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Abstract. Triple differential cross sections (TDCS) are presented for the electron and positron impact
ionization of neutral atoms in coplanar asymmetric geometry. Using both positrons and electrons as pro-
jectiles has opened up the possibility of performing complementary studies which could effectively isolate
competing interactions which cannot be separately detected in an experiment with a single projectile.
In this paper, the role played by post-collisional interaction (pci) between the ejected electron and the
scattered projectile is studied. (e−, 2e−) experimental results for atomic hydrogen where the role of pci
is well-understood are considered, and it is shown that a classically corrected first Born approach gives
better agreement with the shape and absolute size of the experimental data than either using the Gamov
Ne−e− or the Ward–Macek Me−e− correction factors. Predictions are presented for the TDCS for positron
impact ionization of hydrogen. The insights gained from the hydrogen study are applied to the electron
and positron impact ionization of argon.

1 Introduction

In a coincidence experiment, a projectile of momen-
tum k0 and energy E0 impinges on a target atom and
ionizes it. The ejected electron and scattered projectile
are detected with their angles and energies resolved. If
the spins were also determined, we would have a quan-
tum mechanically complete experiment, but even if the
spins are not known, such a measurement is kinemat-
ically complete and is ideal for exploring subtle few
body collisional effects which would be swamped by
more robust interactions in less differential measure-
ments. Coincidences studies have contributed greatly
to our understanding of few body atomic collisions, and
much has been learned about the subtleties of the inter-
actions in collisions between photons, ions and elec-
trons with atomic and molecular target (see for exam-
ple [1]). More recent pioneering work using antimatter
projectiles, see e.g., [2–5], has opened up the possibility
of performing complementary experiments which could
effectively isolate competing interactions which cannot
be separately detected in an experiment with a single
projectile. Our concern in this paper is the electron
and positron impact ionization of neutral atoms, with
a particular focus on exploring the inclusion of post-
collisional interactions (pci’s) in the description of these
collisions. We will use the distorted wave Born approxi-
mation (DWBA) approach and look to modify it to take
some account of post-collisional effects. The use of mul-
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tiplicative corrections the Gamov factor [6,7], and the
Ward–Macek factor [8,9] as well as the classical correc-
tion method [10,11] are considered. The major concern
with the classical correction approach is the freedom it
gives in choosing the size of the collision complex. Our
approach is to fix this for the electron impact ionization
of hydrogen where the TDCS is well-understood and
then with no free parameters study positron impact of
hydrogen and then electron and positron collisions with
argon targets.

2 Theory

2.1 Kinematics

The momentum vectors of the scattered projectile,
kf , and the ejected electron, ks, form a plane, and
thus we can define all possible kinematics by the
set (k0, kf , ks,Φ, θf , θs), where Φ defines the angle k0

makes to the plane of detection. The “gun angle” Φ =
0◦ corresponds to coplanar geometry, and Φ = 90◦ to
perpendicular plane geometry. In this paper, we will be
exclusively concerned with coplanar asymmetric geome-
try where the scattered projectile has a greater momen-
tum than the ejected. The convention we adopt is that
the “slow” particle is detected at an angle θs measured
in a clockwise direction with respect to the projection
of the incoming direction on the plane, while the “fast”
particle is detected at an angle θf measured in the anti-
clockwise direction (see Figure 1). In this geometry, the
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Fig. 1 General kinematics of a coincidence measurement.
The fast incoming projectile has momentum k0 and energy
E0 and comes in at an angle Φ with respect to the plane
in which the two final state particles are detected at angles
θf , θs with respect to the projection of the incoming direc-
tion on their plane

triple differential cross section (TDCS) is presented as
a function of θs for fixed θf , kf , ks

2.2 Distorted wave and first born approximation

2.2.1 Electron scattering

The DWBA method refers to an approach which
encompasses a range of approximations. The key fea-
tures are that the projectile-electron interaction occurs
once, and the wavefunctions of the incoming and outgo-
ing electrons are calculated in “distorting potentials”.
The general theory for including distorting potentials
is given in [12]. There is quite a deal of freedom in the
choice of these potentials, typically the potentials rep-
resent elastic scattering in the static-exchange poten-
tials of the atom or ion, but other effects such as target
polarization have been included [13,14] to good effect.

The DWBA has been applied to electron impact ion-
ization for quite some time, the first detailed account
being given by [15]. The version we use here is, in
essential features, the same with some refinements. For
a full discussion of the approximation, its strengths,
weaknesses and our computational implementation, see
[1,16,17]. For the electron impact ionization of the n, l
orbital of an inert gas atom, the TCDS, after summing
over all final and averaging over all initial spin states,
is given by:

d3σDWBA

dΩfdΩsdE
= 2(2π)4

k1k2
k0

l∑

m=−l

[|fnlm|2 + |gnlm|2 − �e(f∗
nlmgnlm)]

(1)

where
fnlm(kf ,ks) = 〈χ−(kf , rf )χ−(ks, rs)|

1
‖rf − rs‖ |χ+

0 (k0, rf )ψnlm(rs)〉,

gnlm(kf .ks) = 〈χ−(kf , rs)χ−(ks, rf )|
1

‖rf − rs‖ |χ+
0 (k0, rf )ψnlm(rs)〉, (2)

χ+
0 is the distorted wave calculated in the static-

exchange potential of the atom and χ− is the distorted
wave calculated in the static-exchange potential of the
ion, orthogonalized to ψnlm. These are normalized to a
delta function i. e.

〈χ±(k, r)|χ±(k′, r)〉 = δ(k− k′). (3)

In our DWBA calculations, the full non-local exchange
potential is not used to calculate the elastic scattering
but rather a localized version [16,18–21] is employed.
Its use greatly simplifies the static exchange calcula-
tions in that one needs only solve differential equations
rather than integro-differential equations. Because we
treat each of the exiting electrons as moving in the field
of a spin 1

2 ion, there is an inherent ambiguity in the
choice of exchange potential in the final channels, we
could chose it to be singlet or triplet [16,22]. For most
energies, there is little or no difference between results
calculated with the singlet or triplet potentials [16,21]

Both the singlet and triplet local exchange potential
which depends on the static potential Vstatic(r) and
the radial probability density α(r). The triplet term is
alway real but if

1
2
k2 − Vstatic(r) < 2α2(r) (4)

the singlet potential can become complex. For a detailed
discussion of where this problem arises and how is dealt
with in our code, see [16].

The atomic wave function plays an explicit role in (2)
and implicitly in the calculation of the static exchange
potentials. For most energies and kinematics, the TDCS
is not overly sensitive to wavefunction effects in cal-
culating the static-exchange potentials. However for
(e, 2e) on argon at an impact energy of 200eV , there
is evidence of an unexpected sensitivity [23,24] clearly
seen in the absolute size of the cross section. In our cal-
culations, we will use the Hartree–Fock orbitals given
in [25].

For atomic hydrogen, some of the same ambiguity
occurs in the incident channel. This ambiguity can be
partly avoided if we follow ([16]) and take

d3σDWBA

dΩfdΩsdE
=

(2π)4kfks

k0

[
3
4
|f t − gt|2 +

1
4
|fs + gs|2

]

(5)

with the direct and exchange amplitudes calculated
using the singlet (s) or triplet (t) static-exchange poten-
tials of the atom. Let us consider the special case of the
DWBA where the incident and fast scattered electrons
are replaced by plane waves
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χ−(kf , rf ) → 1
(2π)3/2

eikf .rf

χ−(k0, rf ) → 1
(2π)3/2

eik0.rf (6)

and exchange is neglected everywhere. In this case, the
static potential of the ion is just the Coulomb poten-
tial of the proton and (5) reduces to the regular first
Born approximation (FBA). The TDCS for the first
Born approximation is symmetric about the direction
of momentum transfer and a deviation from this is a
clear signal that there are pre- or post-collisional effects
which invalidates the choice of plane waves for the inci-
dent and scattered particle.

The DWBA neglects electron capture, and post-
collisional interaction between the scattered projectile
and the ejected electron. For the kinematics considered
here, we can safely neglect the capture contribution [16]
but not pci. In our earlier work [9,26,27], we used the
distorted wave Born approximation (DWBA) and tried
to take some account of pci by using a Gamow factor
Ne−e− [6,12]

d3σPCI

dΩ1dΩ2dE
= Ne−e−

d3σDWBA

dΩ1dΩ2dE
(7)

where
Ne−e− =

γ

eγ − 1
(8)

with

γ =
2π

‖kf − ks‖ . (9)

The Gamov factor is related to the analytic ansatz
approximation of Brauner, Briggs and Klar [28]. The
essence of the BBK approximation is to assume that the
full three-body wavefunction could be approximated
by three two-body wavefunctions corresponding to the
three final state particles all independently acting in
pairs. The approach has the appealing advantage of
treating each two body system in a symmetric way. The
Ne−e− factor comes from the Coulomb wave represent-
ing the two-body interaction between the two outgoing
electrons [29,30]. The BBK approximation tends to give
a reasonable representation of the shape of the TDCS
but unfortunately yields only a poor representation of
the absolute size of the cross section and is difficult to
apply to multi-electron targets[31,32]. Nevertheless the
Ne−e− factor tends to give the dominant angular behav-
ior of the TDCS at low energies and it does correctly
force the cross section to go to zero when kf = ks.
A modified version of the Ne−e− factor has been put
forward by Ward and Macek [33] in an attempt to
restore the normalization. In a number of earlier calcu-
lations, including our own [34], the Ward–Macek factor,
Me−e− , was used. In their original derivation Ward and
Macek assumed that at threshold, both exiting particles
(electrons in their case) preferentially moved at 180◦ to
each other which is consistent with the Wannier model
for threshold electron impact ionization. This will not

apply in the positron case, indeed intuitively one would
expect Φfs = 0◦ to be favored with the ejected elec-
tron partially screening the positron-nuclear repulsion.
Furthermore, we know [27] that the DWBA + Me−e−

gives poor agreement with the absolute experiments of
[35,36] at 1eV and 2eV above threshold for the elec-
tron impact ionization of helium. The Ne−e− factors
destroy the normalization consequently our primary
focus here is on understanding what contributes to the
shape of the cross section. In [27] Ne−e− was chosen to
be unity when Θsf = 180◦, i. e. the co-linear case. With
this choice, one gets very good agreement between the
DWBA and the absolute data in symmetric geometries
[27].

2.2.2 Positron scattering

The DWBA TDCS equations look similar to (1) and
(2), except that in this case, there is no exchange
amplitude gnlm, and the distorted waves χ+

0 (k0, r1) and
χ−(k1, r1) for the positron are generated in the static
potential which is the minus of the static potential for
electron impact. The distorted wave χ−(k2, r2) for the
slow ejected electron is orthogonalized to the bound
state. There is now no longer any ambiguity in the
choice of exchange potential. The ground state of our
targets is spin singlet (S = 0), and therefore, the ejected
electron wave function must be calculated in the singlet
static-exchange potential.

To estimate pci, we now change the sign of γ in (8).

Ne+e− =
γ

1 − e−γ
(10)

We still have the problem of choosing a normalization.
Once again we could assume that when Θfs = 180◦,
the pci effects are minimal and normalize Ne+e− = 1 at
the point. This is not ideal but is probably the best one
can do. An undesirable feature is that in the symmetric
geometry where kf = ks Ne−e− → 0 as Θfs → 0, Ne+e−

goes to infinity [9].

2.3 Classical correction

The idea of using a “pure classical” correction to
account for pci was first proposed by Popov [10] and
further developed by Klar and his collaborators [11].
Our assumption is that the classical correction can use-
fully be applied in a macroscopic region between the
detector and a “reaction zone” of atomic dimension. In
the region outside the reaction zone, we will assume
that the fast scattered particle is essentially free, while
the slow ejected electron moves in a Coulomb field of
unit charge, i. e. the same condition as in the FBA.

The approach of [11] which we are following is a mix-
ture of classical Hamiltonian dynamics and “perturba-
tion” theory. Polar position and momentum coordinates
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ri, pi = ṙi,
θi, Li = r2i θ̇i

are taken as the generalized coordinates; then, the clas-
sical Hamiltonian for the escape of scattered projectile
and ejected electron from the reaction zone is

H =
1
2

(
p2f + p2s +

L2
f

r2f
+

L2
s

r2s

)

−Vf (rf ) − Vs(rs) +
(−1)n

rsf
.

Vs(rs) = V (rs)
Vf (rf ) = (−1)nV (rf ) (11)

where
V (ri) → 1

ri
, ri → ∞

pi are the radial momenta, Li are the angular momenta
of the detected particles, i = s, f

n =
{

0 if projectile is e−

+1 if projectile is e+
(12)

In the classical region, it is assumed, to first order, that
outside the reaction zone, the scattered projectile can
be treated as a free particle, and the ejected electron is
elastically scattered in the field of the ion which because
of screening this reduces to simply the coulomb poten-
tial

V (r) =
1
r
.

Classically, this would correspond to

Ef =
1
2

[
p2f +

L2
f

r2f

]

Es =
1
2

[
p2s +

L2
s

r2s

]
− Vs(rs) (13)

being constants of the motion. The basic idea behind
the classical correction is to assume that the DWBA
approximation gives a good representation of the TDCS
inside a “small” reaction zone but from the boundary of
the reaction zone to the detector, it is assumed that the
pci interactions, though small, are sufficient to affect
the shape and size of the cross section at the detector
which is assumed to be located at infinity. For example,
if the energy of the fast electron, Ef , is different from
that at the reaction zone, then the symmetry about the
direction of momentum transfer will be broken, and
there will be an apparent shift in the position of the
binary and recoil peaks [12]. If we treat Es, Ef in (13)
not as constants but as functions of time, then the ener-
gies at t = 0 is related to that that at t = ∞ by

Ei(∞) − Ei(0) =
∫ ∞

0

Ėidt

⇒ Ei(0) = Ei(∞) −
∫ ∞

0

Ėidt (14)

Now let us look for a “perturbative” approximation
where to the lowest order, θi is constant. We assume
that to this order

rf (t) = rf (0) + kf t

kf =
√

2Ef (∞) (15)

and for the slow electron, its radial orbit is the solution
of

1
2
ṙ2s − V (rs) =

1
2
k2

s

ks =
√

2Es(∞) (16)

Assuming that the angle between the exiting particles
is

χ = θi + θf ,

we can write

Ef (0) = Ef (∞) + (−1)nV (rf (0))

+(−1)n+1

∫ ∞

0

dt ṙfr−3
sf (rf − rs cos χ),

(17)

and in the same way,

Es(0) = Es(∞) + (−1)n+1

∫ ∞

0

dt ṙsr
−3
sf (rs − rf cos χ)

(18)

Now we can, as in [11], write

θi(0) = θi(∞) −
∫ ∞

0

dtθ̇i(t)

θ̇i =
∂H

∂Li

=
Li

r2i
; (19)

then following the same approach as in ([11]), it follows
that

θi(0) = θi(∞) + (−1)n+3

∫ ∞

0

dt

r2i∫ t

0

dt′
rsrf sin(χ)

[r2s + r2f − 2rsrf cos(χ)]3/2

= θi(∞) + (−1)n+3

∫ ∞

0

dt

r2i∫ t

0

dt′
rsrf sin(χ)

[r2s + r2f − 2rsrf cos(χ)]3/2

= θi(∞) + (−1)n+3 sin(χ)
∫ ∞

0

dt

r2i∫ t

0

dt′
rsrf

[r2s + r2f − 2rsrf cos(χ)]3/2
(20)
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Fig. 2 Triple differential cross section for the electron impact ionization of atomic hydrogen. E0 = 250eV, Es = 5eV, θf =
3◦. Experiment:[37], error bars show estimated 15% absolute error. Theory: red dotted line: FBA; dashed green line:
FBA + Me−e− ; black dashed-double dotted line: FBA + Ne−e− ; solid blue line: FBA+ classical correction,

To get an equivalent equation to equation (19) in [11],
we change the order of integration and integrate over
the same region of space in both double integrals. An
undesirable feature of the classical correction approach
is that we do not have an a priori method for choos-
ing rf (0) and rs(0). The approach adopted here is to
fix them by comparison with the best available data
both experimental and theoretical for electron scatter-
ing from atomic hydrogen and then use the same values
both for the positron ionization under the same condi-
tions and then for the (e±, e±e−) on argon in equivalent
kinematics.

3 Results

3.1 Hydrogen target

3.1.1 Electron scattering

Let us first consider the (e−, 2e−) results for atomic
hydrogen where the TDCS is well-understood. Ehrhardt
and collaborators [37] have produced highly accurate
experimental data with which the coupled pseudo-state
calculations of [22,31] as well as the Eikonal Born series
calculations of [38] agree. The coupled pseudo-state cal-
culation is as close to a complete numerical treatment
of the problem as one can hope. Its validity has been
confirmed not only by the excellent agreement with
experiment, but also by other large scale calculations,
see for example [39]. However, its very completeness
makes it difficult to extract an understanding of how
different physical mechanisms contribute, and it is cur-
rently applicable only to the lightest of atoms. It is
possible to place a 15% error estimate on the absolute
size of the measured cross sections [37,40]. As our basic

Fig. 3 A comparison for the Ne−e+ and Ne−e− factors as a
function of θs for Ef = 231.4 eV, Es = 5 eV, θf = 3◦ Ne+e−
given by solid blue line, Ne+e− by the red dashed line

case study, we will consider the electron impact ioniza-
tion of hydrogen for an impact energy of 250eV , where
the fast scattered electron is detected at θf = 3◦ and
Es = 5eV ; in these kinematics, there is only a small dif-
ference between the DWBA and FBA approximations
[15,16]. In Fig. 2, the experimental results of [37] are
compared with the first Born approximation, together
with the three pci correction techniques, the multiplica-
tion by Ne−e− and Me−e− , together with a classical cor-
rected version with rf (0) = 2.8, rs(0) = 0.5. The first
Born is symmetric about the direction of momentum
transfer. The experiment and the more sophisticated
theories[22,38,39] yield a TDCS with a binary peak
that is reduced and shifted toward larger angles and
a recoil peak that is enhanced and shifted by an even
larger amount also toward larger angles. Both the multi-
plicative approximations of pci have a shape that is sim-
ilar to the FBA, and while the binary peak is somewhat
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Fig. 4 Triple differential cross section for the electron/positron impact ionization of atomic hydrogen. E0 = 250eV, Es =
5eV, θf = 3◦. Red dotted curve FBA; classically corrected: e− solid blue line; e+ green dashed

reduced, the recoil remains too small. This behavior is
not surprising when we consider Fig. 3. Both Ne+e−

and Ne−e− are functions of ‖kf − ks‖ and in the cur-
rent kinematics kf >> ks; consequently, there is only a
small change in both as we vary θs. In contrast to the
more dramatic variation seen in symmetric geometries
[9], Ne−e− takes its maximum value when Θfs = 180◦
and its minimum when Θfs = 0◦. In positron case,
Ne+e− is maximal when Θfs is close to zero and mini-
mal when Θfs = 180◦. The classically corrected approx-
imation gives a better agreement with experiment, with
the binary peak reduced and rotated to larger angles
and the recoil peak enhanced and rotated to smaller
angles. The positions of the binary and recoil peaks
using the FBA with classical correction are in agree-
ment with those given by the Eikonal Born series cal-
culations tabulated in [38], and the ratio of binary max-
imum to recoil maximum is also in close accord. These
results encourages in the belief that we have something
of the character of the pci contained in our calculations.

3.1.2 Positron scattering

In Fig. 4, the classically corrected results are shown
for exactly the same kinematics for both electron and
positron impact ionization. The factors rf (0), rs(0) are
the same for both calculations. These are the values
used to give good agreement with experiment for the
electron case, i. e. rf (0) = 2.8 a.u. , rs(0) = 0.5 a.u.
In the absence of pci, the first Born approximation is
the same for both electron and positron scattering. The
effect of pci is to reduce the binary maximum of the
electron scattering and rotate it toward larger angles
but in the positron case, the binary peak is enhanced
and rotated toward smaller angles. The recoil peak is
greatly diminished for positron impact and increased
for electron impact.

In Fig. 4, we plot the energy shifts and the bend-
ing of the trajectories of the scattered particle and the

ejected electron. Shown are results for both electron
and positron impact. In each case, the trajectories of
the ejected electron mirrors the positron. For positron
impact, if the ejected electron accelerates, then for for
electron impact, it is de-accelerated. If one particle tra-
jectory is rotated clockwise, then the other is rotated
anti-clockwise.

3.2 Argon

In the realm of e+/e− measurements, argon is most fre-
quently used target [4,5,9,26,34,41] and we will study
it here. In order to use the methods developed above,
we need to determine the size of the classical region,
i.e., to fix rs(0) and rf (0). We can make the reason-
able assumption that the spatial extension of the colli-
sion complex is proportional to the scattered particle’s
velocity. The binding energy of the 3p electron in argon
is a mere 2.2eV greater than hydrogen; thus, by increas-
ing the impact energy to 252.2eV , we keep kf and ks

unchanged from the hydrogen case. We can also look
to the “size” of the atoms. Clementi and colleagues [42]
have calculated the atomic radii of all the atoms in the
first six rows of the periodic table. We considered the
possibility of scaling the hydrogen rs(0) by the ratio of
the atomic radii which gives a value of rs(0) of approx-
imately 0.65. We fixed rf (0) = 2.8 a.u. and considered
values of rs(0) between 0.5 au.and 0.65 a.u and found
only a relatively small variation in the shape of the
cross sections. In the calculations presented here, we
use rf (0) = 2.8 a.u. and rs(0) = 0.5 a.u. In the DWBA
calculation, the incoming and fast outgoing particle is
assumed to be moving in the static-exchange (static in
the positron case) of the atom and the ejected to be
moving the singlet static-exchange potential of the ion.

The results shown in Fig. 6 correspond to the regular
DWBA with and without Ne±,e− . All four results are
very similar in shape and are more or less symmetric
about the direction of momentum transfer θq = 49◦
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Fig. 5 PCI effects at E0 = 250eV on hydrogen, the scattered particle is detected at θf = 3◦ with an energy of Ef =
232.4eV . Plotted is (a) energy shift for the scattered projectile, b energy shift for the ejected electron, c bending of the
trajectory for the scattered electron, d bending of the trajectory for the ejected electron, against the observation angle
θs = θs(∞). The blue solid curve is for an electron impact. The green dashed curve corresponds to a positron impact

In Fig. 7, we show the regular DWBA calculations for
electron and positron impact together with the respec-
tive DWBA calculations with the inclusion of pci via
the classical correction method. For electron impact,
the binary peak is reduced and rotated away from the
binary direction to larger angles, while the recoil peak is
significantly enhanced. For positron impact, the binary
peak is increased and rotated toward smaller angle,
while the recoil peak is reduced.

In Fig. 7 c, comparison of the triple differential cross
sections for electron and positron impact ionization cal-

culated in the DWBA with pci included via the classical
correction is shown.

Very recently, Du Bois and deLucio [5] have published
results in kinematics very similar to ours. In particu-
lar, they give results for e+/e− on Argon at an impact
energy of 200eV . The ejected electron energies are var-
ied for a range from 2.6 to 19eV with θf fixed at 2◦, 3◦ or
4◦. The qualitative features of these results are similar
to ours. We plan a careful study of these experimental
results.

Fig. 6 TDCS for electron and positron impact ionization of Argon(3p): green dashed dotted:DWBA(electron impact);
black dotted:DWBA(electron)+Ne−e− ; red dashed: DWBA(positron); blue solid line:DWBA(positron)+Ne+e−
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Fig. 7 TDCS for electron and positron impact ionization of Argon(3p) E0 = 252.2eV, Es = 5eV θf = 3◦: DWBA solid
orange; DWBA+ classical correction, dashed blue. a electron impact; b positron impact; c a comparison of the TDCS for
electron/positron impact ionization of argon, E0 = 252.2eV , Es = 5eV, θf = 3◦: Purple dashed curve electron, red dotted
curve positron)

4 Conclusions

The multiplicative approach to including post-collisional
interactions has provided valuable insights in very sym-
metric geometries [6,7,27] but it largely fails in the low-
to-intermediate energy asymmetric kinematics, consid-
ered here giving little improvement over a pci-free dis-
torted wave Born calculation. The classical correction
method developed here is more successful, giving at the
least the gross features of the complementary e+, e−
studies. Indeed the preliminary results presented here
would appear to suggest that at least as far as the shape
is concerned, the TDCS is far more sensitive to pci
effects than to other more subtle few body effects, such
as exchange. This study also suggests that pci can be
well-represented classically in the macroscopic region
between the collision complex and the detector. In this
work, the spatial extent of the collision complex was
empirically determined for the electron impact ioniza-
tion of hydrogen and once so determined applied to
predict the shape of the TDCS for positron impact and
then for both positron and electron impact ionization
of argon. The general shape and relative behavior of the
argon cross sections are in qualitative agreement with
very recent experimental work [5]. We hope to return
to a more detailed comparison in the near future.
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