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Abstract. We propose a scheme to realize storage and retrieval of symmetric and antisymmetric nonlin-
ear surface plasmon polaritons (SPPs) solitons via electromagnetically induced transparency (EIT) in a
metal–dielectric–metal (MDM) waveguide. The dielectric is chosen as ladder-type three-level atoms with
incoherent pumping. We find that the Ohmic loss of both symmetric and antisymmetric modes in the
system can be totally compensated under EIT condition but with different incoherent pumps. The trans-
parency window becomes wider for the symmetric mode, but deeper for the antisymmetric mode, when
incoherent pumping exists. We also show that in nonlinear propagation regime, a huge enhancement of
Kerr nonlinearity of the symmetric and antisymmetric SPPs can be obtained, and gain-assisted (1 + 1)-
dimensional symmetric and antisymmetric subluminal SPPs solitons can be produced, stored and retrieved
with high efficiency and stability. At last, we study the strategies to optimize the optical memory for the
two modes. Our study may have promising applications in light information processing and transmission
at nanoscale level based on MDM waveguides.

1 Introduction

Storage and retrieval of evanescent waves in confine-
ment systems via electromagnetically induced trans-
parency (EIT) has been one of the hotspots in micro/
nano-optics recently, because of its practical application
potentials [1,2]. Due to the enhancement of the inter-
action between the evanescent waves and the coherent
mediums in such systems, the storage efficiency and
fidelity would be greatly improved [3,4].

Various schemes have been proposed to realize high
efficiency storage and retrieval of optical pluses in
micro/nanostructure waveguide systems experimentally
or theoretically [5–7]. And up to now, research on stor-
age of optical pluses is not limited in the linear region
[8], and it has been extended to the nonlinear region
[9,10].

In 2014, Xue et al. studied the mechanism of the
light storage in a cylindrical waveguide with core of nor-
mal refractive index material and cladding of negative
refractive index metamaterial [11]. In 2015, Gouraud
et al. filled high-density cold atomic gas around the
nanofiber to realize the storage of the evanescent waves
in the nanofiber [12]. In the same year, Sayrin et al.
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demonstrated that nanofiber-based EIT optical mem-
ory in tapered optical fibers with a nanofiber waist [13].
In 2020, Zhou et al. theoretically investigated the opti-
cal memory in a nanofiber system via EIT in nonlinear
region [14]. In 2017, Xu et al. investigated the nonlinear
solitons memory in the atomic gas filled in a kagome-
structured hollow-core photonic crystal fiber (HC-PCF)
[15]. In 2018, Su et al. studied linear surface polariton
(SP) memory in a Λ-type three-level quantum emitters
doped at a metal–dielectric interface through numeri-
cal simulation, and improved the efficiency and fidelity
of the linear SP memory by using a weak microwave
field [16]. In 2020, Li et al. stored light in an ensemble
of cold atoms inside an HC-PCF using an EIT process
to studied the quantum memory of hollow core pho-
tonic crystal fiber [17]. In 2019, Shou et al. proposed
a scheme to realize slow-light soliton beam splitters by
using a tripod-type four-level atomic system [18]. How-
ever, it seems that storage and retrieval of nonlinear
SPPs have not arisen enough attention of researchers.

Thus, we propose a scheme to realize storage and
retrieval of SPPs solitons [19] in the metal–dielectric–
metal (MDM) waveguide structure via the EIT effect.
MDM waveguides are common waveguide structures
[20–22], which is simple and easy to manufacture
[23,24]. In 2016, Walasik et al. developed two meth-
ods to calculate the stationary nonlinear solutions in
one-dimensional plasmonic slot waveguides made of a
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finite-thickness nonlinear dielectric core surrounded by
metal regions [25,26], and the results show that non-
linear SPPs solitons can exist in the MDM waveg-
uide. In addition, there are two propagation modes of
SPPs, symmetric (short range) mode and antisymmet-
ric (long range) mode [27,28], in the MDM waveguides,
which also provide a good platform for our research on
the storage and retrieval of both modes SPPs solitons,
together with their optimize strategies.

In this work, the dielectric is chosen as ladder-type
three-level atoms with incoherent pumping. In the lin-
ear region, we obtain that the Ohmic loss of both sym-
metric and antisymmetric modes in the system can
be totally compensated under EIT condition but with
different incoherent pumps. In the nonlinear region,
we show that a huge enhancement of Kerr nonlinear-
ity of the symmetric and antisymmetric SPPs can be
obtained, and a gain-assisted (1 + 1)-dimensional sym-
metric and antisymmetric subluminal SPPs solitons can
be produced, stored and retrieved with high efficiency
and stability. At last, we study the strategies to opti-
mize the optical memory for the two modes. This work
may have certain applications in micro/nanoscale quan-
tum information processing.

The article is arranged as follows. In Sect. 2, the the-
oretical model and method are described. In Sect. 3, the
linear propagation characteristics of the two propaga-
tion modes are discussed. In Sect. 4, the storage and
retrieval of SPPs solitons are studied under nonlinear
characteristics. Finally, the last section summarizes the
main results of this work.

2 Model

The model under study is shown in Fig. 1a. The
system is composed of a three-layer waveguide, and
the upper and lower layers are composed of metal,
i.e., metal/dielectric/metal (MDM) waveguide. Assum-
ing that they extend indefinitely in the y direction
(|z| ≥ d/2), the permittivity and permeability of the
metal are ε2 and μ2, and are given by the Drude model
in optical region [29]. The middle part is composed of
dielectric (|z| < d/2), which is chosen as a cold atomic
gas with a three-level ladder-type energy excitation dia-
gram. The permittivity and permeability of this part
are ε1 and μ1.

Since the electric field in the y direction cannot accu-
mulate charge under continuous conditions at the inter-
face between metal and dielectric, TE waves cannot
propagate in the MDM waveguide, thus, we only con-
sider TM mode in our work. Under the continuous con-
dition of tangential electric field E and normal electric
displacement vector D, we can solve the Maxwell equa-
tions, and obtain the expressions for the electric field
and the dispersion relationship of symmetric mode and
antisymmetric mode, which are shown in Appendix 1.

For convenience, we assume the input probe light and
control light propagate along the x direction, and the
expression of the electric field can be expressed as:

Fig. 1 a MDM three-layer waveguide model structure.
The intermediate layer is chosen as a cold atomic gas ensem-
ble. The two curves in the figure represent the distribution of
TM modes SPPs magnetic field in the y direction, including
symmetric mode and antisymmetric mode. b Energy state
structure and excitation diagram of a three-level ladder-type
system. ωc coupled state |2〉 and state |3〉, ωp coupled state
|1〉 and state |2〉. Γij (i, j = 1, 2, 3) is the spontaneous emis-
sion rate from state |j〉 to energy state |i〉, Γ31 corresponds
to incoherent pumping, and Δ2 and Δ3 are the single- and
two-photon detunings, respectively

E(r, t) = Ep + Ec =
∑

l=p,c

El(x, t)ul(z)ei(klx−ωlt) + c.c.,

(1)

where El(x, t) is the slowvary envelope function of the
light field, ul(z) is the fundamental mode distribu-
tion function, and kl = k(ωl) is propagation constant.
Under electric-dipole approximation and rotating-wave
approximations (RWA), the Hamiltonian of the system
in the interaction picture reads [30]

Ĥint = − �

3∑

j=1

Δj |j〉〈j| − �[ζp(z)eiθpΩp|2〉〈1|

+ ζc(z)eiθcΩc|3〉〈2| + h.c.], (2)

where ζc(z) = e23 · uc(z), ζp(z) = e12 · up(z) are mode
functions of the control field and probe field, respec-
tively. The Rabi frequency of the probe field and con-
trol field are defined as Ωp = Ep|p21|/�, Ωc = Ec|p32|/�.
pij = |pij |eij is the electric-dipole transition matrix
element, eij is the unit vector of the electric-dipole
moment from state |j〉 to state |i〉. Under the inter-
action picture, the equation describing the motion of
the system can be expressed as [31]

i�

(
∂

∂t
+ Γ

)
σ =

[
Ĥint, σ

]
, (3)

where σ is a 3 × 3 density matrix, Γ is a 3 × 3 relax-
ation matrix with spontaneous emission and dephasing.
The Bloch equation of the ladder atomic system in the
MDM waveguide is presented in Appendix 5.

The propagation of the probe field and control field
follows Maxwell equationss
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∇2E − 1
c2

∂2E
∂t2

=
1

ε0c2

∂2P
∂t2

, (4)

where P = N{p12σ21exp[i(kpx − ωpt)] + p23σ32

exp[i(kcx−ωct)]+c.c.} is the electric polarization inten-
sity of the system, and N represents the number density
of the atoms.

Under the slowly varying envelope and mean-field
approximation, the Maxwell equation describing the
envelope of light field can be written as [30]

i

(
∂

∂x
+

n2
1

cneff

∂

∂t

)
Ωpe

iθp + κ12〈σ21〉 = 0, (5)

where neff = ckp/ωp is the effective refractive index of
the probe field. κ12 = Nωl|p12|2/2�ε0cneff is the cou-
pling constant describing the interaction between the
atomic gas and the probe field. The expectation opera-
tor 〈〉 is defined as 〈Ψ(z)〉
≡ ∫ +∞

−∞ dzζ∗
p (z)Ψ(z)/

∫ +∞
−∞ dz|ζp(z)|2.

3 Linear properties of SPPs in MDM
waveguide

3.1 Base state

We use the multiscale method in singular perturbation
theory to solve the Maxwell–Bloch (MB, Eqs. (3) and
(4)) equations step by step [32]. The density matrix
element and the Rabi frequency of the probe field are
expanded as σij =

∑
l ε

lσ
(l)
ij (l = 0, 1, 2, 3), Ωp =

∑
l ε

lΩ
(l)
p (l = 1, 2, 3), and all the physical quantities on

the right side of the equation are functions of the multi-
ple scales variable xl = εlx(l = 0, 1, 2), tl = εlt(l = 0, 1).
The base state of the system when there is no probe
field, i.e., the initial state of the system, can be solved
from the zeroth-order solution of the MB equation

σ
(0)
11 =

iΓ12Γ23|d32|2 + |ζc(z)Ωce
iθc |2(d32 − d∗

32)Γ12

iΓ |d32|2 + |ζc(z)Ωceiθc |2(d32 − d∗
32)(Γ12 + 2Γ31)

,

(6)

where Γ = Γ12Γ23 + Γ23Γ31 + Γ12Γ31,σ
(0)
33 = 1 −

(σ(0)
11 + σ

(0)
22 ),σ(0)

22 = Γ31σ
(0)
11 /Γ12,σ

(0)
32 = ζc(z)Ωc(σ

(0)
33 −

σ
(0)
22 )eiθc/d32. When there is no incoherent pumping in

the system (i.e., Γ31 = 0), particles are only occupy on
state |1〉. When we provide an incoherent pumping to
the system (i.e., Γ31 �= 0), a partial number of atoms
will be pumped to state |2〉 (i.e., σ

(0)
22 �= 0), which means

that the probe field will obtain an effective gain.

3.2 Linear dispersion relation and slow light effect

The first-order solution of σij by using the multiscale
method read

Ω(1)
p = Feiθ, (7)

σ
(1)
21 =

D1

D
ζp(z)Ω(1)

p eiθp , (8)

σ
(1)
31 =

D2

D
ζp(z)Ω(1)

p eiθp , (9)

where θ = K(ω)x0 − ωt0 and F is an envelope func-
tion to be determined, depending on the slow vari-
able z1, z2, t1. D = (ω + d21)(ω + d31) − |ζc(z)Ωce

iθc |2,
D1 = (ω + d31)(σ

(0)
22 − σ

(0)
11 ) − ζ∗

c (z)Ω∗
c σ

(0)
32 e−iθ∗

c , D2 =
(ω + d21)σ

(0)
32 − (σ(0)

22 − σ
(0)
11 )ζc(z)Ωce

iθc , σ
(1)
11 = σ

(1)
22 =

σ
(1)
33 = σ

(1)
32 = 0.

The linear dispersion relation of SPPs interacting
with the atoms is expressed as

K(ω) =
ω

c

n2
1

neff
+ κ12

〈
D1

D
ζp(z)

〉
. (10)

Figure 2 shows the linear absorption Im(K) and dis-
persion relation Re(K) as function of frequency shift ω.
The blue dashed correspond the system with Γ31 = 0,
and the red solid lines correspond to the system with
Γ31 = 0.5 Γ . In Fig. 2a, b, when the system has the inco-
herent pumping, a transparent window is generated at
the center frequency ω = 0 due to the quantum inter-
ference in the system. At this point, the probe field of
the system is strongly inhibited, the system gain benefit
and the EIT effect is enhanced. Comparing with anti-
symmetric mode, the transparent window at the center
frequency of the symmetric mode is wider, thus, under
the same condition the EIT effect is enhanced in sym-
metric mode. The transparent window at the center
frequency of the antisymmetric mode is deeper, thus,
the active gain is easier to obtain for the antisymmetric
mode. Those results will strongly affect system parame-
ters during the storage of SPPs. Figure 2c, d shows that
the slope of the curve near the center frequency is larger
and the group velocity is lower of system with incoher-
ent pumping. When inputting incoherent pumping into
the system, the group velocity changes more obviously
for the symmetric mode comparing with the antisym-
metric mode.

The group velocity is given by Vg = Re[∂Kp/∂ω]−1,
and the detailed expression reads

Vg = Re

[
1

c

n2
1

neff
+ k12

D2ζ
∗
c Ω∗

c e−iθ∗
c − (ω + d31)D1

D2

]−1

.

(11)

Figure 3a (Fig. 3b) shows the group velocity Vg as a
function of frequency shift ω for the symmetric (anti-
symmetric) mode. The red solid line shows the group
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Fig. 2 Linear dispersion diagram of SPPs in MDM waveg-
uide. a, b The relation between the linear absorption Im(K)
of SPPs in symmetric mode and antisymmetric mode of fre-
quency shift ω, respectively. c, d The relation between the
linear dispersion Re(K) of SPPs in symmetric mode and
antisymmetric mode of frequency shift ω, respectively. In
panel a–d, red solid line and blue dashed line correspond to
Γ31 = 0.5 Γ and Γ31 = 0, respectively
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Fig. 3 a, b The group velocity Vg as a function of fre-
quency shift ω for the symmetric mode and antisymmetric
mode, respectively. In panel a, b, red solid line and blue
dashed line curve correspond to the system with Γ31 = 0.5 Γ
and Γ31 = 0, respectively. Shown in the inset figures are
zoomed near the center frequency ω = 0

velocity of the system with Γ31 = 0.5Γ , and the blue
dashed line shows the group velocity of the system
with Γ31 = 0. The results show that the group veloc-
ity decreases at the central frequency when incoherent
pumping is provided to the system for the symmetric
mode. However, the group velocity is almost constant
for the antisymmetric mode. The conclusions obtained
are consistent with Fig. 2c, d.

The parameters used in this section are: d = 200 nm,
μ1 = μ2 = 1, ε1 = 1, ε2 = −29.25 + 0.57i, λ = 780 nm,
Γ12 = 6 × 106 s−1, Γ23 = 1 × 103 s−1, Ωc = 3 ×
108 s−1, Γ31 = 3 × 106 s−1. The matal is chosen as sil-
ver, and the cold atom gas ensemble is chosen as 87Rb,
the energy levels are [12], |1〉 = |5S1/2, F = 2〉, |2〉 =
|5P3/2, F = 3〉, |3〉 = |60S1/2〉. In symmetric mode
k = (18.46+0.031i)×104 cm−1, in antisymmetric mode
k = (12.40 + 0.070i) × 104 cm−1.
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4 Storage and retrieval of SPPs solitons in
the MDM waveguide

4.1 Ultraslow optical solitons for EIT memory

In this section, we will focus on the nonlinearity of the
system. The divergence-solvable conditions of second-
order approximation is: i[∂F/∂z1 + ∂F/(Vg∂t1)] = 0.
The solvable condition in the third-order probe yields
the nonlinear equation approximation is i∂F/∂z2 −
K2∂

2F/2∂t21 − W |F |2Fe−2ᾱz2 = 0. The second-order
solutions of MB equations are given in Appendix 5.
Combining the solvable conditions and envelope equa-
tions, the nonlinear envelop equation for probe light
propagation is obtained

i

(
∂

∂z
+ α

)
U − K2

2
∂2

∂τ2
U − W |U |2U = 0, (12)

with α = Im[K(ω = 0)], U = εFe−αz, τ = t − x/Vg,
the complex group velocity dispersion of the probe field
being K2 = ∂2K(ω)/∂ω2, the probe file self-phase mod-
ulation coefficient W is given by

W = κ12

〈
(ω + d31)(a

(2)
11 − a

(2)
22 ) + ζ∗

c (z)Ω∗
c e−iθ∗

c a
(2)
32

D

×ζp(z)|ζp(z)eiθp |2
〉

. (13)

In general, the coefficients in Eq. (12) are complex.
The stable propagation of SPPs needs to satisfy the
low absorption of probe light, and balance of the dis-
persion and nonlinearity. Therefore, in order to make
SPPs propagate stably over long distances, we need to
find a set of parameters such that the real part of each
term in Eq. (12) is much larger than the imaginary part.
Ignoring the imaginary part of the equation, nonlinear
Schrödinger equation (NLSE) in the dimensionless form
is obtained

i
∂u

∂s
+

∂2u

∂σ2
+ 2|u|2u = 0, (14)

where we introduce the dimensionless variables u =
U/U0, σ = τ/τ0,s = −x/2LD. Here, LD = τ2

0 /K̃2 is
typical dispersion length of the system, τ0 is typical
time scale, LN = 1/(W̃ |U0|2) is typical nonlinearity
length. When the dispersion and nonlinear effects are
balanced (LD = LN ), the typical half Rabi frequency

U0 = (1/τ0)
√

K̃2/W̃ . K̃2 and W̃ is the real part of K2

and W , respectively.
There are various soliton solutions in the nonlinear

Schrödinger equation (NLSE). We choose a bright soli-
ton solution, operation in the original parameter vari-
ables, the form of the soliton solution can be expressed

as u = sech(σ) exp(is), which can be expressed in the
form of half Rabi frequency as

Ωp(x, t) =
1

τ0

√
K̃2

W̃
sech

[
1

τ0
(τ − x

Ṽg

)

]
exp

[
iK̃0x+i

x

2LD

]
.

(15)

In order to make the real part of coefficients much
larger than the imaginary part in Eq. (12), the param-
eters selected above analyse are as follows: In sym-
metric mode, Γ31 = 0,Δ2 = 1 × 107 s−1,Δ3 =
−3 × 105 s−1. Then, we obtain K2 = (1.5 + 0.4i) ×
10−11 cm−1s−2,W = (−3.6 + 0.01i) × 10−16 cm−1s−2,

LA = 1/|α| = 3 cm,LD = τ2
0 /K̃2 = 0.02 cm.

In antisymmetric mode, Γ31 = 0,Δ2 = −1.67 ×
106 s−1,Δ3 = 1.8 × 105 s−1. Then, we obtain K2 =
(−2.7 + 0.45i) × 10−11 cm−1s−2,W = (7.6 + 0.02i) ×
10−17 cm−1s−2,LA = 1/|α| = 5 cm,LD = 0.013 cm. In
the symmetric mode and the antisymmetric mode, the
selected parameters make the real part of these com-
plex numbers much larger than the imaginary part. In
addition, the absorption length LA is also much larger
than the typical nonlinearity length LD.

4.2 Storage and retrieval of SPPs solitons

In this subsection, we use numerical methods to explore
the storage and retrieval of SPPs solitons in the MDM
waveguide. To realize ultraslow SPPs solitons storage
and retrieval process, we need to simplify the MB equa-
tions into the effective MB equation, which is given
in Appendix 5. By switching-off and switching-on of
the control field, the storage process can be obtained.
The control field is a function of time, which can be
expressed in the form of half Rabi frequency as follows:

Ωc(0, t) = Ωc0

{
1 − 1

2
· tanh

[
t − Toff

Ts

]

+
1
2

· tanh
[
t − Ton

Ts

]}
, (16)

where Toff and Ton are times of switching-off and
switching-on of the control field, respectively. The adi-
abatic parameter Ts represents the switching time of
the control field. According to the dark state polari-
tons theory, the ultraslow soliton during storage can be
expressed as:

Ωp(x, t) ≈⎧⎪⎪⎨
⎪⎪⎩

A
τ0

√
˜K2
˜W

sech[ 1
τ0

(τ − x
˜Vg

)] exp[iK̃0x + i x
2LD

], t < Toff

0, Toff < t < Ton

B
τ0

√
˜K2
˜W

sech[ 1
τ0

(τ− x
˜Vg

−TD)] exp[iK̃0x+i x
2LD

+iφ0], t>Ton

(17)
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with A and B are constants connected to the initial
condition, φ0 is a constant phase factor.

In order to explore the storage effect of optical soli-
ton, we defined storage efficiency η and fidelity J2

η =

∫ +∞
−∞ |Ωp(L, t)|2dt

∫ +∞
−∞ |Ωp(x = 0, t)|2dt

, (18)

J2 =
|∫+∞

−∞ Ωp(x=0, t) · Ωs(x=L, t+T ′
D)dt|2

∫+∞
−∞ |Ωp(x=0, t)|2dt · ∫+∞

−∞ |Ωp(x=L, t + T ′
D)|2dt

,

(19)

with η characterize the energy loss of the output pulse,
J2 characterize the degree of waveform overlap in light
pulses. The fidelity of light pulse storage is represented
by ηJ2.

The numerical calculation used the following physical
parameters: for symmetric mode, Ωc0 = 6 × 106 s−1 =
Γ12, Γ23 = 3.2 × 103 s−1,Δ2 = 1 × 107 s−1,Δ3 = −3 ×
105 s−1, τ0 = 6 × 10−7 s,Toff = 2.5 τ0,Ton = 10 τ0;
for antisymmetric mode, Ωc0 = 1 × 107 s−1, Γ12 = 6 ×
106 s−1, Γ23 = 3.2×103 s−1,Δ2 = −1.67×106 s−1,Δ3 =
1.8 × 105 s−1, τ0 = 6 × 10−7 s,Toff = 3 τ0,Ton = 13 τ0.
The other parameters of the cold atomic gas used in
this subsection is the same as the previous subsection.
In the process of numerical simulation, the initial form
of the probe field is Ωp0 · sech[1.763t/τ0], Eq. (16) gives
the form of the control field.

Figure 4 shows time evolution of |Ωpτ0| and |Ωcτ0| as
functions of x and t in three optical memory processes.
The signal pulse is launched into the waveguide at x =
0 and readout at x = 0.65 mm after a 6 μs storage
and retrieval process. Temporal and spatial evolution
of |Ωcτ0| and |Ωpτ0| for (a), (b), (c) symmetric mode,
and (d), (e), (f) antisymmetric mode.

Figure 4a–c shows temporal and spatial evolution of
|Ωcτ0| and |Ωpτ0| for symmetric mode. Figure 4a shows
the result of optical memory process for a weak probe
pulse, where Ωp(0, t)τ0 = 0.6sech[1.763t/τ0]. In this
situation, the linear dispersion effect in the system is
strong and dominant. The light pulse is deformed dur-
ing storage, and the probe pulse width broadened. The
storage efficiency in this simulation is η ≈ 68% and the
memory fidelity is ηJ2 ≈ 60%. Figure 4b shows the
result of optical memory process for a weak nonlinear
probe pulse, where Ωp(0, t)τ0 = 1.36sech[1.763t/τ0]. In
this case, the linear dispersion effect and the nonlin-
ear effect in the system are balanced. The probe pulse
is transformed into a sharp soliton before closing the
control field, and is stored in the atomic medium after
closing the control field. When the control light field is
turned on again, the probe pulse continues to propa-
gate forward in the form of a soliton. The storage effi-
ciency in this simulation is η ≈ 75%, and the memory
fidelity is ηJ2 ≈ 73%. Figure 4c shows the result of
optical memory process for a strong probe pulse, where
Ωp(0, t)τ0 = 2.1sech[1.763t/τ0]. For such a probe field,
the system is nonlinearity dominant. The signal pulse
has a significant distortion after storage, and some new

peaks are generated. Storage efficiency and fidelity are
not ideal, η ≈ 73%, ηJ2 ≈ 62%.

Figure 4d–f are temporal and spatial evolution of
|Ωcτ0| and |Ωpτ0| for antisymmetric mode. Figure 4d
shows the result of optical memory process for a weak
probe pulse, where Ωp(0, t)τ0 = sech[1.763t/τ0]. Simi-
lar to the case of the symmetric mode, the system is
dispersion dominant. In this case, the storage efficiency
is η ≈ 67%, and a low memory fidelity ηJ2 ≈ 60%.
Figure 4e shows the result of optical memory process
for a weak nonlinear probe pulse, where Ωp(0, t)τ0 =
2sech[1.763t/τ0]. The nonlinearity balancing the dis-
persion, so that a stable propagating SPPs soliton is
formed. In this case, the storage efficiency improves
to η ≈ 75%, and the memory fidelity improves to
ηJ2 ≈ 73%. Figure 4f shows the result of optical mem-
ory process for a strong probe pulse, where Ωp(0, t)τ0 =
2.7sech[1.763t/τ0]. The strong nonlinearity not only
causes an low efficiency η ≈ 70%, an low memory
fidelity ηJ2 ≈ 56%.

From the above results, we can see that stable propa-
gating SPPs soliton can be formed for both symmetric
mode and antisymmetric mode, and both the optical
soliton memory has a relatively high stability and effi-
ciency, but with different parameters region. Next, we
will explore the influencing factors of the optical soliton
memory by changing the input signal amplitude |Ωp0τ0|
and input control field amplitude |Ωc0τ0| to improve the
stability and efficiency of the optical soliton memory.

Figure 5a, b illustrate the memory fidelity ηJ2 as
a function of |Ωp0τ0| and |Ωc0τ0| for symmetric mode
and antisymmetric mode, respectively. Figure 5a shows
there are two band regions where the memory fidelity
is higher than 80%. The memory fidelity is gradually
decreasing at the periphery of the frequency band. In
the two higher fidelity band regions, the amplitude of
the control field |Ωc0τ0| is similar, and the probe ampli-
tude |Ωp0τ0| is quite different. Fig. 5b shows there is a
band regions where the memory fidelity is higher than
80%. Similar to the case of the symmetric mode, near
the band the memory fidelity decay quickly. In the band
region, the amplitude of control field |Ωc0τ0| is rela-
tively large and we can obtain a relatively high mem-
ory fidelity even if we vary signal amplitude |Ωp0τ0| in
a wide range.

5 Conclusion

In summary, we propose a scheme to realize storage
and retrieval of symmetric and antisymmetric nonlin-
ear SPPs solitons via EIT in a MDM waveguide. The
atoms interacting with SPPs have a ladder-type three-
level excited configuration with incoherent pumping. In
the linear regime, we obtain that the Ohmic loss of both
symmetric and antisymmetric modes in the system can
be totally compensated under EIT condition but with
different incoherent pumps. The transparency window
becomes wider for the symmetric mode, but deeper
for the antisymmetric mode, when incoherent pump-
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(a)

(b)

(c)
(f)

(e)

(d)

Fig. 4 Time evolution of |Ωpτ0| and |Ωcτ0| as functions of x and t for EIT memory process in MDM waveguide system.
a–c are temporal and spatial evolution of |Ωcτ0| and |Ωpτ0| for symmetric mode. a Storage and retrieval of a weak pulse
with input pulse Ωp(0, t)τ0 = 0.6sech[1.763t/τ0]; b Storage and retrieval of a soliton pulse with input pulse Ωp(0, t) =
1.36sech[1.763t/τ0]; c Storage and retrieval of a strong pulse with input pulse Ωp(0, t) = 2.1sech[1.763t/τ0]. d–f are temporal
and spatial evolution of |Ωcτ0| and |Ωpτ0| for antisymmetric mode. d Storage and retrieval of a weak pulse with input pulse
Ωp(0, t)τ0 = sech[1.763t/τ0]; e Storage and retrieval of a soliton pulse with input pulse Ωp(0, t) = 2sech[1.763t/τ0]; f Storage
and retrieval of a strong pulse with input pulse Ωp(0, t) = 2.7sech[1.763t/τ0]
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Fig. 5 Optimizing of MDM waveguide optical memory.
The memory fidelity ηJ2 as a function of input signal ampli-
tude |Ωp0τ0| and input control field amplitude |Ωc0τ0| for a
symmetric mode and b antisymmetric mode

ing exists. We also show that in nonlinear propagation
regime a huge enhancement of Kerr nonlinearity of the
symmetric and antisymmetric SPPs can be obtained,
and a gain-assisted (1 + 1)-dimensional symmetric and
antisymmetric subluminal surface polaritonic solitons
can be produced, stored and retrieved with high effi-
ciency and stability. In the end, we study the strate-
gies to optimize the optical memory for the two modes.
Our study are helpful for practical applications in quan-
tum information processing, and building future high-
performance optical quantum information networks.
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Appendix

A The electric field expressions and disper-
sion relation

The electric field expression of symmetric propagation
mode:

E(r, t)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(kez −ikz2ex)

ε1
kε2

cosh(kz1
d
2
)e−kz2(z−d

2 )+i(kx−ωlt),z > d
2[

cosh(kz1z)ez+
ikz1

k
sinh(kz1z)ex

]
ei(kx−ωlt),−d

2
<z< d

2

(kez+ikz2ex)
ε1

kε2
cosh(kz1

d
2
)ekz2(z+

d
2 )+i(kx−ωlt),z<− d

2
.

(20)

The electric field expression of antisymmetric propaga-
tion mode:

E(r, t)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(kez−ikz2ex)

ε1
kε2

sinh(kz1
d
2
)e−kz2(z−d

2 )+i(kx−ωlt),z> d
2[

sinh(kz1z)ez+
ikz1

k
cosh(kz1z)ex

]
ei(kx−ωlt),−d

2
<z< d

2

−(kez+ikz2ex)
ε1

kε2
sinh(kz1

d
2
)ekz2(z+

d
2 )+i(kx−ωlt),z<− d

2
.

(21)

The dispersion relation of symmetric mode

ε1kz2 + ε2kz1 tanh
(

kz1
d

2

)
= 0. (22)

The dispersion relation of antisymmetric mode

ε1kz2 + ε2kz1 coth
(

kz1
d

2

)
= 0, (23)

where k2
zl = k2 − (ωl/c)2εl is the wave number, and

ex,y,z is the unit vector in the x, y, z directions.

B Bloch equations

i

(
∂

∂t
+Γ31

)
σ11 − iΓ12σ22 + ζ∗

p (z)Ω∗
pσ21e

−iθ∗
p

− ζp(z)Ωpσ
∗
21e

iθp = 0,

i

(
∂

∂t
+Γ12

)
σ22 − iΓ23σ33 + ζp(z)Ωpσ

∗
21e

iθp

+ ζ∗
c (z)Ω∗

c σ32e
−iθ∗

c −ζ∗
p (z)Ω∗

pσ∗
21e

−iθ∗
p
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− ζc(z)Ωcσ
∗
32e

iθc = 0,

i

(
∂

∂t
+Γ23

)
σ33 − iΓ31σ11 + ζc(z)Ωcσ

∗
32e

iθc

− ζ∗
c (z)Ω∗

c σ∗
32e

−iθ∗
c = 0,(

i
∂

∂t
+d21

)
σ21 + ζ∗

c (z)Ω∗
c σ31e

−iθ∗
c

+ ζp(z)Ωpe
iθp(σ11 − σ22) = 0,

(
i
∂

∂t
+d31

)
σ31 − ζp(z)Ωpσ32e

iθp

+ ζc(z)Ωcσ21e
iθc = 0,(

i
∂

∂t
+d32

)
σ32 − ζ∗

p (z)Ω∗
pσ31e

−iθ∗
p

+ ζc(z)Ωce
iθc(σ22 − σ33) = 0,

(24)

where d21 = Δ2 + iγ21, d31 = Δ3 + iγ31 and d32 =
Δ3 − Δ2 + iγ32. γij = (Γi + Γj)/2 is the decoherence
probability of the system.

C Second-order solutions of MB equations

σ
(2)
11 =

{[
−iΓ23+2|ζc(z)Ωce

iθc |2
(

1

d32
− 1

d∗
32

)]

×
(

D∗
1

D∗ −D1

D

)
+ iΓ12Ωc(

ζ∗
c (z)e−iθ∗

c

d32

D2

D
− c.c)

}

/ {(Γ23Γ12 + Γ23Γ31 + Γ31Γ12)

+i(Γ12+2Γ31)|ζc(z)Ωce
iθc |2

(
1

d32
− 1

d∗
32

)}
×|ζp(x)eiθp |2|F |2e−2ᾱz2

= a
(2)
11 |ζp(z)eiθp |2|F |2e−2ᾱz2 ,

σ
(2)
22 =

Γ31a
(2)
11 + i

(
D∗

1
D∗ − D1

D

)
Γ12

× |ζp(z)eiθp |2|F |2e−2ᾱz2

= a
(2)
22 |ζp(z)eiθp |2|F |2e−2ᾱz2 ,

σ
(2)
32 =

[
D2
D

−ζc(z)Ωc

(
2a

(2)
22 +a

(2)
11

)]
d32

×|ζp(z)eiθp |2|F |2e−2ᾱz2

= a
(2)
32 |ζp(z)eiθp |2|F |2e−2ᾱz2 ,

σ
(2)
21 = i

D2ζ
∗
c (x)Ω∗

c e−iθ∗
c − D1(ω + d31)

D2
ζp(z)

∂F

∂t1
eiθeiθp

= a
(2)
21 ζp(z)

∂F

∂t1
eiθeiθp,

σ
(2)
31 = − 1

ζ∗
c (z)Ω∗

c e−iθ∗
c

[
i
D1

D
+ (ω + d21)a

(2)
21

]

ζp(z)
∂F

∂t1
eiθeiθp

= a
(2)
31 ζp(z)

∂F

∂t1
eiθeiθp , (25)

where σ
(2)
33 = −(σ(2)

11 + σ
(2)
22 ), θ = K(ω)z0 − ωt0.

D Effective MB equations

Taking the transformation σ̃jj(z, t) = 〈σjj(ρ, θ, z, t)〉,
σ̃31 (z, t)=〈σ31(ρ, θ, z, t)〉, σ̃21(z, t) = σ21(ρ, θ, z, t)/ζc

(ρ, θ), σ̃32 (z, t)=σ32(ρ, θ, z, t)/ζc(ρ, θ), then the MB
equations reduce to effective MB equations

i

(
∂

∂t
+ Γ31

)
σ̃11 − iΓ12σ̃22 + �p1Ω

∗
p σ̃21

− �p1Ωpσ̃
∗
21 = 0,

i

(
∂

∂t
+ Γ12

)
σ̃22 − iΓ23σ̃33 + �p1Ωpσ̃

∗
21 + �cΩ

∗
c σ̃32

− �p1Ω
∗
p σ̃21 − �cΩcσ̃

∗
32 = 0,

i

(
∂

∂t
+ Γ23

)
σ̃33 − iΓ31σ̃11 + �cΩcσ̃

∗
32 − �cΩ

∗
c σ̃32 = 0,

(
i
∂

∂t
+ d21

)
σ̃21 + Ω∗

c σ̃31 + �p2Ωp(σ̃11 − σ̃22) = 0,
(

i
∂

∂t
+ d31

)
σ̃31 − �p1Ωpσ̃32 + �cΩcσ̃21 = 0,

(
i
∂

∂t
+ d32

)
σ̃32 − �p2Ω

∗
p σ̃31 + Ωc(σ̃22 − σ̃33) = 0,

(26)

with �p1 = 〈ζc(z) · ζp(z)〉, �p2 = 〈ζp(z)/ζc(z)〉, �c =
〈|ζc(z)|2〉.
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