53]. The cold electron-ion
collision is responsible for the Burgers’ term which
indicates the possibility of the shock-like structures of
EAWs. The analytical and computational results pre-

dict the formation of electron acoustic shock struc-
tures due to collisions. The fixed point analysis reveals
that in the case of weak nonisothermality the nonlin-
ear EAW (governed by the SKdVB equation) exhibits
only monotonic shock structures due to the presence of
higher (two) nonlinear terms as confirmed by the time-
dependent numerical investigations.

This paper is organized in the following manner. Sec-
tion 2 contains the physical model and basic equa-
tions. The nonlinear evolution equations are derived in
Sect. 3. Approximate analytical solutions are provided
in Sect. 4. Comments on the linear stability through
fixed point analysis are placed in Sect. 5. Particular
type of shock solutions is found using the Tanh method
in Sect. 6. The computational results and their graphi-
cal representations are discussed in Sect. 7. The results
and their physical implications are briefly summarized
in Sect. 8.

2 The model and basic equations

We consider an unbounded, homogeneous and unmag-
netized plasma which is composed of immobile ions,
cold and nonisothermal hot electrons. The ions are
assumed to form stationary charge neutralizing back-
ground with uniform density (n0). The charge neutral-
ity condition is

nh0 + nc0 = n0, (1)

where nc(h)0 denotes the equilibrium density of cold
(hot) electrons.

In 1D the dynamics of cold electron is governed by
the continuity equation,

∂nc

∂t
+

∂(ncuc)
∂x

= 0, (2)

and the momentum equation,

mnc

(
∂uc

∂t
+ uc

∂uc

∂x

)
= −nceE − mncνcuc, (3)

where e is the magnitude of the electronic charge, nc

is the density of cold electrons, uc is the cold electron
fluid velocity along the x-direction, νc is the collision
frequency between cold electrons and stationary back-
ground ions (large mass) and E is the electric field in the
x− direction. All the variables are assumed to depend
on single space coordinate x and time t. It is assumed
that Tc � Th, so we can neglect the pressure term in
the momentum equation [Eq. (3)]. Also, the collisions
between cold electrons and stationary ions give rise to
a dissipative force −mncνcuc in the right-hand side of
momentum equation (3).
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For closure of the plasma system, we consider the
equations for E from Maxwell’s equations,

∂E

∂x
= 4πe(n0 − nc − nh);

∂E

∂t
= 4πencuc. (4)

Here nh is the density of hot electrons. Since the EAWs
are related to the parallel electric field (E‖) fluctuations
[11], ∇ × E = 0. It implies that the mode is purely elec-
trostatic and there is no inherent magnetic field so that
∇ × B = 0. In such context, the displacement current
(∂E/∂t) balances the particle current (encuc) which is
reflected by the second equation of Eq. (4). Further-
more, since hot electrons are Schamel distributed, they
do not have directed resultant velocity to contribute to
the current and therefore, the current is carried only
by the cold electron species [54]. Using Eq. (4) with
E = −∂ϕ/∂x (ϕ is the electrostatic potential), Eq. (3)
gives

(
∂

∂t
+ uc

∂

∂x

)
uc =

e

m

∂ϕ

∂x
+

νc

4πenc

∂

∂t

(
∂ϕ

∂x

)
. (5)

To investigate the dynamics of nonlinear EAW, we
consider the dimensionless variables as: x̂ = x/λD

(where λD=
√

Th/4πnc0e2 is the plasma Debye length),
t̂ = ωpct, n̂c = nc/nc0, n̂h = nh/nh0, φ̂ = eϕ/Th and
ûc = uc/vth. Hereafter, we remove the notation hat
from the variables for simplicity and work with the nor-
malized variables. Thus in normalized forms, the con-
tinuity and momentum equations [Eqs. (2), (3)] can be
expressed as

∂nc

∂t
+

∂(ncuc)
∂x

= 0, (6)

∂uc

∂t
+ uc

∂uc

∂x
=

∂φ

∂x
+

ν̄c

nc

∂

∂t

(
∂φ

∂x

)
, ν̄c =

νc

ωpc
. (7)

The Poisson’s equation [first equation in Eq. (4)] then
becomes

∂2φ

∂x2
=

1
α

nh + nc −
(

n0

nc0

)
, α =

nc0

nh0
. (8)

Here α < 1 as it is necessary condition for the existence
of the EAW. Due to the nonisothermality of hot elec-
trons, the density of hot electrons can be assumed as
[34,36]

nh = 1 + φ − bφ3/2 +
φ2

2
+ · · · , b =

4(1 − β)
3
√

π
,

β =
Th

Tht
, (9)

where Tht is the temperature of the trapped hot elec-
trons. The parameter β is a measure of the energy ratio
of the free to trapped hot electrons, known as a trapping
parameter, signifying a vortex distribution (hole in a
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Fig. 1 Linear dispersion curves: Dependencies of a real
(ωr) and b imaginary (ωi) parts of the frequency with
wavenumber k for ν̄c = 0.2. (1) Blue dashed curve (α = 0.2),
(2) Red dashed-dotted curve (α = 0.5), (3) Green solid
curve (α = 0.8)

phase-space) for β < 0, a flat top distribution for β = 0
and Maxwellian distribution for β = 1 [34,36]. Here, we
are interested in both the regimes where b is relatively
small (β ∈ [0, 1]) and large (β < 0), respectively. Phys-
ically, the large values of b for β < 0 indicate the large
number of trapped electrons in the plasma system.

Linearizing the equations [Eqs. (6)–(8)] in a homoge-
neous background and assuming that all the perturbed
variables vary as exp[i(kx − ωt)], we derive the disper-
sion relation as

ω2 =
αk2

1 + αk2
− i

ν̄cαωk3

1 + αk2
, (10)

where ω(≡ ω/ωpc) and k(≡ kλD) are normalized fre-
quency and the wave number of the disturbances,
respectively. In the presence of dissipation, we assume
ω = ωr(k) + iωi(k) (where ωr and ωi are the real and
imaginary parts of ω, respectively with | ωi |�| ωr |)
and obtain the roots of the dispersion relation (10) as

ωr = ±
√

αk2

1 + αk2
− ω2

i , ωi = − ν̄cαk3

2(1 + αk2)
. (11)

This clearly shows that the EAW is damped due to
collisions. The variations of ωr and ωi with k are pro-
vided in Fig. 1. The curves in this figure show that the
damping rate increases with the increase in α (cold to
hot density ratio). In the proceeding sections, it will be
shown that this dissipation provides weak shock struc-
ture in the nonlinear regime.

3 Derivation of nonlinear evolution
equations

To derive the nonlinear transport equation for EAWs
in the presence of nonisothermal electrons, we consider
two physically relevant cases: the nonisothermal param-
eter b is (i) small and (ii) relatively large. Here to inves-
tigate the weakly nonlinear dynamics of EAW in colli-
sional nonisothermal plasmas, we employ the RPT [55]
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and introduce the following stretched coordinates;

ξ = εp(x − λt), τ = ε3pt. (12)

where λ is the phase velocity of the EAW normalized
in unit of VTh and ε is the dimensionless (small but
nonzero) parameter characterizing the strength of the
nonlinearity. The dependent variables are expanded as

h = h0 + εh1 +
∞∑

j=1

ε2p+jhj+1, (13)

where h0 = 1 for h = nc and h0 = 0 for h = uc and φ.
To incorporate the weak (νc < ωpc) collisional effects in
the nonlinear regime, we consider the following consis-
tent scaling:

ν̄c =
νc

ωpc
∼ νεp. (14)

The values of p ∈ (0, 1) depend on the strength of the
nonisothermal parameter b.

3.1 Weak nonisothermality (b ∼ O(
√

ε))

In this case of weak nonisothermality, we take p = 1/2.
With this value of p, we substitute Eqs. (12), (13) and
(14) into Eqs. (6)–(9) and the continuity, momentum
and Poisson’s equations, respectively, become

ε3/2

[
−λ

∂nc1

∂ξ
+

∂uc1

∂ξ

]
+ ε5/2

[
∂nc1

∂τ
− λ

∂nc2

∂ξ

+
∂uc2

∂ξ
+

∂(nc1uc1)
∂ξ

]

+ h.o.t = 0,

ε3/2

[
−λ

∂uc1

∂ξ
− ∂φ1

∂ξ

]
+ ε5/2

[
∂uc1

∂τ
+ uc1

∂uc1

∂ξ

−λ
∂uc2

∂ξ
− ∂φ2

∂ξ
+ νλ

∂2φ1

∂ξ2

]

+ h.o.t = 0,

ε

[

αnc1 + φ1

]

+ ε2

[

α
∂2φ1

∂ξ2
− φ2 − φ2

1

2

+bφ1
3/2 − αnc2

]

+ h.o.t = 0. (15)

Here h.o.t. means higher-order terms. Collecting the
coefficients of lowest powers of ε, we get

αnc1 + φ1 = 0, uc1 − λnc1 = 0, λuc1 + φ1 = 0. (16)

These equations self-consistently determine the phase
velocity of the EAWs [11]:

λ2 = α ⇒ ω/k =
√

nc0Th

nh0m
(dimensional form). (17)

In the next higher order of ε, we eliminate all the sec-
ond order terms in Eq. (15) with the help of first order
relations (16) and after some algebraic manipulations,
we get the following SKdVB equation,

∂φ1

∂τ
− α2φ1

∂φ1

∂ξ
+ α1

√
φ1

∂φ1

∂ξ
+ l

∂3φ1

∂ξ3
= μ

∂2φ1

∂ξ2
,

(18)

where,

α2 =
√

α

2

(
1 +

3
α

)
, α1 =

3b
√

α

4
, l =

α3/2

2
, μ =

αν

2
.

(19)

Here the coefficient of the Burgers’ term μ (∝ ν) arises
due to the collision between cold electrons and station-
ary ions. In the above Eq. (18), if we put b = 0 (β = 1)
to represent the Maxwellian hot electrons, we recover
the KdVB equation for EAW [22].

3.2 Strong nonisothermality (b � O(
√

ε))

In this case of strong nonisothermality, we take p = 1/4.
With this value of p, proceeding as before, from the
basic equations [Eqs. (6)–(9)] we obtain

ε3/2

[
−λ

∂nc1

∂ξ
+

∂uc1

∂ξ

]
+ ε5/2

[
∂nc1

∂τ
− λ

∂nc2

∂ξ

+
∂uc2

∂ξ

]

+ h.o.t = 0.

ε3/2

[
−λ

∂uc1

∂ξ
− ∂φ1

∂ξ

]
+ ε5/2

[
∂uc1

∂τ
− λ

∂uc2

∂ξ

−∂φ2

∂ξ
+ νλ

∂2φ1

∂ξ2

]

+ h.o.t = 0.

ε

[

αnc1 + φ1

]

+ ε2

[

α
∂2φ1

∂ξ2
− φ2 + bφ1

3/2

−αnc2

]

+ h.o.t = 0. (20)

The lowest order of ε gives the same set of equations
[Eq. (16)], which determines the value of λ given in Eq.
(17). Once again we eliminate all the second order terms
from equations (20) for next leading order to obtain
the following SB equation for finite amplitude nonlinear
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EAWs in collisional nonisothermal plasmas;

∂φ1

∂τ
+ α1

√
φ1

∂φ1

∂ξ
+ l

∂3φ1

∂ξ3
= μ

∂2φ1

∂ξ2
. (21)

4 Approximate solitary wave solution:
decay of a solitary wave

Here we derive the stationary frame analytical solutions
of Eqs. (18) and (21). To do this, we introduce the sta-
tionary frame χ = ufτ −ξ, where uf is the frame veloc-
ity related to the Mach number M by the general rela-
tion [using Eq. (12)]

M = 1 + ε2p ũf

cs
, (22)

where ũf is the unnormalized frame velocity and cs =
(αTh/m)1/2 is the EAW speed. Here p = 1/2 and 1/4,
respectively, for Eqs. (18) and (21).

It is well known that in the absence of collision
μ = 0 (νc = 0), Eq. (18) reduces to the following SKdV
equation [33]

∂φ1

∂τ
− α2φ1

∂φ1

∂ξ
+ α1

√
φ1

∂φ1

∂ξ
+ l

∂3φ1

∂ξ3
= 0, (23)

which is exactly integrable and possesses the solitary
wave solution [33]

φ1 = Ψ
sech 4(wχ)

[1 − δ tanh2(wχ)]2
, w =

1
4

√
uf

l
=

1
4

√
2uf

α3/2
,

(24)

where w is the inverse of the width of the solitary wave.
The amplitude Ψ and the parameter δ are given by

Ψ =
[

15uf

4α1(1 +
√

Δ)

]2

, δ =
16α2

1(1 − √
Δ)2

75α2uf
,Δ

= 1 − Δc, (25)

where Δc = 75α2uf/(16α2
1). It is to be noted that for

the real solution, we must have

1 < Δc ⇒ uf <
16α2

1

75α2
⇒ M < 1 +

6εb2

25

(
α

3
2

3 + α

)
, (26)

so that the EA solitary wave propagate with a restricted
speed.

Moreover, in the absence of α2 (α2 = 0 = δ), Eq.
(21) reduces to the following Schamel equation [33]

∂φ1

∂τ
+ α1

√
φ1

∂φ1

∂ξ
+ l

∂3φ1

∂ξ3
= 0 (27)

and the solitary wave solution of this equation is recov-
ered in the limit α2 → 0 (δ → 0) as

φ1 = Ψs sech 4(wχ), Ψs =
1
4

(
15uf

4α1

)2

. (28)

Interestingly, in this case there is no restriction on uf

and the EA solitary waves propagate with arbitrary
speed.

In the presence of the dissipation (μ �= 0), the wave
energy of both the equations [Eqs. (18) and (21)]

1
2

∂

∂τ

∫ ∞

−∞
φ2
1dξ = −μ

∫ ∞

−∞

(
∂φ1

∂ξ

)2

dξ (29)

is not conserved, and thereby, Eqs. (18) and (21) are not
exactly integrable. However, we can derive an approxi-
mated analytical solution in the presence of weak dissi-
pation (μ � 1) using perturbation method [56,57] and
assume that the solitary wave amplitude, velocity and
also the width of the solitary wave is slowly varying
function of time (τ).

First we consider the SKdVB equation [Eq. (18)] and
assume the solitary wave solution of the form

φ1 = Ψ(τ)
sech 4{w(τ)(

∫ τ

0
uf (τ ′)dτ ′ − ξ)}

[1 − δ tanh2{w(τ)(
∫ τ

0
uf (τ ′)dτ ′ − ξ)}]2

. (30)

Substituting this solution in the energy conservation
Eq. (29), we obtain the following differential equation;

dg(τ)
dτ

= −μs(τ), (31)

where the functions g(τ) and s(τ) are given by

g(τ) =
Ψ2(τ)
w(τ)

(
16
35

+
64δ

315

)
,

s(τ) = w(τ)Ψ2(τ)(1 − δ)2
(

512
315

+
1024δ

385

)
. (32)

Unfortunately the differential equation (31) is too rig-
orous to solve analytically. Numerical solution of this
equation provided in Fig. 2a, shows that the nonlinear
wave amplitude decreases with time because of the dis-
sipative factor μ (∝ ν). To illustrate this phenomenon
more precisely, we represent the solution [Eq. (30)] for
μ = 0.2 graphically in Fig. 2c which clearly show the
decay of the solitary wave amplitude with time.

Next we consider the SB equation [Eq. (21)]. We
have already seen that in the absence of dissipation,
the solution of this equation is obtained by substitut-
ing α2 = 0 (δ = 0) in the solution of SKdV equation
[see Eqs. (24) and (28)] and thereby the energy equa-
tion (31) for the SB equation can be written as [putting
δ = 0 in Eq. (32)]

dΨs(τ)
dτ

= −ΥΨ3/2
s (τ), Υ =

16νb

315
. (33)
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Fig. 2 a, b Variations of soliton amplitudes ψ(τ) with time
τ . c, d Time evolution of soliton profiles φ1(τ) for ν = 0.2.
a and c b ∼ O(

√
ε), β = 0.15, α = 0.9. b and d b > O(

√
ε),

β = −0.1, α = 0.8. a and b (1) Blue dashed curve (ν =
0.2), (2) Red solid curve (ν = 0.3), (3) Green dotted curve
(ν = 0.4). c: (1) Blue dashed curve (τ = 0), (2) Red dashed-
dotted curve (τ = 350), (3) Green solid curve (τ = 800). d
(1) Blue dashed curve (τ = 0), (2) Red dashed-dotted curve
(τ = 50), (3) Green solid curve (τ = 100)

The solution of this equation is obtained as

Ψs(τ) = Ψ0

(
1 +

Υ
√

Ψ0

2
τ

)−2

, (34)

where Ψ0 is the initial value of Ψs. This solution clearly
shows that the nonlinear wave amplitude decays alge-
braically with time τ and decay rate increases with the
increase in nonisothermality parameter b and collision
(see Fig. 2b). The solitary profiles presented in Fig. 2d
agree with our result.

5 Linear stability analysis: fixed point
analysis

In this section, we present a fixed point analysis to
study the linear stability of these two equations in the
χ frame. Here, we first consider the SKdVB equation
[Eq. (18); b ∼ O(

√
ε)] which in the χ frame transform

to the following ordinary differential equation

− uf
dφ1

dχ
+ α1

√
φ1

dφ1

dχ
− α2φ1

dφ1

dχ
+ l

d3φ1

dχ3
+ μ

d2φ1

dχ2
= 0.

(35)

]
The above equation after single integration (using the

boundary conditions φ1 → 0; dφ1
dχ

→ 0; d2φ1
dχ2 → 0 as |χ| →

∞) becomes as follows:

d2φ1

dχ2
=

2uf

α
√

α
φ1 − b

α
φ
3/2
1 +

(1 + 3
α
)

2α
φ2
1 − ν√

α

dφ1

dχ
.

(36)

According to the theory of ordinary differential equation,
this Eq. (36) has two fixed points: (0, 0) and (φ∗, 0), where
φ∗2 = φ1. The second fixed point φ∗ is obtained from the
relation

2uf

α
√

α
− b

α
φ∗ +

(1 + 3
α
)

2α
φ∗2

= 0. (37)

This relation yields

φ∗ = φ∗
± =

(
1 +

3

α

)−1
⎡
⎣b ±

√
b2 − 4uf

(
1 + 3

α

)
√

α

⎤
⎦ .

(38)

Using Eq. (22) [with p = 1/2], the reality condition of the
solution yields

uf <
b2α3/2

4(α + 3)
⇒ M < 1 +

εb2

4

(
α

3 + α

)
. (39)

This fixed point is always positive. However, for
Maxwellian distributed hot electrons (b = 0), Eq. (38) shows
that second fixed point (φ1 = φ∗2) is always negative [22].
Also using the reality condition [Eq. (39)] and expanding
Eq. (38) binomially, we obtain

φ∗
+ ≈ 2b

(
1 +

3

α

)−1

, φ∗
− ≈ 2uf

b
√

α
. (40)

To study the nature of the fixed points (0, 0) and (φ∗, 0),
we linearize Eq.(36) (assuming that the dynamical variables
∼ exp(Λχ), Λ is the eigenvalue) [58] about these fixed points
and determine the corresponding eigenvalues. The eigenval-
ues corresponding to (0, 0) are given by

Λ(0, 0) =
1

2
√

α

[
−ν ±

√
ν2 +

8uf√
α

]

=
1

2
√

εα

[
−ν̄c ±

√
ν̄2

c + 8(M − 1)
]
. (41)

This clearly shows that the fixed point (0, 0) is a saddle
point as M > 1 [Eq. (22) with p = 1/2]. The eigenvalues
corresponding to (φ∗, 0) are given by

Λ(φ∗, 0) =
1

2
√

α

[
−ν ±

√
ν2 − 8uf√

α
+ 2bφ∗

]
. (42)
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The stability criteria of the fixed point (φ∗, 0) at the
upstream side (χ → −∞) require

Λ(φ∗, 0) > 0 ⇒ bφ∗ <
4uf√

α
. (43)

One can easily observe that the approximated value of φ∗
+

root [Eq. (40)] does not satisfy this stability criteria due
to the reality condition [Eq. (39)]. However, the stability
condition is obvious for the φ∗

− root. Thus the fixed point
(φ∗

−, 0) is a stable node and we get only the monotonic
shock-like structures as the stable node corresponds to the
monotonic shock. Interestingly for the Maxwellian case (b =
0) such restriction does not appear [22]. The strength of the
shock is given as [58] φ1(−∞) − φ1(∞) = φ∗

−
2.

Next we consider the SB equation [Eq. (21); b � O(
√

ε)],
which in the χ frame transform to the following ordinary
nonlinear differential equation,

− uf
dφ1

dχ
+ α1

√
φ1

dφ1

dχ
+ l

d3φ1

dχ3
+ μ

d2φ1

dχ2
= 0. (44)

After single integration (with localized boundary condi-
tions), above equation becomes

d2φ1

dχ2
=

2uf

α
√

α
φ1 − b

α
φ
3/2
1 − ν√

α

dφ1

dχ
. (45)

As before, this equation has two fixed points (0, 0) and
(φ∗2, 0), where

φ∗ =
2uf

b
√

α
=

2(M − 1)

b
√

ε
. (46)

The corresponding eigenvalues are, respectively,

Λ(0, 0) =
1

2
√

α
√

ε

[
−ν̄c ±

√
ν̄2

c + 8(M − 1)
]
, (47)

Λ(φ∗, 0) =
1

2
√

α
√

ε

[
−ν̄c ±

√
ν̄2

c − 4(M − 1)
]
. (48)

These clearly reveal that the fixed point (0, 0) is a saddle
point [M > 1 according to Eq. (22) with p = 1/4], whereas
the fixed point (φ∗2, 0) is a stable focus or stable node
according as

1 +
ν̄2

c

4
≶ M. (49)

In case of stable focus (node), the solution provides a oscil-
latory (monotonic) shock-like structures and the strength
of the shock is given as [58] φ1(−∞) − φ1(∞) = 4u2

f/(αb2).
The trajectories and phase-space dynamics of a small dis-
turbances around these fixed points are shown graphically
in Fig. 3a–d, which validate the existence of shock solutions
[60].

1
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Fig. 3 Shock-like structure formation (a), (b) due to tran-
sition from unstable to stable fixed points and corresponding
phase-portraits (c), (d). a, c b ≈ √

ε with β = 0.1, α = 0.6,
ν = 0.1, uf = 0.01, b, d b >>

√
ε with β = −0.2, α = 0.2,

ν = 0.4, uf = 0.5

6 Particular type of shock solutions

In the previous sections, we have seen that the derived SB
and SKdVB equations [Eqs. (18) and (21)] are not exactly
solvable in the presence of Burgers’ term due to collision.
However, the linear stability analysis predicts the possibil-
ity of shock solutions of both the equations [Eqs. (18) and
(21)]. Thus in this section, one can find a particular type of
analytical shock solutions of these equations by employing
the well-known Tanh method [53]. Accordingly, we introduce
a stationary wave profile φ1(ξ, τ) = φ1(χ) and transform
these equations [Eqs. (18) and (21)] in the wave frame χ.
First we have taken Eq. (18) which corresponds to Eq. (35)
in the χ frame and following the standard procedure [53],
the particular analytical solution of Eq. (18) can be obtained
as (see “Appendix”)

φ1(ξ, τ) =
Φ

4
[1 − tanh (c (ufτ − ξ))]2 . (50)

The expressions for Φ, and c are given by,

Φ =

(
1 +

3

α

)−2
⎡
⎣b −

√
b2 − 4uf

(
1 + 3

α

)
√

α

⎤
⎦

2

;

c =
1

10

[√
3b2

α + 3
+

ν√
α

]
. (51)

In the absence of trapped electrons (b = 0 ⇒ α1 = 0),
Eq.(18) reduces to the well known KdV-Burgers equation
[58] and its particular type of analytical solution can be
easily be recovered from our solution given in Eq.(51) by
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putting b = 0 {similar to the solutions (14) and (15) in Ref.
[53]}. Also the value of the amplitude Φ is consistent with
our fixed point φ∗

−
2 [Eq. (38)].

Next, we consider SB equation [Eq. (21); b � O(
√

ε)]
which in the χ frame transform to Eq. (44). Proceeding as
before the particular analytical solution of Eq. (21) can be
obtained as (see “Appendix”)

φ1(χ) = Φs

[
1 − tanh(cχ)

2

]4

, (52)

where

Φs =

(
2uf

b
√

α

)2

, c =
ν

18
√

α
. (53)

This value of Φs is also consistent with the fixed point φ∗2

[Eq. (46)].

7 Computational results

To demonstrate the nature of the shock-structures, in this
section, we solve SKdVB [Eq. (18)] and SB [Eq. (21)] equa-
tions numerically using the finite difference scheme and the
results are shown graphically in Figs. 4 and 5. For this pur-
pose, we consider the following step-like wave form as initial
input [22]

φ(ξ, 0) =

⎧⎨
⎩

A if ξ < 0
A
2

(1 + cos(kξ)) if 0 < ξ < π/k
0 if ξ > π/k.

(54)

Here, A and k are the initial amplitude and wave num-
ber, respectively. The value of k determines the tempo-
ral evolution for fixed value of A. Eqs. (18) and (21) are
solved within [−L, L] with the above initial condition and
the boundary conditions: φ(−L, τ) = A, φ(L, τ) = 0 and
φξ(−L, τ) = 0 = φξ(L, τ). In our computation we have set
L = 60, A = 0.1 and k = π/20, with the density ratio
α = 0.2.

We investigate two different cases separately. In case of
b ≈ O(

√
ε), only monotonic shock is observed from Eq.

(18) irrespective of any ν values (see Fig. 4a, b) which well
agree with the results of fixed point analysis in the previous
section. It is to be noted that in case of Maxwellian hot
electrons (b = 0), one can recover the previous results [22]
using same initial conditions (54) except A is negative (as
discussed in Sect. 5.) (also see Fig. 4c, d). Here the observed
electron acoustic shocks are rarefaction shocks as φ1 > 0 ⇒
nc1 < 0 [see Eq. (16)].

On the other hand, for b >> O(
√

ε), we observe the
oscillatory and monotonic shocks for the weak dissipation
(ν = 0.1) and the strong dissipation (ν = 1), respectively.
In Fig. 5, we present the development of shock structures at
evolved times, corresponding to Eq. (21). In the upper panel,
Fig. 5a, b displays the evolution of initial profile as oscilla-
tory shocks for weak dissipation, respectively, for β = −0.3
and β = −0.1. However, Fig. 5c [β = −0.3] and d [β = −0.1]

0
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-60 -40 -20 0 20 40 60 -50 0 50
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-0.05

0

(a) (b)

(d)(c)

Fig. 4 Numerical solution of Eq. (18) for α = 0.2. Blue
dashed curves (1) in all figures correspond to initial profile
at τ = 0. Upper panel: Nonisothermal case for β = 0.2 (a),
(b). a Monotonic shock structure for ν = 0.1 and b ν = 1.
Curve (1): τ = 0 [blue dashed], Curve (2): τ = 15 [solid red],
Curve (3): τ = 30 [dotted green]. Lower panel: Maxwellian
case with β = 1 (c), (d). c Oscillatory shock structure for
ν = 0.1 and τ = 20 [Red solid Curve (2)]. d Monotonic
shock structure for ν = 1 and τ = 20 [Red solid Curve (2)]

of lower panel shows the development of monotonic shock
for stronger dissipation. The transition from the upstream
to the far downstream state changes from a oscillatory to
monotonic nature, as the magnitude of the dissipation coeffi-
cient ν increases. Thus our numerical investigations confirm
the existence of shock-like structures in both cases.

It is to be noted that for the Burgers-type equations shock
amplitude (shock strength) remains unaffected by dissipa-
tion while shock width gets modified by it [58,60]. Accord-
ingly, with the increase in dissipation the shock becomes
steep and the oscillatory to monotonic shock transition
occurs [58,60]. The fixed point analysis, analytical solutions
and also the computational results confirm these physical
phenomena.

8 Discussions

In the present work, we have shown that the dissipation due
to the collisions between the electron-stationary ion through
the collective phenomena (plasma current) causes the EA
shock structures in plasmas in the presence of nonisother-
mal hot electrons. This collisional dissipation leads to the
Burgers’ term in the nonlinear evolution equation, which is
responsible for the shock and plays a similar role as vis-
cosity. Depending on the strength of the nonisothermality,
the transport phenomena of nonlinear EAW is described
through the SKdVB and SB equations [Eqs. (18) and (21)].
The approximate analytic solutions of these equations show

123



Eur. Phys. J. D (2022) 76 :217 Page 9 of 11 217

0

0.05

0.1

0

0.02

0.04

0.06

0.08

0.1

0

0.05

0.1

1

-60 -40 -20 0 20 40 60

-60 -40 -20 0 20 40 60

-60 -40 -20 0 20 40 60

-60 -40 -20 0 20 40 60
0

0.02

0.04

0.06

0.08

0.1

1

(a) (b)

(d)(c)

Fig. 5 Numerical solution of Eq. (21) for α = 0.2. Blue
dashed curves (1) in all figures correspond to initial profile
at τ = 0. Upper panel (a), (b) Oscillatory shock structures
for weak collisional effect (ν = 0.1) a Oscillatory shock for
β = −0.3 at τ = 200 [red solid curve (2)], b oscillatory shock
for β = −0.1 at τ = 230 [red solid curve (2)]. Lower panel
(c), (d) Monotonic shock structures for stronger collisional
effect (ν = 1) c Monotonic shock for β = −0.3 at τ = 200
[red solid curve (2)], b monotonic shock for β = −0.1 at
τ = 230 [red solid curve (2)]

that an initial solitary wave structure decays with time as
shown in Eqs. (31) and (34) (also see Fig. 2). Physically, this
decay is associated with development of a noise tail in conse-
quence of soliton mass conservation and finally forms shock
structures [56]. Because of this fact, the evolution equations
are also solved analytically using ‘Tanh method’.

The time-dependent numerical and fixed point analysis
of the SKdVB equation [Eq. (18)] reveal only the mono-
tonic shock structures of nonlinear EAWs irrespective of the
values of collision frequency (ν), whereas the SB equation
[Eq. (21)] demonstrates both the oscillatory and monotonic
shock structures depending on the values of ν. In contrast to
the Maxwell–Boltzmann distributed hot electrons (see Ref.
[22] where shocks are compression shocks), in the presence
of nonisothermal hot electrons, the shocks are found to be
rarefaction shocks in our work (see Figs. 4, 5).

The existence of EAWs and electrostatic shock-like struc-
tures in the presence of hot and cold electron populations
have been observed in the auroral ionosphere and polar mag-
netosphere [1,2,13,42]. Therefore, the results of the present
investigation could be useful to qualitatively explain the ori-
gin of shock waves in such regions. Satellite observations
confirm that the double layers or shock-like coherent struc-
tures self consistently generate E|| which is responsible for
the particle acceleration in auroral plasmas [42–45]. Further-
more, hot electrons often get trapped in the wave potential
and follow a vortex-like nonisothermal distribution (non-
Maxwellian) due to the formation of phase space holes [33].
These trapped electrons (nonisothermal) play a crucial role
to govern the spatial distribution of the auroral potential

[44]. The results of the present investigation could be useful
for the understanding the physics of shock wave in the auro-
ral plasma region. Moreover, the electrons are energized due
to the passing of the shock wave, which initiates the parti-
cle acceleration mechanism in the auroral region. Thus the
results presented here could be a viable physical process
for the shock wave and particle acceleration in the auroral
region.

The analytical solutions of both the equations
[SKdVB Eq. (18) and SB Eq. (21)] show that the peak
value of E|| ∼ Φ(Φs)c. The plasma parameters in the auro-
ral region are [13]: nc0 ∼ 0.5 cm−3, nh0 ∼ 2.5 cm−3 and
Th ∼ 250 eV, implying λD ∼ 166 m. For α = 0.4 and
ν = 0.4 values, the solution [Eq. (51)] of the SKdVB equa-
tion with β = 0.7 (b ∼ 0.2) and uf = 0.02 estimates
c−1 ∼ 12 and E|| ∼ 2 mV/m, whereas the solution [Eq. (53)]
of the SB equation with β = −0.1 (b ∼ 0.8) and uf = 0.4
estimates c−1 ∼ 28 and E|| ∼ 123 mV/m. These peak val-
ues of E|| well agree with the observed values by the Viking
satellite [12]. This E|| field generates a strong current across
the potential ramp due to the drifting of accelerated elec-
trons and a strong current can self consistently generate a
magnetic field. The effects of the electron drift and also the
magnetic field on nonlinear EAWs in the presence of trapped
hot electrons are our future interest of investigation.
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Appendix A: Derivations of the analytical
shock solutions

In Eq. (35), we put φ1(χ) = f2
1 (Y ) [where Y = tanh(cχ)

and c−1 is the characteristic width of the solution] to
eliminate the square root term and substituting this,
we obtain

123



217 Page 10 of 11 Eur. Phys. J. D (2022) 76 :217

μc

[
(1 − Y 2)

d

dY

[
2(1 − Y 2)f1

df1

dY

]]

= 2
(
uf − α1f1 + α2f2

1
)
(1 − Y 2)f1

df1

dY

+lc2(1 − Y 2)
d

dY

[
(1 − Y 2)

d

dY

[
2(1 − Y 2)f1

df1

dY

]]
.

(A.1)

Following the standard procedure [53], f1(Y ) is
expressed as the power series of Y as

f1(Y ) =
N∑

n=0

anY n. (A.2)

Substituting this expansion in (A.1) and then balanc-
ing the highest powers (the second and fourth terms in
right-hand side), we obtain N = 1. Finally, we assume
the solution of Eq. (35) of the form

φ1(χ) = Φ

[
1 − tanh(cχ)

2

]2

. (A.3)

Putting this solution into the ODE [Eq. (35)] and equat-
ing the coefficients of like powers of tanh(cχ), we obtain
the system of simultaneous homogeneous equations as

⎡

⎢
⎢⎢⎢⎢
⎣

1 2 1 −1 1
1 8 −2 −2 3
1 8 4 0 −2
1 20 −2 −2 2
0 6 3 1 −3
0 −12 0 0 1

⎤

⎥
⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

uf

lc2

μc√
Φ

2α1
Φ

4α2

⎤

⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

0
0
0
0
0

⎤

⎥⎥⎥
⎦

. (A.4)

After some elementary matrix operations, we obtain the
following system of equations

uf =
2

√
Φα1

3
− Φα2

2
, lc2 =

Φα2

48
,

μc = −
√

Φα1

6
+

5
24

Φα2. (A.5)

The last two equations are independent of uf , and
therefore, solving the first equation, we obtain

√
Φ± =

2α1

3α2
±

√(
2α1

3α2

)2

− 2uf

α2
. (A.6)

However, only the Φ− root yields the physically consis-
tent solution (see Sect. 5) and thereby we consider only
the root Φ− as

√
Φ =

(
1 +

3
α

)−1
⎡

⎣b −
√

b2 − 4uf

(
1 + 3

α

)

√
α

⎤

⎦ . (A.7)

This result well agree with our fixed point analysis
of the SKdVB equation Eq.(18). Finally, the last two
equations of Eq. (A.5) yields

c =
μ

10l
± α1√

75α2l
. (A.8)

This clearly shows in case of − sign, the c−1 (width)
becomes infinite at a critical value of μ, which is unphys-
ical, and therefore, we consider

c =
[

α1√
75α2l

+
μ

10l

]
=

1
10

[√
3b2

α + 3
+

ν√
α

]

. (A.9)

Similarly, for SB equation [Eq. (21); b � O(
√

ε)], pro-
ceeding as before, we determine N = 2 and the solution
is then assumed as

φ1(χ) = Φs

[
1 − tanh(cχ)

2

]4

, (A.10)

Substituting Eq. (A.10) into Eq. (44) and then equat-
ing the coefficients of different powers of tanh(cχ), we
obtain the system of equations as

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

4 −16 12 −1
−12 −72 −16 5

8 208 −36 −9
8 88 64 5

−12 −432 4 5
4 104 48 −9
0 240 20 5
0 −120 0 −1

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢
⎣

uf

lc2

μc√
Φ

2α1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

0
0
0
0
0
0
0
0

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

(A.11)

Again after some elementary matrix operations, we
obtain the following system of equations,

4uf − 16lc2 − 12μc − α1

√
Φs = 0,

−120lc2 − α1

√
Φs = 0, 20μc + 3α1

√
Φs = 0.

(A.12)

From these equations, we obtain

√
Φs =

2uf

b
√

α
, c =

ν

18
√

α
. (A.13)

These results are also well agree with our fixed point
analysis of SB equation [Eq. (21)].
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