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Abstract. The main physical premises of the quantum Zeno effect in the problem of stopping the sponta-
neous radiative decay of excited atoms and nuclei are considered. It is shown for the first time that such an
effect can be realized only for low-frequency radiative transitions (not higher than the microwave range),
which correspond to the selective interaction of a quantum system with one or several discretely arranged
modes of a quantized electromagnetic field in the volume of experimental setups. It is shown that this
process occurs at the initial stage of the reversible Rabi precession and is formally unrelated to the true
irreversible spontaneous decay. It is also shown that the effect of deceleration of radiative decay in the case
of a quasi-continuous distribution of field modes is fundamentally impossible, which explains its absence for
quantum sources of visible and shorter-wavelength radiation. In this case, the law of spontaneous radiative
decay both at the beginning of the process and after a long time is described by the same standard expo-
nential law. It has been shown for the first time that the quantum Zeno effect and stopping of spontaneous
decay are possible in the infrared and visible ranges, provided that there are controlled sources inside the
optical microresonators. These results can be used to create high-performance microlasers and to create
optical systems for storing and processing information.

1 Introduction

Among the unique effects of modern physics, one of
the most surprising is the quantum Zeno effect (QZE),
which consists in the possibility of a very significant
inhibition of spontaneous decay and related quantum
phenomena with frequent nondestructive control of the
initial excited state of a quantum system. The QZE was
theoretically substantiated in 1977 in [1], and the idea
of the possibility of such a process was proposed in [2].

This effect has been confirmed in many experiments
on the control of the probability of radiative transi-
tions between nearest atomic levels. In particular, it
was observed in the system of energy levels formed dur-
ing hyperfine splitting of the ground state of Be+ ions
[3]. The frequency of the transition between these levels
corresponded to the microwave range. Similar parame-
ters (frequency 6.8- GHz) corresponded to experiments
[4] on the control of the lifetime of excited rubidium
atoms that make up a Bose–Einstein condensate.

It is very important that in these and other successful
experiments this effect was observed only in systems
whose radiative transition frequency corresponded to
the microwave range [5–11]. All attempts to realize the
QZE in systems with a significantly higher radiation
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frequency (IR, visible and UV ranges, X-ray, gamma
radiation) have not been successful.

This fact is usually justified by the reason that for
higher frequencies the average spontaneous decay time
sharply decreases and in experiments it is not possi-
ble to make a quick multiple check of the system until
the radiative transition has taken place. However, this
argument is not correct, for example, in the case of
radiative transitions of higher multipolarity. In partic-
ular, for excited nuclei, such transitions can be charac-
terized by a very long lifetime, and periodic monitor-
ing of the excited state can be easily realized in a sys-
tem of sublevels of the excited state. Such experiments
correspond, for example, to the standard technique of
Mössbauer spectroscopy, which is regularly used in dif-
ferent laboratories of universities and institutes, and
such an effect would certainly be noticed.

This method of external influence on decay is fun-
damentally different from the theoretically predicted
[12] and experimentally confirmed [13–15] method of
controlling the probability of gamma decay of excited
Mössbauer nuclei with a controlled influence on the
decay process due to the close (at a distance of several
cm) arrangement of a system of similar but unexcited
nuclei near the investigated gamma-source.

The formal side of the QZE-based decay control
method is based on the typical assumption (e.g., [4])
that the initial stage of the spontaneous decay process is
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characterized by the following expressions for the prob-
ability of a quantum system to remain in the initial
excited state

W (t << 1/|Beg|) = 1 − |Beg|2t2 (1)

and the probability of transition to the ground state

1 − W (t << 1/|Beg|) = |Beg|2t2. (2)

Here Beg is the coefficient characterizing the efficiency
of the process that determines the transition of a given
quantum system from the excited state e to the ground
state g located below.

If we divide the time interval [0, t] of the initial stage
of spontaneous decay into a large number of identical
subintervals Δt = t/n for checking (inspection) of this
state, then the partial probability of the absence of
decay in each of them can be described by a similar
formula

ΔW = 1 − |Beg|2Δt2 ≡ 1 − |Beg|2(t/n)2. (3)

The total probability of the system to remain in the
initial excited state for time t is determined by the
product of partial probabilities (3)

W (t = nΔt) = {ΔW}n ≡ {1 − |Beg|2(t/n)2}n. (4)

From (4), using the standard calculus formula
(1 − A/N)N |N→∞→ e−A we can get the expression for
the final probability

(5)

W (t) = {1 − (|Beg|2t2/n)/n}n

= exp(−|Beg|2t2/n)|n→∞ → 1.

It can be seen from (5) that in the case of repeated
rapid checking of the initial state of the considered
quantum system every Δt = t/n the spontaneous decay
completely stops.

The problem of realization of such a multiple check
is a purely technological problem, and the physical sub-
stantiation of such a process is related to the validity
of the expression used for the law of spontaneous decay
(3).

It is obvious that this formula cannot be obtained
in the limiting case of small time from the standard
full formula for the probability of a quantum system to
remain in the initial excited state and its form, which
determines the same total probability at the beginning
of the decay process

Ws(t) = e−t/τ , Ws(t → 0) = 1 − t/τ. (6)

Here τ the quantity is equal to the average lifetime of
the excited state of the atom in such a system.

This conclusion follows directly from a simple analy-
sis based on the same technique for dividing the interval

[0, t] into a large number n of small intervals with dura-
tion Δt = t/n, as it was used to obtain (5)

Ws(t) = {1 − t/nτ}n|n→∞= e−t/τ . (7)

The obvious contradiction between the results (5)
and (7), referring to the same process, can be resolved
with a detailed analysis of the validity of mutually
inconsistent formulas (2) and (6).

The traditional assumption about the cause of this
contradiction consists in the statement that the nature
of the spontaneous decay of atoms and other quantum
systems for large and intermediate times corresponds to
an exponential law, and for very short times the char-
acter of decay is fundamentally different from such a
law. It is shown below that the contrasting of these fea-
tures is incorrect, since they refer to different radiation
processes (irreversible spontaneous decay and reversible
Rabi oscillation). The main reason for this contradic-
tion is associated with the specifics of the interaction of
a particular quantum system (atom, nucleus, molecule)
with the surrounding quantized field in a vacuum state
at different radiation transition frequencies.

2 Dynamics of the initial stage
of the process of interaction of a two-level
quantum system with a quantized
electromagnetic field

Let us consider the dynamics of the process of interac-
tion of the atom with a quantized electromagnetic field
using the well-known Weisskopf–Wigner method (e.g.,
[12]). Speaking further about the atom, we are keeping
in mind that the same calculations apply equally to the
nucleus or the molecule.

The Hamilton operator of the complete system (atom
and field) has the form

�

H(�r) =
�

HA(�rA) +
�

HF (�q) +
�

V (�rA, �q). (8)

In this expression
�

HA is the Hamilton operator of the

atom,
�

HF is the Hamilton operator of the quantized

electromagnetic field surrounding the atom, and
�

V =
∑

β

�

V β is the operator of the interaction of the atom

with the modes of this field.
The individual excited and ground states of the atom

and the field are characterized, respectively, by the
indices a and 0, β and 0. The coordinates character-
izing the processes related to the atom and field are �rA

and �q.
The spontaneous decay process characterizes the

dynamics of energy transfer from an initially excited
atom to an initially unexcited system of field modes.
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The system corresponding to the process of sponta-
neous decay in free space can be in two fundamen-
tally different (and mutually orthogonal) base states,
which are eigenfunctions of the unperturbed (without
taking into account the interaction) Hamilton operator
�

H0(�r) =
�

HA(�rA) +
�

HF (�q).
a) The state of the system when the atom is excited

and has energy Ea = �ωa, and all field modes are in vac-
uum states. In this state, the general coordinate wave
function of the entire system (in the cast that the atom
does not interact with the field) is the product of the
wave function of the atom Ψa(�rA) and the wave func-
tions of all modes of the field ϕ0(�q) and has the form

Ψa0(�r) = Ψa(�rA)ϕ{0,0,...,0}(�q);

ϕ{0,0,...,0}(�q) =
∏

β

ϕ{0β}(�q). (9)

The subscript in the expression for the wave function
of the atom Ψa(�rA) corresponds to the excited state of
the atom with energy Ea = �ωa. Accordingly, the sub-
script in the expression for the total wave function of
the field ϕ{0,0,...,0}(�q) means that all mutually indepen-
dent modes of the field are in the lowest (vacuum) state.
b) One of the large number of possible states of the

same system, when after the spontaneous transition
the atom is in the ground state with the energy Eg, one
of the field modes is excited and has energy Enβ=1, and
all other field modes (α �= β) are at ground levels (in
vacuum states)Enα=0. In each of these states, the coor-
dinate wave function of the entire system has the form

Ψ0β(�r) = Ψ0(�rA)ϕ{0,β,...,0}(�q);

ϕ{0,β,...,0}(�q) = ϕ{1β}(�q)
∏

α�=β

ϕ{0α}(�q). (10)

The subscript in the expression for the wave func-
tion of the atom Ψ0(�rA) means that the atom is in the
ground state. Accordingly, the subscript in the expres-
sion for the total wave function of the field ϕ{0,β,...,0}(�q)
means that the field mode with the number β is in the
excited state, and other field modes (α �= β) are unex-
cited. It is easy to verify that there are no other possible
states of the entire system in the case of only one exci-
tation ”wandering” in the system.

For the zero value of the system energy we can take
the value corresponding to the presence of the atom and
all field modes in the ground state (E0 and Enβ=0).
For this, in further calculations, we use such a scale
of energy reference, at which the total energy of the
ground state of the entire system is equal to zero

E0 +
∑

β

Enβ=0 = 0. (11)

In accordance with the principle of superposition,
the general wave function of the entire system Ψ(�r, t),
including the atom and the quantized field, has the form

Ψ(�r, t) = A(t)Ψa0(�r)e
−iEat/� +

∑

β

Fβ(t)Ψ0β(�r)e−iEβt/�

= A(t)Ψa(�rA)ϕ{0,0,...,0}(�q)e−iEat/�

+
∑

β

Fβ(t)Ψ0(�rA)ϕ{0,β,...,0}(�q)e−iEβt/�. (12)

In this expression, the time-dependent coefficients
A(t) and Fβ(t) are the amplitudes of the probability
that the atom and each mode of the field are in the
excited state at the time t . Basing on the principle of
superposition and the requirement of completeness of
the entire system, these coefficients are related by the
normalization condition

|A(t)|2+
∑

β

|Fβ(t)|2 = 1. (13)

The change in these coefficients with time describes
the process of spontaneous decay of the atom and,
accordingly, the processes of excitation of each of the
field modes. The evolution of the entire system and the
dynamics of changes in these coefficients are described
by the nonstationary Schrödinger equation

i�
∂Ψ(�r, t)

∂t
= {�

HA(�rA) +
�

HF (�q) +
�

V (�rA, �q)}Ψ(�r, t).

(14)

Taking into account the explicit form of the results of

the individual action of the constituent parts
�

HA(�rA)

and the
�

HF (�q) of the general Hamilton operator on the
wave functions of the atom and field modes, which are
eigenfunctions of these constituent parts, this equation
can be transformed:

�

HA(�rA)Ψa(�rA) = EaΨa(�rA);
HA(�rA)Ψ0(�rA) = E0Ψa(�rA) = 0;
HF (�q)ϕ{0,0,...,0}(�q) = E0ϕ{0,0,...,0}(�q) = 0;

HF (�q)ϕ{0,β,...,0}(�q) = Eβϕ{0,β,...,0}(�q). (15)

After substituting the general wave function (12) into
the nonstationary Schrödinger equation and performing
the listed actions, we obtain equation, which describes
the related processes of the simultaneous evolution of
the coefficients A(t) and Fβ(t):

i�
∂A(t)

∂t
Ψa(�rA)ϕ{0,0,...,0}(�q)e−iωat

+ i�
∑

β

∂Fβ(t)
∂t

Ψ0(�rA)ϕ{0,β,...,0}(�q)e−iωβt

=
�

V (�rA, �q)
{
A(t)Ψa(�rA)ϕ{0,0,...,0}(�q)e−iωat

+
∑

β

Fβ(t)Ψ0(�rA)ϕ{0,β,...,0}(�q)e−iωβt}

(16)
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Equation- (16) can be transformed into a system of
simpler coupled algebraic equations. To do this, we
can multiply this equation, respectively, once by the
eigenfunction Ψ∗

a(�rA)ϕ∗
{0,0,...,0}(�q), which corresponds

to the excited state of the atom, and then integrate
over the entire range of variation of the arguments,
and the second time by one of the eigenfunctions
Ψ∗

0(�rA)ϕ∗
{0,β,...,0}(�q) corresponding to the excited state

of one of the field modes (mode number β), and also
integrate over the same area of arguments change.

Using the orthogonality of the eigenfunctions, we
obtain the basic system of coupled equations

∂A(t)
∂t

=
1
i�

∑

β

Fβ(t)Vaβei(ωa−ωβ)t, (17)

∂Fβ(t)
∂t

=
1
i�

A(t)V ∗
aβei(ωβ−ωa)t, (18)

which describe the dynamics of a nonstationary change
in the amplitudes of the excitation of the atom A(t)
and all modes of the field Fβ(t).

In this system, the matrix elements Vaβ of the inter-
action energy of the atom with the quantized field have
the form

Vaβ =
¨

Ψ∗
a(�rA)ϕ∗

{0,0,...,0}(�q)
�

V (�rA, �q)Ψ0(�rA)

ϕ{0,β,...,0}(�q)d
3rAd3q. (19)

Let us analyze these equations using the initial con-
ditions A(0) = 1, Fβ(0) = 0 consistent with the condi-
tions for observing of the QZE.

First, we consider the dynamics of changes of the
state of the field and atom modes at t → +0, i.e., at
the beginning of the process. From Eq.- (18), we find an
expression for the amplitude of excitation of the con-
sidered field mode β

Fβ(t) =
1

i�

t∫

0

A(t′)V ∗
aβei(ωβ−ωα)t′

dt′

=
1

i�

t∫

0

{
A(t′)|0+dA(t′)

dt′
|0t′ + ...

}
V ∗

aβei(ωβ−ωα)t′
dt′

≈ A(0)

i�

t∫

0

V ∗
aβei(ωβ−ωα)t′

dt′

=
A(0)

i�
V ∗

aβ
1 − e−i(ωβ−ωα)t

i(ωβ − ωα)
(20)

and the probability of this excitation |Fβ(t)|2, which
can be written in two alternative forms:

|Fβ(t)|2 ≈ |A(0)|2 |Vaβ |2
�2

sin2
(

ωβ−ωα

2 t
)

(
ωβ−ωα

2

)2

≈ |A(0)|2 |Vaβ |2
�2

t2, t � π

|ωβ − ωα| , (21)

|Fβ(t)|2 ≈ |A(0)|2 |Vaβ |2
�2

2πtδ(|ωβ − ωα|), t � π

|ωβ − ωα| .
(22)

The first of them can be used if we take into account
only one mode of the electromagnetic field in the case
of a large discreteness of the spectrum of modes and the
second one in the alternative case of a quasi-continuous
spectrum of the field modes.

In the case of interaction of the atom with only one
mode of the field, from the conditions

|A(t)|2+|Fβ(t)|2= 1, Fγ �=β(t) ≡ 0, (23)

and formula (21) an expression for the probability of
the atom to remain in an excited state for a short time
t follows:

|A(t)|2= 1 − |Fβ(t)|2≈ 1 − |Vaβ |2
�2

t2. (24)

Accordingly, when the condition for the observation
of the QZE (inspections of the state of the atom at very
small time intervals Δt = t/n) is realized, we obtain
from (24) evidence of the realization of this effect

|A(t)|2 = {1 − 1
n

|Vaβ |2
�2

(t2/n)}n|n→∞

= exp

{

−|Vaβ |2
�2n

t2

}

n→∞
= 1. (25)

It can be seen that in such a single-mode regime, for-
mulas (21), (24), and (25) for the corresponding prob-
abilities completely coincide both with the initial for-
mulas (1) and (2) used in the analysis of the quantum
Zeno effect, and with the formula (5), demonstrating
the QZE.

A fundamentally different result corresponds to the
case of interaction of the atom with an ensemble of
modes with close frequencies.

To analyze this case, it is convenient to find the
desired probability |A(t)|2 of the atom to remain in an
excited state using the normalization condition (13) and
replacing the summation over modes in formula (17) by
integration over the frequencies of these modes, taking
into account the standard expression for the spectral
density of modes of the electromagnetic field in the vol-
ume V 0:

ρ(ωβ) ≡ dN

dωβ

=
V0ω

2
β

π2c3
. (26)

When these relations are used, the expression for the
probability of the atom to remain in the excited state
a short time after the formation of such a state takes a
fundamentally different form
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|A(t)|2 = 1 −
∑

β

|Fβ(t)|2

≈ 1 − |A(0)|2 1

�2

∞∫

0

dN

dωβ

|Vaβ |22πtδ(|ωβ − ωα|)dωβ

= 1 − |A(0)|2 2V0ω
2
α

πc3�2
|Vaβ |2t. (27)

If we use the same method, which was used to obtain
(5), dividing the interval [0, t] into a large number n
of very small subintervals with duration t/n, then on
the basis of dependence (27) we can get the standard
formula describing the process of spontaneous decay

|A(t)|2=
{

1 − 1
n

(
2V0ω

2
α

πc3�2
|Vaβ |2t

)}n

|n→∞= e−t/τ ,

τ =
πc3

�
2

2|Vaβ |2V0ω2
α

, (28)

which has the structure, that is fully consistent with
formula (6) and completely excludes the QZE. This
formula can be modified taking into account that in
the dipole approximation, the interaction energy of the
atom with a specific mode of a quantized electromag-
netic field, which is in a vacuum state, is determined by
the standard expression

V = −�d �Eβ = −(�d�ek)Eβ . (29)

Here �d = e
⇀
r is the dipole moment of the atom, �ek is the

unit polarization vector of the mode. After finding the
matrix elements and the formal procedure for spatial
averaging of the scalar product (�d�ek), we find

< |Vaβ |2>=< |�daβ�ek|2>< |Eβ |2> . (30)

The value

< |Eβ |2>=
2π�ωβ

V0
(31)

can be found if we take into account that the total
energy of the mode in the ground (vacuum) state is
determined by the product of the average energy den-
sity of the electromagnetic field in the vacuum state
�ωβ/2 by the volume of the mode V0. After spatial aver-
aging of the scalar product (�d�ek) in (30), we find

< |Vaβ |2>=
2π�ωβ |�daβ |2

3V0
. (32)

Taking this result into account, expression (28) for
the average lifetime of an excited state of the atom τ

in such a multimode system takes the final form

τ =
3c3

�

4|�daβ |2ω3
a

. (33)

It is very important that in such a multimode inter-
action regime, expression (33) (and expressions (28)
W (t) = |A(t)|2= e−t/τ for the probability of an excited
state of the atom) does not depend on the magnitude
of the quantization volume V0 and does not depend
on periodic inspection of the state of an excited atom,
which is the standard method for the QZE formation.

It can be seen from this result that at the interaction
of the atom with the field in the multimode regime the
QZE is completely absent! For a more detailed conclu-
sion about the reasons for the fundamentally different
mechanisms of spontaneous decay in single- and multi-
mode regimes, we consider the same problem without
being limited by the requirement of a short time after
the formation of an excited state of the atom.

3 The full time dynamics of the process
of interaction of a two-level quantum
system with a quantized electromagnetic
field

An analysis of the complete, without time limitation,
dynamics of the interaction of a quantized electromag-
netic field with a two-level quantum system corresponds
to the general solution of the system of Eqs.- (17) and
(18). This solution is found using the method of direct
and inverse integral Laplace transforms, which make
it possible to transform these differential equations for
the probability amplitudes A(t), Fβ(t) into a system of
algebraic equations for the images of these amplitudes.

For such a transformation, first we multiply each of
these equations by a value e−pt, and then we integrate
new equations with respect to the variable p in the
range from 0 to ∞.

We can introduce image functions

Ap =

∞∫

0

A(t)e−iωate−ptdt, Fβp =

∞∫

0

Fβ(t)e−iωβte−ptdt

(34)

on combinations of initial functions A(t)e−iωat and
Fβ(t)e−iωβt. After integration by parts, the system of
these equations takes the form

(iωa + p)Ap = A(0) +
1
i�

∑

β

FβpVaβ , (35)

(iωβ + p)Fβp = Fβ(0) +
1
i�

ApV
∗
aβ . (36)
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In this system of the algebraic equations values
A(0) = 1 and Fβ(0) = 0 correspond to the initial
excited state of the atom and the initial unexcited state
of an arbitrary field mode. From this system, we can
find the explicit form of the image function for the prob-
ability amplitude of the excited state of the atom

Ap =
A(0)

iωa + p +
∑

β

|Vaβ |2
�2(iωβ+p)

, (37)

and then, using the inverse Laplace transform (34), we
can find a solution for A(t):

(38)

A(t) =
1

2πi
eiωat

δ+i∞∫

δ−i∞
Ape

ptdp

=
A(0)
2πi

δ+i∞∫

δ−i∞

e(iωa+p)tdp

iωa + p +
∑

β

|Vaβ/�|2
(iωβ+p)

.

After changing the variable p = i(ω − ωa) in the
integrand, this formula takes the final form

A(t) =
A(0)
2πi

∞−iδ∫

−∞−iδ

eiωtdω

ω − ∑

β

|Vaβ/�|2
(ωβ−ωa+ω)

(39)

and corresponds to the general solution of the problem
of finding the time-dependent characteristics of sponta-
neous decay for an arbitrary form of the distribution of
quantized modes of the electromagnetic field. Specific
cases of calculating (39) require to detail the explicit
form of the spectrum of the field modes with which the
atom interacts.

3.1 The full time dynamics of a two-level system
in its interaction with one field mode

As it follows from the general solution of (39),
the amplitude and probability of spontaneous decay
substantially depend on the value of the sum∑

β

|Vaβ |2/[�2(ωβ − ωa + ω)] in the denominator of (39),

which takes into account the interaction of each field
mode with the considered atom. Let us consider the
case when the absolute value of the intermode interval
δω = ωβ − ωa in a particular electrodynamic system is
so large that only one (resonance) term makes a signif-
icant contribution to this sum. All other (nonresonant)
terms of the sum are small, and the following condition
is satisfied:

|Va,β±Δβ |2
|ωβ±Δβ − ωa + ω| <<

|Vaβ |2
|ωβ − ωa + ω| . (40)

It should be noted that the limitation of the number
of modes influencing the process of interaction of the

atom with a field to only one mode is based not only
on the fact that the denominators of the correspond-
ing nonresonant terms of sum (40) decrease with the
increase of the intermode distance. Obviously, such a
decrease (according to the law 1/|ωβ±Δβ − ωa + ω|) by
itself cannot ensure the convergence of the entire sum
and, in the absence of other convergence mechanisms,
would lead to a logarithmic discrepancy. The very rapid
decrease in the nonresonant terms of this sum is associ-
ated, first of all, with a very rapid decrease in the cor-
responding matrix elements |Vaβ | for the nonresonant
modes with increasing detuning from the optimal mode
with Δβ = 0. In a symbolic form, such a limitation of
the number of field modes essential for the process of
interaction with the atom is shown in Fig.- 1a.

Under condition (40), from the general solution (39)
we obtain

(41)

A(t) =
A(0)
2πi

∞−iδ∫

−∞−iδ

eiωtdω

ω − Ω2
0/(δω + ω)

, δω

= ωβ − ωa, Ω0 = |Vaβ |/� .

This expression can be easily converted to a more
convenient form

A(t) =
A(0)
2πi

∞−iδ∫

−∞−iδ

(δω + ω)eiωtdω

(ω − ω1)(ω − ω2)
, (42)

where two characteristic frequencies

ω1,2 = −δω

2
± Ω, Ω =

√(
δω

2

)2

+ Ω2
0 (43)

are the poles of the integrand, which lie on the real axis
of the complex frequency plane ω.

The explicit form of the solution for the probability
amplitude A(t) (42) can be easily found by the method
of complex integration by the method of residues at
these poles

A(t) = A(0)
{

cos Ωt + i
δω

2Ω
sin Ωt

}

e−i δω
2 t. (44)

The expression for the probability of finding the atom
in an excited state at any time t ≥ 0 in the case of
interaction with only one field mode is found from (44)
and has the form

W (t) = |A(t)|2= 1 − Ω2
0

Ω2
sin2 Ωt. (45)

In this case, the probability of excitation of the reso-
nant mode is described by the formula

|Fβ(t)|2= Ω2
0

Ω2
sin2 Ωt. (46)
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Fig. 1 Resonance
interaction of the atom A
with one (a) or two (b)
discretely located modes of
the electromagnetic field F .
The frequency distribution
function on the left
corresponds to the
spectrum of a particular
discrete mode

A

F

β+1

β

β-1
A

F

β+1

β

β-1

(a)

β-2

(b)

A

F

Fig. 2 The scheme of interaction of the atom A with a
quasi-continuous ensemble of modes of an electromagnetic
field F in a vacuum state

It can be seen from these results that the process
of interaction of the atom with a resonant mode cor-
responds to a continuous oscillatory process with peri-
odic excitation of the atom (transition from the ground
state to the excited state) and subsequent reverse
transition from the excited to the ground state. This
process corresponds to a periodic exchange of energy
between the atom and the field mode (Rabi precession).

The exchange frequency Ω =
√

(δω/2)2 + Ω2
0 and the

amplitude of oscillations of the probability of an excited
state of the atom depends both on the energy of interac-
tion of the atom with the mode |Vaβ |= Ω0� and on the
spectral detuning δω from the resonance. In the case of
exact resonance δω = 0 we have

|A(t)|2= cos2 Ω0t, |Fβ(t)|2= sin2 Ωt. (47)

The beginning of the process of such interaction is
characterized by the expression

(48)

|A(t << 1/Ω)|2 ≈ 1 − Ω2
0t

2 = 1

− |Vaβ |2
�2

t2 = 1 − 2π�ωβ |�daβ |2
V0

t2,

which completely coincides with both formula (24) and
the original formula (1) for the initial stage of the
change in the state of the atom.

3.2 The full time dynamics of the interaction
of a two-level system with two modes

Let us consider the case of interaction of the atom with
two nearest in frequency field modes numbered β and
β + 1 (Fig.- 1b). We assume that only modes with fre-
quencies ωβ and ωβ+1, for which the conditions of res-
onant interaction with the atom are satisfied

|ωa − ωβ | , |ωa − ωβ+1|
<< |ωa − ωβ−1| , |ωa − ωβ+2| , |ωa − ωβ+3| , . . .

(49)

make a significant contribution to the sum, which is
in the denominator of the expression for the general
solution (39).

To simplify the calculation, we assume that the fre-
quencies ωβ and ωβ+1 are located symmetrically with
respect to the frequency of the resonant transition in
the atom

ωβ+1,β = ωa ± δω/2. (50)

In a symbolic form, such conditions are shown in Fig.-
1b.

In addition, we assume that the interaction of these
modes with the atom is characterized by the same
matrix elements of the interaction energy and, accord-
ingly, the same value of the effective interaction fre-
quency

|Vaβ |= |Va,β+1|= �Ω0 (51)

Under these conditions, from the general solution
(39), we find

A(t) =
A(0)
2πi

∞−iδ∫

−∞−iδ

(ω2 − (δω/2)2)eiωtdω

ω(ω − Ω1)(ω + Ω1)
, (52)

where

Ω1 =
√

2Ω2
0 + (δω/2)2. (53)
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The integrand in formula (52) has three poles at the
points

ω1 = 0, ω1,2 = ±Ω1 (54)

on the real axis of the plane of complex frequency ω.
Taking it into account, the probability amplitude A(t)
and total probability |A(t)|2 of finding the atom in an
excited state at moment of time t ≥ 0 in the case of
interacting with only two modes can be easily found by
the complex integration by the method of residues

A(t) = A(0)

{

1 − 4
(

Ω0

Ω1

)2

sin2 Ω1

2
t

}

, W (t) = |A(t)|2.
(55)

This regime corresponds to the same Rabi preces-
sion. The beginning of the process of such interaction
is characterized by the expression

(56)

|A(t << 1/Ω1)|2 ≈ 1 − 2Ω2
0t

2 = 1

− 2
|Vaβ |2

�2
t2 = 1 − 4π�ωβ |�daβ |2

V0
t2,

which is similar in structure to the original formula (1)
for the initial stage of the change in the state of the
atom.

Thus, the process of interaction of the atom with one
and two resonant modes is periodic (oscillating) and it
has no damping. A qualitatively similar situation is in
the case when the atom interacts with a small num-
ber of field modes, the frequencies of which are located
asymmetrically with respect to the transition frequency
of the atom. In this case, the law of energy exchange
between the atom and the field modes differs from the
simple harmonic law, which is typical for the interac-
tion with one or two symmetrically located modes, but
the main feature of the process remains unchanged. The
exchange process is periodic, it has no damping, and at
the beginning of system evolution it allows the existence
of the QZE.

4 The full time dynamics of the interaction
of the atom with a quasi-continuous
distribution of electromagnetic field modes

Let us consider an alternative situation, when the field
modes are located so densely that the resonance approx-
imation based on the selective interaction of the atom
with one or several separate modes can’t be used. The
analysis of such a problem has to be done basing on the
general solution (39), in which the contribution of all
field modes is determined by the sum

S =
∑

β

|Vaβ |2/[
�

2(ωβ − ωa + ω)
]
, (57)

which is in the denominator of formula (39) and takes
into account the connection between the atom and the
ensemble of modes. To calculate this sum, we need to
make two steps. On the first step, we need to make
the procedure of averaging of the mutual orientation of
different field modes with respect to the matrix element
(30) (the mutual orientation of the dipole moment and
polarization vectors of the field modes in the case of
dipole transitions), which is responsible for a specific
transition in the atom. On the second one, we need
to integrate the quantity |Vaβ |2/�

2(ωβ − ωa + ω) using
the spectral density of the modes of the quantized field
ρ(ωβ) (26). In the case of dipole transitions with such
a replacement sum (57) corresponds to the integral

(58)

S =

∞∫

0

ρ(ωβ)
< |Vaβ |2 > dωβ

�2(ωβ − ωa + ω)

=
2

3π�c3

∞∫

0

|�daβ |2ω3
βdωβ

(ωβ − ωa + ω)
.

The convergence of the integral in expression (58)
is ensured by the fact that the matrix element of the
dipole moment of the atom �deg(ωβ), which determines
the explicit form of the matrix element of the interac-
tion energy of a particular mode with the atom (19),
decreases exponentially with an increase of the fre-
quency difference |ωβ−ωa|→ ∞ due to the presence of a
rapidly changing phase in the integrand. This decrease
at ωβ → ∞ is much faster than the growth determined
by the function ω3

β in the numerator of the integrand.
The presence of such an exponential decrease is the

part of the standard procedure for obtaining the dipole
approximation in the theory of the interaction of an
electromagnetic field with atoms. In this case we can
neglect the change of the phase of the electromagnetic
field �Eβ ∼ e−i	kβ	r while calculating the matrix element
(19) of the energy of interaction of the field with the
atom

Vaβ =
∫

Ψ∗
a(�r)

(
�Eβ

�

�p

)

Ψβ(�r)d3r

∼
∫

Ψ∗
a(�r)e−i	kβ	r(�eβ

�

�p)Ψβ(�r)d3r

∼
∫

Ψ∗
a(�r)e−i	kβ	ra

(
�d�eβ

)
Ψβ(�r)d3r

= e−i	kβ	ra

(
�daβ�eβ

)
, (59)

in the volume of atom and replace it by 1. It is obvious
that it is possible to do so only in the case when the
field frequency satisfies the condition

|�kβ(�r−�ra)|max = ωβ |(�r−�ra)�kβ/ckβ |max ≤ ωβRa/c << 1.

(60)

This condition can be satisfied when the field fre-
quency ωβ , which is the integration variable in (58), is
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limited by the maximum value |ωβ |<< c/Ra, where Ra

is the effective size of the atom. The same situation is
for transitions of arbitrary multipolarity.

The opposite case |ωβ |>> c/Ra corresponds to the
formal expansion of the integration limits |ωβ |→ ∞
in the process of calculating the complex integral in
expression (58). It is obvious that in this case the phase
factor becomes a rapidly oscillating function of fre-
quency, leading to an exponential decrease of the inter-
action energy. Based on these conditions, the limits
of integration in (58) can be extended to the interval
[−∞,∞].

From the analysis of the formula (39), it can be seen
that the value A(t) is determined by the poles of the
integrand at one or several values of the complex fre-
quency ω = ω′+iω′′. The positions of these poles, which
determine the temporal change of the amplitude of the
probability of finding the atom in an excited state,
are characterized by small values of ω′ in comparison
with the frequency ωa, which determines the temporal
change of the wave function itself. This circumstance
follows directly from (39). In mathematical physics, it
is shown that the function (ωβ − ωa + ω)−1, which is
part of the integrand in (39), in the case of small values
of ω′ corresponds to δ-function and can be represented
in the form

(61)

1
(ωβ − ωa + ω′ + iω′′)

= πiδ(ωβ − ωa + ω′)

+
�

P
1

(ωβ − ωa + ω′)
.

Here
�

P is the operator of the Cauchy principal value.
Using this replacement in formula (58), we find

S = i
Γ0

2
+ Δω0;

Γ0 ≡ 1

τ
=

4(ωa − ω′)3

3�c3
|�daβ(ωa − ω′)|2≈ 4ω3

a

3�c3
|�daβ(ωa)|2,

Δω0 =
�

P

∞∫

0

2ω3
β |�daβ(ωβ)|2dωβ

3π�c3(ωβ − ωa + ω)
.

(62)

In this relation, the quantity Δω0 determines the
Lamb shift of the excited level of the atom.

Substituting (62) into the general solution for A(t)
(39), we find the final formula for the probability ampli-
tude and total probability of the atom to remain in an
excited state when it interacts with a quasi-continuous
continuum of electromagnetic modes

(63)

A(t) =
A(0)
2πi

∞−iδ∫

−∞−iδ

eiωtdω

ω − Δω0 − iΓ0/2

= A(0)e− Γ0
2 t+iΔω0t, |A(t)|2 = e−t/τ .

The resulting expression (62) for the average life-
time τ of the excited state of the atom and the law
of irreversible spontaneous decay (63) in such a multi-
mode system are identical to expressions (28) and (33)
obtained on the basis of the analysis of the decay pro-
cess at the initial moment of time in the same multi-
mode system. This result leads to the conclusion that it
is impossible to realize the QZE in a system with mul-
timode interaction of the atom with an electromagnetic
field in the ground (vacuum) state.

5 On the possibility of realizing
the quantum Zeno effect in IR and visible
ranges

The analysis performed and the results obtained allow
us to make a conclusion about the conditions for the
realization of the QZE. It is shown that such an effect
can be realized only under the condition that the con-
sidered quantum system (atom, nucleus, or other two-
level quantum object) interacts with single mode or
several discrete modes of the electromagnetic field in
the ground (vacuum) state. In such systems, if we do
not take into account the possible additional influence
of other factors on these modes, the interaction pro-
cess does not correspond to a unidirectional monotonic
spontaneous decay, but has the form of a pendulum pro-
cess with a periodic phased energy exchange between
a quantum object and specific resonant discrete modes
Such dynamics of states of a quantum particle and field
corresponds to the standard Rabi precession. This pro-
cess is analogous to the well-known phenomenon of peri-
odic reversible energy transfer between coupled oscilla-
tors.

It should be noted that in experiments on the realiza-
tion of the QZE the conditions were just like that. For
example, in [6] it was a relatively slow periodic tran-
sition of a supercooled Bose–Einstein condensate, con-
sisting of rubidium atoms, from an excited state to a
ground state. In this case, the QZE was realized at the
time when this condensate was in an excited state and
was irradiated by a controlling electromagnetic radia-
tion.

In such a system, frequent inspection of the state of
an excited quantum object violates the optimal phase
states, which determine the current direction of the pro-
cess (from the atom to the field), and after that the pro-
cess of energy transfer begins from the initial moment.

Basing on the expression for the intermode frequency
interval

dωβ

dN
≡ 1

ρ(ωβ)
=

π2c3

V0ω2
β

, (64)

it can be concluded that such conditions are realized
for relatively low frequencies in a small quantization
volume V0 of the electromagnetic field.
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For example, in microwave resonator with a volume
of V0 = 103 cm3 at a wavelength λβ = 5- cm (ωβ ≈
3.5 · 1010 Hz), the interval between modes is equal to
dω/dN ≈ 3 · 108 Hz.

On the other hand, it should be taken into account
that the spectral width of the mode in a microwave
resonator with a Q-factor is equal to ΔωQ ≈ ωβ/Q.
In a typical microwave resonator, this Q-factor is equal
to the value Q = 103 − 104 that corresponds to the
spectral width of the mode ΔωQ ≈ 3.5 · (106 − 107) Hz.
It can be seen that in this case the spectral width of the
mode is 10–100 times less than the intermode distance,
which makes it possible to ensure mode selection and
interaction of the atom with only one mode.

It is interesting to note that with a similar inspection
of the state not of the atom, but of an excited mode of
the field (in fact, of another oscillator), the complete
inhibition of the opposite process is possible: the exci-
tation of the atom due to the energy of the field!

A fundamentally different situation corresponds to
the visible and shorter wavelengths.

In “usual” macroscopic optical resonator with the
same volume V0 (for example, in the form of a rect-
angular parallelepiped with mirror surfaces) at a wave-
length λ = 0.5 micron (ω ≈ 2 · 1015 Hz), the intermode
distance is equal to dω/dN ≈ 0.1- Hz. With a typical
Q-factor for the best optical resonators Q = 106 − 107,
the spectral width of the mode in such a resonator
ΔωQ ≈ 2 · (108 − 109) Hz is many orders of magni-
tude greater than the intermode distance, which makes
the process of selective interaction of the atom with a
separate mode impossible! In ordinary (with a lower
effective Q-factor) optical systems, the spectral width
of the modes is even larger. The same conclusion about
the impossibility of selective interaction in the visible
range directly follows from the general formula for the
ratio of the mode width to the interval between modes

∣
∣
∣
∣

ΔωQ

dω/dN

∣
∣
∣
∣ = ρ(ωβ)ΔωQ ≈ V0ω

3
β

π2c3Q
∼ ω3

β (65)

It follows from this formula that for the realization
of the QZE, the condition |ΔωQ/(dω/dN)| << 1 in
the visible range can be realized only in hypotheti-
cal optical three-dimensional nanocavities with linear
dimensions V

1/3
0 ≤ 10−3 cm, which should be analo-

gous to microwave resonators. The possibility of creat-
ing of such nanocavities is rather questionable. In addi-
tion, it should be taken into account that as the size of
the resonator decreases, its Q-factor, as a rule, rapidly
decreases, which leads to an additional increase of the
spectral width of the modes. Basing on this considera-
tion, it can be concluded that the quantum Zeno effect
can be realized only in the frequency range not exceed-
ing the microwave and, possibly, the frequencies of the
near-IR range.

In shorter wavelength ranges (ultraviolet, X-ray,
gamma radiation), this condition is fundamentally
unrealizable, which directly follows from (65). In these
cases, the process of interaction of the atom with the

field corresponds to irreversible spontaneous decay and
the QZE is impossible.

The analysis carried out makes it possible to deter-
mine the conditions under which the prerequisites for
the realization of the Zeno effect will be fulfilled for
optical radiation. To fulfill these conditions, it is nec-
essary to significantly increase the distance between
the modes of the electromagnetic field and at the
same time sharply increase the quality factor of these
modes. The successes of modern microphysics make it
possible to fulfill these conditions. Such requirements
are met, for example, by optical dielectric spherical
microresonators, which have a very small size (radius
R ≈ 25 microns) and a very high quality factor of
Q ≈ 109[16–20].

In such a microresonator, the interval between neigh-
boring (nearest) modes for the visible range with a
wavelength of 0.5 microns is 109- Hz, and the spectral
width of each mode does not exceed 106- Hz, which
provides the necessary interaction selectivity and fully
satisfies the conditions for observing the Zeno effect.

6 Conclusion

The above features of the interaction of quantum sys-
tems with an electromagnetic field clearly demonstrate
the ambiguous result of the influence of the standard
method of stimulating the Zeno effect (frequent check-
ing of the state of the system) on the possibility of its
implementation. Such a method turns out to be effec-
tive in the case of the interaction of a quantum system
with only one or several discrete modes of the elec-
tromagnetic field and is completely ineffective in the
case of simultaneous interaction of this system with a
quasi-continuous ensemble of field modes. The paper
shows that such a significant difference in the process
of interaction of field modes with a quantum system is
associated with the important fact that the process of
interaction with one or several discrete modes does not
lead to irreversible spontaneous decay, but corresponds
to a periodic energy exchange between the field and the
quantum system. It is obvious that the direction of this
process depends on the phase relations, which change
completely with frequent checking of the state of the
system, and this process stops the transfer of energy
from the excited system to the field. It is obvious that
a similar stopping process should occur with frequent
inspection of the resonant mode, although this has not
yet been observed. In contrast, the process of interac-
tion of a system with a very large ensemble of modes
cannot invert the direction of energy exchange for all
modes.

Simple estimates based on this idea show that the
QZE can be realized using electrodynamic systems with
a very rarefied mode spectrum (in particular, using
microwave resonator or optical resonator with a very
small distance between mirrors).

It should also be noted that interference processes
associated with multimode interaction take place not
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only in the analysis of QZE, but also in other cases (in
particular, in the analysis of the formation of coher-
ent correlated states, which are associated with the
Schrödinger–Robertson uncertainty relation and the
generation of large energy fluctuations [21–27]). These
processes will be considered in detail in future works.
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