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Abstract. Using the scattering approach besides the Matsubara formalism, this paper aims at investigating
screening and intensifying the thermal Casimir force in an electrolyte solution surrounded by two layers
of local media within two semispaces. The electric field in an electrolyte solution is decomposed into its
transverse and longitudinal components. We construct the reflection matrix describing the combination of
the transverse and the longitudinal modes contribution to the incident wave to make the reflection wave for
zero and nonzero Matsubara frequencies, individually. It is shown that the longitudinal modes contribution
to the Casimir interaction in the Hamaker coefficient is significant only at zero frequency, and it shows
that the presence of layers on the substrates intensifies the transverse modes contribution to the Hamaker
coefficient in both the conductor and insulator media. It is illustrated that screening in the Hamaker
coefficient shows similar behavior for different layers of the conductor and the insulator. Our calculations
reveal that increasing the electrolyte’s concentration increases the Hamaker coefficient. Furthermore, the
longitudinal modes contribution to the Hamaker coefficient—present due to the ions—is weaker if the
electrolyte is surrounded by a conductor rather than being surrounded by a dielectric media. Interestingly,
the zero-frequency portion of this coefficient asymptotically reaches its longitudinal contribution at zero
frequency for different layers and different concentrations. Our investigation illustrates that in the presence
of an electrolyte solution within two dielectric layers surrounded by two other dielectric semispaces, the
intensification of the Casimir force per unit area becomes weaker in comparison to the case in which the
solution is absent in such a system.

1 Introduction

Since ionic solutions play a main role in biological and
electrochemical systems and the electrostatic interac-
tion screening is an essential characteristic of such solu-
tions, many studies have concentrated on these concep-
tual problems [1–4]. Scattering approach is a beneficial
approach to compute the Casimir force or the interac-
tion energy between the two semispaces and among the
multilayers [5,6]. Intensifying the Casimir force due to
the presence of a layer on the substrate has been inves-
tigated [7]. The scattering approach has been applied to
calculate the Casimir interaction between two dielectric
half spaces separated by an electrolyte solution [8]. The
normal component of the field stimulates the charge
fluctuations in the TM -polarized wave and the system
responses to these fluctuations thorough its longitu-
dinal dielectric function [9]. For an interacting fluid,
such as an electrolyte confined between two semis-
paces of dielectric media, the zero-frequency Matsub-
ara term corresponding to the classical partition func-
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tion of the Coulomb system may behave very differently
from the Lifshitz theory. This term, associated to the
fluctuations of the free energy around the mean field
in the range of validity of Poisson-Boltzmann approx-
imation, results in the screening of the Hamaker coef-
ficient [10,11]. The Hamaker coefficient relates the van
der Waals interaction energy to the particles’ separa-
tion distance for the interactive forces that are pair-
wise additive and independent from the intervening
media [12]. In these studies, the response of the elec-
trolyte solution has been investigated. The propaga-
tion of the longitudinal and transverse modes, and the
coupling of these modes in reflection from the surfaces
have been investigated. The researchers have shown
that the nonzero portion of the Matsubara frequency
does not change for typical values of ion concentration.
However, the zero frequency of the Hamaker coefficient
changes due to the screening contribution of the longi-
tudinal mode. The impact of free ions on the interac-
tion between surfaces and charge fluctuation screening
has been investigated [13,14]. It would be interesting
to investigate the effect of the electrolyte solution and
screening in the scattering approach for a system com-
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posed of two substrates with a layer on their surface.
It will also be compelling to study the impacts of the
free ions on the Hamaker coefficient and the Casimir
force per unit area for the mentioned system. Studying
the dependence of this force on the conductivity and the
thickness of the layers and also the concentration of the
solution is of importance. In this paper, using the scat-
tering approach, we consider a system composed of two
half spaces media with a three-layer array of different
materials in between, two layers of which are separated
with a thin layer of electrolyte solution.

In this study regarding the non-local effects of the
electrolyte solution on charge fluctuations and the elec-
tric field in the electrolyte layer, the effect of this solu-
tion on screening the Casimir interaction is investi-
gated. Following [7], we consider our model based on
Maxwell equations and assume local conductivity for
the transverse field and non-local conductivity for the
longitudinal field in the electrolyte layer.

We compute the Casimir force per unit area across
the solution for different layers and then investigate
the effect of the longitudinal channel for zero and
nonzero frequencies individually and indicate the effect
of screening on this interaction. We also investigate the
variations of the Casimir force per unit area through
changing the thickness of the layer for different materi-
als and discover the effect of increasing the concentra-
tion of the solution in intensifying this interaction. It is
shown that the existence of an electrolyte layer between
two symmetric double-layered media results in a weaker
intensification compared to the absence of such an elec-
trolyte solution. The results of our calculations are pre-
sented for the Hamaker coefficient of the system with
different layers, various thicknesses, and diverse concen-
trations.

2 The Casimir interaction force per unit
area

In this paper, we investigate the Casimir pressure for
the system in Fig. 1 which is composed of an electrolyte
solution within two dielectric layers surrounded by two
other dielectric semispaces. Considering the scattering
approach, the Casimir force per unit area for such a con-
figuration is obtained with the following formula [15,16]

F =
−kBT

2

∞∑

n=−∞

∫
d2k

(2π)2

(
det[1 − Mn]

)−1
∂L

(
det[1 − Mn]

)
(1)

where kB is the Boltzmann constant, T refers to the
temperature, and the matrix Mn = Re−iKL

Re−iKL

denotes a full round trip through the electrolyte solu-
tion. R, the main component of the scattering theory, is
the reflection matrix describing the reflection between
the interfaces of the middle medium, and it is con-
structed with the following recipe

Fig. 1 Configuration for investigating the Casimir force
across an electrolyte medium (region 1) with separation dis-
tance L between two layers of dielectric materials (region 2)
with thickness a within two semispaces of different dielectric
media (region 3)

R =

(
rss 0 0
0 rpp rpl

0 rlp rll

)
(2)

where rll refers to the longitudinal wave and rss and rpp

are the familiar reflection coefficients analogous to the
TE and TM -polarizations or s and p-modes, respec-
tively. The non-diagonal matrix element rpl describes
the contribution of the longitudinal modes contribution
to the incident wave in the TM -polarization part of the
reflected field, while rlp expresses the TM -polarization
contribution of the longitudinal incident wave, due to
the non-local electric response in the p-mode of the
reflected electric field in the inner medium.

e−iKL describes free photon propagation in the inner
medium between the two surfaces over the distance L
with the following structure

e−iKL =

⎛

⎝
e−ik1L 0 0

0 e−ik1L 0
0 0 e−iklL

⎞

⎠ (3)

where k1 and kl are the third components of the trans-
verse and the longitudinal incident waves in the elec-
trolyte solution.

Assuming the effect of finite temperature in Mat-
subara formalism [17,18], frequency ω is regarded as
ω = iζn and ζn = 2πnkBT/� where the index n refers
to the nth Matsubara frequency.

3 Building determinant expression

Suppose that the inner medium is an electrolyte solu-
tion with ε1(ω) and εl(ω) as the dielectric response func-
tions of the transverse and longitudinal waves given by
[1]

ε1(ω) = εb(ω) − ω2
p

ω(ω + iγ)
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εl(ω) = εb(ω) − ω2
p

ω(ω + iγ) − v2
thk2

. (4)

Here, εb(ω) is pure water’s dielectric function, ωp =√
Nq2/mq denotes the plasma frequency, and it depends

on the free charge density N , ion charge q and ion mass
mq. γ is the damping frequency, and vth =

√
kBT/mq

refers to the ions’ thermal average velocity in a solution
at temperature T .

As mentioned in [8], for the TM -polarized wave, the
total electric field in the electrolyte solution includes
a transverse part containing both the incident and the
reflected TM -polarized terms as well as a longitudinal
part due to the presence of ions in the medium. It can
be written as

E1,p(r, t) = E0e
−iωt ×

(
eiκp.r ŷ × κp + rppe

iκ̃p.r ŷ × κ̃p + rlpe
iκl.r κl

)

(5)

where the subscript p refers to the p-mode and E0 is
the strength of the incident wave. κp = (k, 0, k1) and
κ̃p = (k, 0,−k1) are the wave vectors of the incident
and the reflected parts, respectively, and κl = (k, 0, kl)
is the wave vector corresponding to the longitudinal
reflected wave. rpp and rlp are the reflection coeffi-
cients analogous to the TM -reflection and the conver-
sion between p-polarization and the longitudinal wave,
respectively. The electric field in the second medium
reads

E2,p(r, t) = E0e
−iωt(tppeiκ 2.r ŷ × κ2 + r′

ppeiκ̃ 2.r ŷ × κ̃2

)

(6)

where κ2 = (k, 0, k2) and κ̃2 = (k, 0,−k2) are the wave
vectors of the incident and reflected p-mode, respec-
tively. tpp refers to the transmission coefficient of the
second medium. From now on, we use prime superscript
to denote the reflection and the transmission coeffi-
cients corresponding to the regions 2 and 3. The TM -
polarized electric field in the outer local medium as a
semispace only includes the transmission contribution
as

E3,p(r, t) = E0e
−iωt

(
t′ppe

iκ3.r ŷ × κ3

)
(7)

with κ3 = (k, 0, k3) which is the wave vector in this
medium.

Assuming the second medium to be a non-penetrable
dielectric medium to ion and the fact that ions are not
accumulated on the boundaries [19], the ions velocity
perpendicular to the electrolyte–dielectric interface is
zero. Therefore, there is no electric current density per-
pendicular to the interfaces and the condition Jz = 0
is assumed at the interface z = 0 on the ionic cur-
rent density. The continuity boundary conditions for
the tangential components of the electric and the mag-

netic fields are:

E1,σ = E2,σ

H1,σ = H2,σ (8)

Regarding the non-local electric response of the elec-
trolyte solution, besides the transverse modes, there
appeared to be longitudinal ones, as well [1]. The lon-
gitudinal incident wave reads

E1,l(r, t) = E0e
−iωt

(
eiκ̃ l.r κ̃l + rlle

iκ l.r κl + rple
iκ̃p.r ŷ × κ̃p

)

(9)

with κ̃l = (k, 0,−kl). In the second medium, there only
exist two transverse contributions: a transmitted con-
tribution as well as a reflected one

E2,l(r, t) = E0e
−iωt(tple

iκ̃ 2.r ŷ × κ2 + r′
lle

iκ̃ 2.r ŷ × κ̃2

)

(10)

with tpl as the transmission coefficient associated to
the longitudinal wave in this medium. The transmitted
wave in the third medium reads

E3,l(r, t) = E0e
−iωt

(
t′ple

iκ̃3.r ŷ × κ3

)
. (11)

With respect to the boundary conditions of Eq. (8),
in addition to the condition Jz = 0, this time at the
interface z = a, the analogous reflection coefficients
are obtained in this case. Finally, considering the TE-
polarized electric wave, we have

E1,s(r, t) = E0e
−iωt

(
eiκp.r + rsse

iκ̃p.r
)
ŷ

E2,s(r, t) = E0e
−iωt

(
tsse

iκ2.r + r′
sse

iκ̃2.r
)
ŷ

E3,s(r, t) = E0e
−iωt

(
t′sse

iκ3.r
)
ŷ. (12)

Since the electric fields inside the electrolyte do not
have any interactions with this polarization, the s-mode
reflection coefficient in the electrolyte solution rss is the
same as the standard Fresnel coefficient for the TE-
polarization. Here, tss denotes the transmission coeffi-
cient in the second medium for this polarization.

Considering the frequency dependence of the dielec-
tric functions as well as the probable different behav-
iors of the Casimir force, the Hamaker coefficient and
the screening effect of the non-local media at zero and
nonzero frequencies, we investigate these two contribu-
tions individually. For the nonzero Matsubara frequen-
cies ω � ωp, according to Eq. (4), we presume ε1 � εb

and the reflection coefficients take the following simple
form
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rlp = 0 , rss =
e2iak2(k1 + k2)(k2 − k3) + (k1 − k2)(k2 + k3)
e2iak2(k1 − k2)(k2 − k3) + (k1 + k2)(k2 + k3)

rll = 1 , rpp =
e2iak2(ε2k1 + ε1k2)(−ε3k2 + ε2k3) − (ε2k1 − ε1k2)(ε3k2 + ε2k3)
e2iak2(ε2k1 − ε1k2)(−ε3k2 + ε2k3) − (ε2k1 + ε1k2)(ε3k2 + ε2k3)

(13)

where ε2 and ε3 are the dielectric functions of the dielec-
tric media of regions 2 and 3 (Fig. 1) and the third
components of the wave vectors are

kmn = i

√
k2 + εm(iζn)

ζ2n
c2

, m = 1, 2, 3. (14)

The third component of the longitudinal wave in the
electrolyte solution is

kln = i

√

k2 +
1

v2
th

(
ζn(ζn + γ) +

ω2
p

εb(iζn)

)
. (15)

The contribution to the force due to nonzero Matsubara
frequencies does not depend on the longitudinal dielec-
tric function, as it holds in [8]. For these frequencies,
the reflection matrix has consequently taken a diagonal
form and the determinant in Eq. (1) appears as

det[1 − Mn] =

(1 − e2iklnL)(1 − r2ppe2ik1nL)(1 − r2sse
2ik1nL), n �= 0.

(16)

det[1 − Mn] = 1 − e2iklnLr2ll − 2ei(k+kln)Lrlprpl

−e2ikLr2pp + e2i(k+kln)L(rlprpl − rllrpp)
2

(17)

the product of the non-diagonal terms appears and it is
negligible. In fact, at n=0 the ions are so slow compared
to field frequencies to couple transverse and longitudi-
nal waves. Therefore, the reflection matrix is approxi-
mately diagonal and the effect of the electrolyte appears
in the longitudinal reflection corresponding to the lon-
gitudinal incident. We have

det[1 − Mn] = (1 − r2lle
2iklnL)(1 − r2ppe

2ikL), n = 0

(18)

where

rll =
e2iak

(
ε2(0) − ε3(0)
ε2(0) + ε3(0)

)
+

(
εb(0)kl − ε2(0)k
εb(0)kl + ε2(0)k

)

e2iak

(
ε2(0) − ε3(0)
ε2(0) + ε3(0)

)(
εb(0)kl − ε2(0)k
εb(0)kl + ε2(0)k

)
+ 1

,

rpp = −1 (19)

in which ε2(0) and ε3(0) are the zero-frequency dielec-
tric functions of the layers and the substrates of Fig. 1,
respectively, and εb(0) refers to the zero-frequency
dielectric function of pure water.

4 Results for numerical calculations of the
Casimir force per unit area

In this section, we apply formalism of Eq. (1) to obtain
the Casimir interaction force per unit area for the sys-
tem in Fig. 1. Due to the Debye–Huckel theory at dilute
ionic solutions, the Debye screening length is indepen-
dent of the ion size and increasing the ion concentration
decreases this screening length [2]. Considering that the
Debye screening length is λD =

√
εb(0)kBT/Nq2 in

such solutions, we suppose a concentration of 0.9mM
for salt aqueous solution and T = 300 K. Regarding
the common use of silicon as a substrate, we assume
the semispaces to be silicon with Drude–Lorentz model
dielectric function [20] and then perform our calcula-
tions to obtain different contributions of the Casimir
pressure in the salt aqueous solution surrounded by
layers of different materials with the dielectric model
presented in [21]. To investigate the effect of screen-
ing on the intensified Casimir force of the configura-
tion in Fig. 1, we compute the contribution of nonzero
Matsubara frequencies to the Casimir force per unit
area in the vacuum between the two silicon semispaces
with polyester layer on the surface. As it is illustrated
in Fig. 2 even for a dilute electrolyte solution, the
Casimir force is weaker than the investigated force in
the absence of such a solution. This weakening is due
to the thermal ionic motion.

The longitudinal modes contribution to this pressure
is negligible even in nanometer distances. We have also
compared the transverse modes contribution for differ-
ent materials. Being presented in Fig. 3, one can see
that the Casimir pressure increases through rising the
conductivity of the layers, as we expected and depicted
in [7].

It is worth mentioning that the transverse part of
the contribution of the zero Matsubara frequency to
the Casimir pressure in the solution is independent of
the layers’ material and it only depends on the elec-
trolyte solution properties and the separation distance.
In the following table, the results of our calculations are
presented for the zero-frequency longitudinal Casimir
pressure. This part of the Casimir pressure, rising from
the presence of the ions, has an interesting behavior. As
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p
/p

0

a/λD

Fig. 2 The ratio of the Casimir pressure between two sil-
icon semispaces with polyester layer on the surface in the
presence of the electrolyte solution with N = 0.9nM concen-
tration (p) and in the vacuum (p0), for separation distance
L = 0.1 λD at temperature T = 300K. This ratio illustrates
that the presence of the electrolyte solution in such a sys-
tem causes the intensification of the Casimir pressure to be
weaker

p T p s
(n

�=
0)

L/λD

Au
Ag
Mica
Polyester

Fig. 3 Plot of the contribution of nonzero Matsubara fre-
quencies to the scaled transverse Casimir pressure in the
aqueous solution for different layers on the silicon sub-
strates. As it is illustrated in this figure, increasing the elec-
tric conductivity of the dielectric layer causes an upward
trend in the Casimir pressure. Here, the pressure scale is
ps = (2π)2kBT/λ3

D at T = 300K and N = 0.9 mM

it is displayed in Table 1, increasing the conductivity of
the layers results in a slow downward behavior of this
pressure. This behavior can be interpreted according to
the formation of image charges caused by the conduc-
tivity characteristic of the layer. Despite the fact that
Ag is a conductor and mica is an insulator, the longitu-
dinal contribution of the zero Matsubara frequency to
the Casimir pressure for Ag is greater than mica since
the zero-frequency dielectric constant of Ag is less than
mica. The manifestation of such a considerable zero-
frequency longitudinal pressure declares that in addi-
tion to the effect of the existence of the substrates in a
two-slab configuration and also the presence of the lay-
ers on the substrates in intensifying the Casimir force
[7], the presence of an electrolyte solution causes a lon-
gitudinal contribution at zero frequency that intensifies

the Casimir pressure with the same order of magnitude
as the transverse part does, see Fig. 4.

The Casimir pressure is the same for different con-
centrations with the scale pressure ps corresponding
to that concentration, namely the forces are the same
with different scale factors. Our calculations show that
increasing the concentration of salt in the solution leads
to a significant growth in the Casimir pressure in the
electrolyte solution. Introducing an increasing factor,
p(N2)/p(N1), i.e. the ratio of the Casimir pressure for
two different concentrations, we have exhibited that
increasing the concentration from N1 = 0.9mM to
N2 = 90mM in Fig. 5 leads to such an intensification
with an increment behavior.

Our calculations show that the transverse part of the
contribution of the zero Matsubara frequency to the
Casimir pressure is independent of the layers thickness.
This contribution for the nonzero frequencies decreases
through increasing the thickness of the layer just similar
to the results of the insulators in [7], while the longi-
tudinal modes contribution to the zero Matsubara fre-
quency to the Casimir pressure shows an upward trend
as it is depicted for the polyester layer in Fig. 6. It
is worth mentioning that since the transverse nonzero-
frequency contribution of the Casimir pressure is the
dominant part, this pressure as a whole decreases due
to the increase in the thickness of the polyester layer.
The noticeable decreasing behavior of the longitudinal
modes to the Casimir force per unit area at n = 0 for
L > λD can be associated to the ions’ screening effect
in the electrolyte solution.

5 Results for numerical calculations of the
Hamaker coefficient

The interactions between particles in a medium depend
on the macroscopic properties such as the dielectric con-
stant. The Hamaker coefficient has been used as a use-
ful instrument for surface interfacial energies [22,23] to
investigate the screening effect on the Casimir effect
in the presence of substrates for the insulator and con-
ductor layers. For the interactions between two different
bodies in a liquid, this coefficient can be calculated as

H(L) = −12πL2E(L) (20)

where E(L) is the Casimir energy per unit area for the
separation distance L. Our calculations for different lay-
ers show that the longitudinal modes contribution to
the Hamaker coefficient for nonzero frequencies is neg-
ligible; however, it results in a remarkable contribution
at zero frequency as it is depicted in Fig. 7. This por-
tion of the Hamaker coefficient, rising from the longi-
tudinal scattering channel is important for the separa-
tion distances shorter than the Debye screening length
and for longer separation distances this contribution
has been screened. One can interpret this downward
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Table 1 The longitudinal contribution of the zero Matsubara frequency to the scaled Casimir pressure in an electrolyte
solution surrounded by two layers of polyester, mica, silver and gold on the silicon substrates. We consider a = 0.1λD for the
thickness of the dielectric layer in between and 0.9 mM for the concentration of the solution. In this table, the separation
distance L is presented versus λD as the length scale and correspondingly define ps as the scale of pressure for the Casimir
pressure

L/λD 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pl,Polyester − 0.984 − 0.121 − 0.0352 − 0.0145 − 0.00713 − 0.00394 − 0.00235 − 0.00147 − 0.000968 − 0.000654
pl,Mica − 0.932 − 0.115 − 0.0337 − 0.0139 − 0.00687 − 0.00381 − 0.00227 − 0.00144 − 0.000943 − 0.000638
pl,Ag − 0.946 − 0.117 − 0.0341 − 0.0140 − 0.00692 − 0.00384 − 0.00229 − 0.00145 − 0.000948 − 0.000641
pl,Au − 0.869 − 0.109 − 0.0323 − 0.0134 − 0.00667 − 0.00371 − 0.00223 − 0.00141 − 0.000926 − 0.000628

p/
p s

L/λD

Fig. 4 A comparison between different contributions of the
scaled Casimir pressure of Fig. 1 configuration for layers of
polyester with a = 0.1λD thickness on the silicon substrates.
Here, the pressure scale is ps = (2π)2kBT/λ3

D at T = 300K
and N = 0.9 mM . The red diagram (solid line) refers to the
transverse contribution of the nonzero Matsubara frequen-
cies to the Casimir pressure, the green diagram (dashed line)
presents the transverse contribution of the zero Matsubara
frequency to the pressure, and the blue one (dash-dotted
line) displays the longitudinal modes contribution to this
pressure. The longitudinal contribution of nonzero Matsub-
ara frequencies to the Casimir pressure is negligible. This is
while the longitudinal contribution of the zero Matsubara
frequency to the pressure that rises from the longitudinal
channel and has an intensifying role in the Casimir pressure
is in the same order of magnitude as the transverse contri-
bution of zero Matsubara frequency to the Casimir pressure
and the transverse portion of this pressure for the nonzero
Matsubara frequencies is the dominant part of the Casimir
pressure

behavior through increasing the conductivity of the lay-
ers according to the longitudinal channel origin.

It is worth mentioning that the transverse contribu-
tion of the zero-frequency Hamaker coefficient equals
3 ζ(3) kBT/4 and it is independent from the material of
the layer, the substrate and even the concentration of
the solution. The significant contribution of this coef-
ficient is the nonzero-frequency transverse part. Con-
sidering its different contributions, the Hamaker coef-
ficient presents an interesting behavior as it is illus-
trated in Fig. 8. For insulators, this diagram has a peak
before the Debye screening wave length and this peak

p(
90
m
M
)/
p(
0.
9m

M
)

L/λD

Fig. 5 The result of our calculations for the ratio of the
Casimir pressure in an electrolyte solution between two lay-
ers of polyester on the silicon substrates, due to an increase
in salt concentration from N1 = 0.9 mM to N2 = 90 mM

appears in shorter separation distances if the conduc-
tivity increases. As it is expected for the conductors, the
diagram shows a monotonic trend and screening hap-
pens after λD. The diagram in Fig. 8 shows a downward
trend for L > λD for both insulators and conductors.
A comparison between Fig. 8a and b reveals that the
Hamaker coefficient shows a significant intensification
with more concentration of the solution in the inner
medium in Fig. 1.

It is worth noting that increasing the thickness of
the layer increases the transverse part of the nonzero
frequencies of the Hamaker coefficient for conduc-
tors, while it decreases for the insulators. The longi-
tudinal modes contribution to the zero frequency of
the Hamaker coefficient shows an opposite behavior.
Since the nonzero frequencies of the transverse part of
the Hamaker coefficient is the dominant portion, the
Hamaker coefficient generally shows an upward trend
after increasing the thickness of the conductor layer and
a downward trend through increasing the thickness of
the insulator layer, as illustrated in Fig. 9.

Note that the Hamaker coefficient reaches its asymp-
totic value 3 ζ(3) kBT/4 at thermal wave length �c/kBT =
7.6×10−4 cm corresponding to 747λD for N = 0.9mM
concentration. This reduction occurs exponentially.
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p T p s
(n

�=
0)

a/λD

p L p s
( n

�=
0)

a/λD

(a)

(b)

Fig. 6 Plot of the thickness-dependent contributions of
the scaled Casimir pressure for the fixed separation dis-
tance L = 0.5 λD. As it is already illustrated, the nonzero-
frequency transverse part shows a downward behavior after
increasing the thickness of the polyester layer in (a), while
the longitudinal zero-frequency mode shows an upward
trend in (b)

L
on

gi
tu
di
na

lH
/
k B

T
(n

=
0)

L/λD

Au

Ag
Mica

Polyester

Fig. 7 Plot of the longitudinal modes contribution of the
Hamaker coefficient for different layers. We consider sili-
con semispaces and assume a = 0.1 λD and N = 0.9 mM .
Increasing the zero-frequency dielectric constant of the layer
decreases this part of the Hamaker coefficient

H
/
k B

T
(0

.9
m

M
)

L/λD

H
/
k B

T
(9
0m

M
)

L/λD

(a)

(b)

Polyester
Mica
Ag
Au

Polyester
Mica
Ag
Au

Fig. 8 Plot of the Hamaker coefficient for different layers.
We set N = 0.9 mM in (a) and N = 90 mM in (b). It
is clear that screening happens for L > λD. The diagrams
both asymptote to 3 ζ(3)/4; that is, the longitudinal modes
contribution of the Hamaker coefficient at zero frequency
has scaled with kBT

H
/
k B

T

a/λD

Polyester

Au

Fig. 9 Diagram presenting the variations of the Hamaker
coefficient with the layers’ thickness. We assume N =
0.9 mM and the fixed separation distance L = 0.5 λD. It
is obvious that polyester and gold show opposite behaviors,
as instances of insulators and conductors, respectively. It
should be noted that for thicknesses greater than the Debye
wavelength, screening occurs and increasing the thickness of
the layer does not result in any further intensifications
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6 Conclusion

In this work, the scattering approach has been used to
study the effects of an electrolyte solution on screening
the Casimir interaction force across a dilute electrolyte
solution surrounded by two layers of dielectric mate-
rials within two semispaces. The electric field in the
solution has been decomposed into a common trans-
verse part and a longitudinal component which is exist-
ing due to the non-local electric response of the elec-
trolyte solution. In this regard, the continuity bound-
ary condition has been imposed on the tangential com-
ponents of the electric and the magnetic fields on the
surfaces and a reflection matrix has been constructed
which describes the conversion between the longitudi-
nal and the transverse distributions of the electric field
in the electrolyte solution. We have investigated zero
and nonzero frequencies individually, since the Casimir
pressure, the Hamaker coefficient, and the screening
effect may display different behaviors in these frequen-
cies. We have assumed 0.9mM as a typical value for the
salt concentration in the aqueous solution at tempera-
ture T = 300K. Layers of Au, Ag, mica, and polyester
have been supposed surrounding the aqueous solution,
with silicon substrates. Our calculations depict that
the longitudinal component of the nonzero frequen-
cies’ contribution to the Casimir pressure is insignif-
icant and its corresponding transverse component is
less intensified in the presence of the ions. The lon-
gitudinal modes contribution to the Casimir effect at
zero frequency displays an interesting behavior. This
portion, caused by the presence of the ions, is a func-
tion of the zero-frequency dielectric constant of the
layers’ materials and this effects the intensification of
the pressure. This longitudinal modes contribution to
the Casimir pressure at zero frequency shows a down-
ward trend when increasing the zero-frequency dielec-
tric constant of the layers’ material. It seems that the
formation of the image charges in the conductor lay-
ers results in such a behavior. In a comparison between
the zero-frequency longitudinal portion of the Casimir
pressure for the configuration in Fig. 1 with Ag and
mica layers, an undesirable behavior has been found.
Since the zero-frequency dielectric constant of mica is
greater than Ag, despite the fact that mica is an insula-
tor, this contribution for Ag as a conductor is stronger
than mica. This is while the transverse part of the
zero frequency of the force is independent from the lay-
ers’ material. A perspective of different contributions
of the force indicates that the longitudinal and trans-
verse modes contribution to this force at n = 0 are
of the same order of magnitude, and the longitudinal
modes contribution to n �= 0 can be ignored and its
corresponding transverse part takes the largest propor-
tion. Generally, with the growth in the conductivity of
the layers, the Casimir pressure increases as already
expected. We would like to mention that increasing
the concentration of the salt in the solution leads to a
remarkable increase in the Casimir pressure. The trans-
verse contribution of the zero Matsubara frequency to

the Casimir pressure is independent from the layers’
thickness and increasing the thickness of the insulator
layer causes a downward trend in this contribution for
the nonzero frequencies, while it increases the longitu-
dinal modes contribution to the zero Matsubara fre-
quency to the Casimir pressure. Regarding the screen-
ing effect of ions in the electrolyte solution at n = 0
for L � λD, a noticeable fall occurs in the longitudi-
nal modes contribution to the Casimir pressure. The
Hamaker coefficient has also been investigated for the
configuration in Fig. 1 with layers of different materials
and silicon semispaces. A significant contribution has
been found for the longitudinal modes contribution to
the Hamaker coefficient at n = 0. This portion, caused
by the presence of ions in the electrolyte, decreases
through increasing the conductivity of the layers. Its
corresponding transverse part is 3 ζ(3) kBT/4 and it
only depends on the temperature. Just like the Casimir
pressure, the nonzero-frequency transverse contribution
of the Hamaker coefficient has a significant contribu-
tion. The Hamaker coefficient illustrates an interesting
behavior; it has got a maximum value. This extremum
takes place in shorter separation distances if the lay-
ers become more conductive. For conductor layers, we
will have a monotonic function and for L � λD there
appears a remarkable fall due to the screening effect. It
seems that this coefficient shows an upward trend after
increasing the concentration. Assuming the same mate-
rials for the regions 2 and 3 in Fig. 1, our results match
the results obtained in [8]. It seems that the transverse
part of the nonzero frequencies of the Hamaker coeffi-
cient for conductors shows an upward behavior with the
growth of the layers thickness, while it displays an oppo-
site behavior for layers of insulator materials. However,
the longitudinal portion of this coefficient as a result of
the longitudinal channel at n = 0 shows a completely
opposite trend. Generally, increasing the thickness of
the conductor layer results in increasing the Hamaker
coefficient, while it ends in decreasing the coefficient for
the insulator layers.

At thermal wavelength �c/kBT = 7.6×10−4 cm that
is equal to 747λD for N = 0.9mM concentration, the
zero-frequency contribution of the Hamaker coefficient
exponentially takes its asymptotic value 3ζ(3) kBT/4.

Acknowledgements We would like to thank Paulo A.
Maia Neto for his useful comment.

Data Availability Statement This manuscript has no
associated data or the data will not be deposited. [Authors’
comment: This is a theoretical study and no experimental
data has been listed.]

References

1. B. Davies, B.W. Ninham, J. Chem. Phys. 56, 5797
(1972)

2. P.W. Debye, E. Huckel, Phys. Z. 24, 185 (1923)
3. Y. Levin, Rep. Prog. Phys. 65, 1577 (2002)

123



Eur. Phys. J. D (2021) 75 :68 Page 9 of 9 68

4. T. Markovich, D. Andelman, R. Podgornik, in Handbook
of Lipid Membranes, edited by C. Safinya and J. Radler
(Taylor and Francis Group, in press)

5. A. Lambrecht, P.A. Neto, S. Reynaud, New J. Phys. 8,
243 (2006)

6. S.J. Rahi, T. Emig, N. Graham, R.L. Jaffe, M. Kardar,
Phys. Rev. D 80, 085021 (2009)

7. A. Seyedzahedi, A. Moradian, M.R. Setare, Phys. Lett.
A 380, 1475 (2016)

8. P.A.M. Neto, F.S. Rosa, L.B. Pires, A.B. Marim, A.
Canaguier-Durand, R. Guerout, A. Lambrecht, S. Rey-
naud, Eur. Phys. J. D 73, 178 (2019)

9. R. Esquivel, V.B. Svetovoy, Phys. Rev, A 69, 062102
(2004)

10. A. Naji, M. Kandu, J. Forsman, R. Podgornik, J. Chem.
Phys. 139, 150901 (2013)

11. R.R. Netz, Eur. Phys. J. E 5, 557 (2001)
12. E.C. Donaldson, W. Alam, Wettability (TIPS Technical

Publishing Inc, United States of America, 2008)
13. J.N. Israelachvili, Intermolecular and Surface Forces

(Academic Press, Waltham, 2011)
14. H.J. Butt, M. Kappl, Surface and Interfacial Forces

(Wiley-VCH, Weinheim, 2010)

15. T. Emig, N. Graham, R.L. Jaekel, M. Kardar, Phys.
Rev. Lett. 99, 170403 (2007)

16. A. Lambrecht, P.A.M. Neto, S. Reynaud, New J. Phys.
8, 243 (2006)

17. J.I. Kapusta, Finite Temperature Field Theory (Cam-
bridge University Press, 1989)

18. A. Das, Quantum Field Theory, A 20th Century Pro-
file, edited by A. N. Mitra (Indian National Science
Academy 2000)

19. F. Garcia-Moliner, F. Flores, J. Phys. France 38, 851
(1977)

20. L. Bergstrom, Adv. in Colloid. and Interf. Sci. 70, 125
(1997)

21. V.A. Parsegian, van der Waals Forces: A Handbook for
Biologists, Chemists, Engineers and Physicists (Cam-
bridge University Press, Cambridge, 2005)

22. H.C. Hamaker, Physica 4 10, 1058 (1973)
23. W.B. Russel, D.A. Saville, W.R. Schowalter, Colloidal

Dispersions (Cambridge University Press, Cambridge,
1989)

123


	The effects of an electrolyte solution on screening  the Casimir interaction between two symmetric double-layered media
	1 Introduction
	2 The Casimir interaction force per unit area
	3 Building determinant expression
	4 Results for numerical calculations of the Casimir force per unit area
	5 Results for numerical calculations of the Hamaker coefficient
	6 Conclusion
	References
	References




