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Abstract. Bifurcation of quantum electron-acoustic waves (QEAWs) is studied in an adiabatic quantum
plasma with nonextensively distributed hot electrons. Using reductive perturbation technique, modified
Kortweg de Vries (KdV) equation is derived with dual power nonlinearity for highly nonlinear QEAWs.
Using Galilean transformation the modified KdV equation is reduced to a planar dynamical system with
three equilibrium points. Applying phase plane analysis periodic wave solutions and supernonlinear periodic
wave solutions for QEAWs are perceived. It is found that the amplitude of the nonlinear structures is
indirectly proportional to the ratio of number densities (μ), the cold to hot electron temperature ratio
(σ) and the nonextensivity parameter (q), we have explained physically that confronts our results. In
addition, coexistence of superperiodic and quasiperiodic phenomena, quasiperiodic and chaotic phenomena
and chaotic, superperiodic and quasiperiodic phenomena for QEAWs are observed for appropriate initial
values.

1 Introduction

The study of linear and nonlinear wave propagations
in quantum plasmas has been a topic of interest due
to a variety of the applications of quantum plasma
media, such as in ultra-small electronic devices, dense
astrophysical objects and high-intensity laser-produced
plasmas [1–4]. In such media, the plasma behaves like
a degenerate fluid and the dynamic role of quantum
mechanics is outstanding [5]. In this situation, the ther-
mal de Broglie wavelength of charged species becomes
same or larger than the average inter-particle distance
[6–8]. Description of the various nonlinear wave propa-
gations in the magnetized and electrostatic plasmas has
been thoroughly investigated by many researchers [9–
11]. The balancing between nonlinearity and dispersion
effects gives rise to the nonlinear structures [12].

Electron-acoustic waves (EAWs) are low frequency
electrostatic plasma waves. Ions and cold electrons pro-
vide inertia and form a neutralizing stationary back-
ground, whereas the hot electrons provide the restor-
ing force for EAWs. On the other hand, in ion-acoustic
waves (IAWs) the inertia is provided by the heavily
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mass ions [13]. The theory of EAWs was first proposed
by Freid and Gould [14]. They discovered that besides
the Langmuir and ion-acoustic waves, another heav-
ily damped acoustic-like wave (called EAW) may exist
which greatly differed from these two waves [14–16].
Propagation of EAWs has been studied in magnetized
[17,18] as well as unmagnetized plasmas [19,20]. The
phase velocity of EAWs is between the cold and hot
electron thermal velocities. Dubouloz et al. have given
experimental observation of the EAWs in magnetized
as well as unmagnetized, one-dimensional, collisionless
plasma consisting of three components [21,22]. Propa-
gation of both linear and nonlinear EAWs in unmag-
netized plasmas has been studied by many researchers
[23–25].

The conventional Boltzmann–Gibbs (B-G) statistic
was not suitable to describe the feature of a system
with long-range interactions. In such a case, nonex-
tensive distribution is widely considered. Tsalli’s q-
nonextensive distribution is an extension of B-G’s ther-
mostatistics. One can in general write the entropy
as Sq = k

1−∑i=W
i=1 (Pi)

q

q−1 , wherein entropic index that
depicts quality of nonextensivity is denoted by q and
the probabilities connected with microscopic states are
denoted by Pi. Solving mathematically for Sq, by con-
sidering non-negative entropy, it was verified that q = 1
attributed to Boltzmann’s distribution, q > 1 indicated
subextensive distribution and q < 1 denoted nonex-
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tensivity of plasma particles. Further Verheest [26] has
suggested that 1

3 < q < 1 is the suitable range of nonex-
tensivity. So in this manuscript we have taken the value
of q within the restricted range of 1

3 < q < 1 in order to
investigate the impact of q-nonextensivity of hot elec-
trons.

The concept of planar dynamical system (PDS) is
extensively used to study nonlinear waves in different
plasmas [27–39]. Very recently, Saha et al. [29] showed
the existence of different types of nonlinear waves, viz.
periodic, kink and anti-kink waves in dense quantum
plasma in the framework of Burger equation by using
the concept of PDS. Sahu et al. [30] discussed nonlinear
propagation of electron-acoustic solitons in a quantum
plasma. El-Shamy et al [31] investigated a dense semi-
conductor quantum plasma consisting of electrons and
holes to study electrostatic solitons in the framework of
the Korteweg–de Vries equations. Bifurcation theory of
PDS has been popularly used to study nonlinear waves
[27,40–46]. Samanta et al. [27] applied the bifurcation
theory of PDS to examine propagation of nonlinear
waves in a quantum plasma. El-Shamy [40] investigated
bifurcation of monotonic and oscillatory magnetosonic
shock waves in a degenerate quantum plasma. Recently,
propagation of dust-acoustic waves in a four-component
plasma was investigated using bifurcation theory by El-
Monier and A. Atteya [44]. Shahein and El-Shehri [45]
carried out bifurcation analysis of rogue wave under the
framework of modified nonlinear Schrödinger equation
in an electron-positron-ion plasma with superthermal
electrons and relativistic ions.

Supernonlinear waves (SNWs), a new category of
nonlinear waves in plasmas, distinguished by the non-
trivial topology of their phase plots were revealed by
Dubinov et al. [47] for the very first time. They sug-
gested suitable notations and topological classification
of such waves for the study. Saha and Tamang [32]
were the first to employ bifurcation theory of pla-
nar dynamical system to report SNWs in plasmas.
Since then, many researchers have employed bifurcation
theory to investigate arbitrary amplitude [33–36] and
small-amplitude [37–39] supernonlinear waves in dif-
ferent plasmas. Taha and El-Taibany [36] investigated
bifurcation of dust-acoustic SNWs employing the gen-
eralized (r, q) distribution function. They found that
double spectral indices r and q played a significant role
in bifurcation of the nonlinear and supernonlinear dust-
acoustic waves. SNWs have also been studied in many
plasma systems using Sagdeev’s pseudopotential tech-
nique [48,49].

Coexistence of trajectories better known as multi-
stability is one of the recent research advances and
consequently demands more investigation. It was first
observed in a Q-switch laser model [50]. Basically, it
describes the phenomenon where a dynamical system
has two or more simultaneous solutions for one fixed
set of parameters [51,52]. Natiq et al. [53] showed mul-
tistability phenomena like the coexistence of chaos with
quasiperiodic attractors, butterfly chaotic attractor
with two point attractors and symmetric Hopf bifurca-
tion in a low-dimensional plasma model. Recently, coex-

istence of attractors was shown by Saha et al. [37] in an
electron-ion quantum plasma. Very recently, Abdikian
et al. [39] investigated electron-acoustic SNWs in clas-
sical plasma in the framework of nonlinear Schrödinger
equation and reported multistability phenomenon. But,
effects of temperature ratio and number density ratio on
electron-acoustic periodic and superperiodic waves were
not reported. Also, coexistence of chaotic, quasiperi-
odic and superperiodic trajectories was not established.
Characteristics of supernonlinear and coexistence fea-
tures for small-amplitude electron-acoustic waves in an
adiabatic quantum plasma in the framework of the
modified-KdV equation have not been studied before to
the best of our knowledge. In our present manuscript,
we will investigate characteristics of supernonlinear
and coexistence features for small-amplitude electron-
acoustic waves in an adiabatic quantum plasma in the
framework of the modified-KdV equation.

In the present work, we study the QEAWs by apply-
ing a one-dimensional model of a quantum plasma con-
sisting of a cold and hot electron fluids and station-
ary ions. Using the reductive perturbation method, we
obtained the modified KdV equation as the evolution
equation. We present basic set of normalized equations
in Sect. 2. Modified KdV equation is derived in Sect. 3.
Phase plane analysis is addressed in Sect. 4. In Sect. 5,
we have shown coexistence of trajectories for QEAWs.
Finally, conclusion is provided in Sect. 6.

2 Basic set of normalised equations

The nonlinear dynamics of the low-frequency quantum
electron-acoustic plasma mode is described by [3,29,38,
54,55,57]:

∂n

∂t
+

∂

∂x
(nu) = 0, (1)

∂u

∂t
+ u

∂u

∂x
=

∂φ

∂x
− σ

n

∂p

∂x
+ α

H2

2
∂

∂x

(
∂2

√
n/∂x2

√
n

)
,

(2)
∂p

∂t
+ u

∂p

∂x
+ γp

∂u

∂x
= 0, (3)

∂2φ

∂x2
= μnh + n − (1 + μ), (4)

where nh = (1 + (q − 1)σφ)
1

q−1+
1
2 .

Earlier pre-factor of the Bohm potential (α) was con-
sidered as 1 which was strongly criticized as it gave rise
to unphysical predictions [56]. In one-dimensional case
with strong degeneracy limit, the pre-factor of Bohm
potential for low frequency wave is −1/3 [57,58], which
will be used in our present manuscript.

The variables t, x, u, n, nh and φ are time vari-
able, space variable, velocity of cold electrons, num-
ber density of cold electrons, number density of hot
electrons and electrostatic potential, respectively. They
are normalized by the inverse of cold electron plasma
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frequency ω−1
pc =

(
me

4πn0e2

) 1
2

, the parameter
Ce

ωpc
,

Ce =
(

kBTc

me

)1/2

, unperturbed number density of cold

electrons n0, unperturbed number density of hot elec-

trons nh0 and
(

kBTc

e

)
, respectively. Here σ =

Tc

Th
is

the cold to hot electron temperature ratio and γ =
Cc

p

Cc
v

where Cc
p(C

c
v) is the specific heat of electron at con-

stant pressure (volume), p is the cold electron pres-
sure normalized by n0kBTh. We have set μ =

n0

nh0
and

H =
�ωpc

meC2
e

. One can expand the nonextensive electron

as follows:

nh = 1 + C1φ + C2φ
2 + C3φ

3, (5)

where C1 = (1 + q)σ/2, C2 = (1 + q)(3 − q)σ2/8, and
C3 = (1 + q)(3 − q)(3q − 5)σ3/48.

3 Modified KdV equation

In order to procure the modified KdV equation for
the electrostatic potential in this degenerate quantum
plasma, the independent variables are stretched as fol-
lows:

ξ = ε(x − vpht), and τ = ε3t, (6)

where ε is a small (0 < ε ≤ 1) expansion parameter
characterizing the nonlinearity strength and vph is the
phase velocity and determined later.

n = 1 + εn(1) + ε2n(2) + · · ·
p = 1 + εp(1) + ε2p(2) + · · ·
u = εu(1) + ε2u(2) + · · ·
φ = εφ(1) + ε2φ(2) + · · ·

(7)

After substituting Eq. (7) in Eqs. (1)–(5), one can col-
lect the first-order terms of ε as

n(1) = − φ(1)

v2
ph − γσ

,

u(1) = − vphφ(1)

v2
ph − γσ

,

p(1) = − γφ(1)

v2
ph − γσ

.

(8)

Eliminating n(1), u(1) and p(1), we can obtain linear
dispersion relation as

vph =

√
1 + C1γμσ

C1μ
. (9)

From the next power of ε, one can derive

n(2) =
(3v2ph + (γ − 2)γσ)(φ

(1)
1 )2 − 2(v2ph − γσ)2φ(2)

2(v2ph − γσ)3
,

u(2) =
vph(v2ph + γ2σ)(φ

(1)
1 )2 − 2vph(v2ph − γσ)2φ(2)

2(v2ph − γσ)3
,

p(2) =
γ(v2ph(2 + γ) − γσ)(φ

(1)
1 )2 − 2γ(v2ph − γσ)2φ(2)

2(v2ph − γσ)3
.

(10)

While Poisson’s equation (4), gives [59–61]

(
C1μv2ph − 1 + C1γμσ

)
φ(2) =

1

2

C2μ(v2ph − γσ)2

vph

(
φ(1)

)2

,

(11)

that can be written as φ(2) =
P

2
(
φ(1)

)2
. It is obvi-

ous from the last equation that the coefficient of φ(2)

is identically zero, because of linear dispersion relation
(9). As φ(1) �= 0, it is supposed that P could be at least
of order ε and this term should be included in the next
order of the equation of motion.

Collecting the third order of ε, one can write

∂n(3)

∂ξ
= − 1

4(v2
ph − γσ)5

(
8vph(v

2
ph − γσ)3

∂φ(1)

∂τ

+2(15v4
ph + v2

phγ(−18 + 13γ + γ2)σ

+ γ2(6− 7γ + 2γ2)σ2)(φ(1))2
∂φ(1)

∂ξ

− 4(v2
ph − γσ)2

(
3v2

ph + (−2 + γ)γσ)φ(1)
∂

(
P

2

(
φ(1)

)2)

∂ξ

+(v2
ph − γσ)2(−4(3v2

ph + (−2 + γ)γσ)
P

2

(
φ(1)

)2 ∂φ(1)

∂ξ

+(v2
ph − γσ)

(
4(v2

ph − γσ)
∂φ(3)

∂ξ
− H2α

∂3φ(1)

∂ξ3

) ))
,

∂u(3)

∂ξ
=

1

4(v2
ph − γσ)5

(
− 4

(
v2
ph − γ σ

)3 (
v2
ph + γσ

) ∂φ(1)

∂τ

+ vph

(
− 2(3v4

ph + v2
phγ2(7 + γ)σ

+ γ3(−1 + 2γ)σ2)(φ(1))2
∂φ(1)

∂ξ

+4(v2
ph − γσ)2(v2

ph + γ2σ)φ(1)
∂

P

2

(
φ(1)

)2
∂ξ

− (v2
ph − γσ)2

(
− 4(v2

ph + γ2σ)
P

2

(
φ(1)

)2 ∂φ(1)

∂ξ

+(v2
ph − γσ)

(
4(v2

ph − γσ)
∂φ(3)

∂ξ
− H2α

∂3φ(1)

∂ξ3

)))
,

∂p(3)

∂ξ
=

γ

4(v2
ph − γσ)5

(
8vph(v

2
ph − γσ)3

∂φ(1)

∂τ

+2(v4
ph(8 + 6γ + γ2) + v2

phγ(−7 + γ + 2γ2)σ

− (−2 + γ)γ2σ2)(φ(1))2
∂φ(1)

∂ξ
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− 4(v2
ph − γσ)2(v2

ph(2 + γ)− γσ)φ(1)
∂

P

2

(
φ(1)

)2
∂ξ

+(v2
ph − γσ)2

(
− 4(v2

ph(2 + γ)− γσ)
P

2

(
φ(1)

)2 ∂φ(1)

∂ξ

(v2
ph − γσ)

(
4(v2

ph − γσ)
∂φ(3)

∂ξ
− H2α

∂3φ(1)

∂ξ3

)))
. (12)

Using the above equations, one can get the modified
KdV as

∂ψ

∂τ
+ Pψ

∂ψ

∂ξ
+ 3Qψ2 ∂ψ

∂ξ
+ R

∂3ψ

∂ξ3
= 0, (13)

in which

P = − 1
2vph

(
3 +

2C2

C2
1μ

+ C1γ(1 + γ)μσ

)
,

Q =
−6C3 + C3

1μ2(6 − 7γ + 2γ2 + C1v
2
ph(6 + γ − 5γ2)μ) + 3C2

1v4
ph(1 + γ)2μ2

4C2
1vphμ

,

R =
−H2α + 4(v2

ph − γσ)2

8vph
,

where ψ = φ(1).

4 Phase plane analysis

We transform the modified KdV equation (13) with
dual power nonlinearity to a planar dynamical system
by applying the following Galilean transformation:

ζ = ξ − V τ, (14)

where V is the speed of the moving frame. Then mod-
ified KdV equation (13) becomes

− V
dψ

dζ
+ Pψ

dψ

dζ
+ 3Qψ2 dψ

dζ
+ R

d3ψ

dζ3
= 0. (15)

Integrating Eq. (15) and applying ψ → 0,
dψ

dζ
→ 0,

d2ψ

dζ2
→ 0 as ζ → ±∞, we have

− V ψ +
P

2
ψ2 + Qψ3 + R

d2ψ

dζ2
= 0. (16)

Then from Eq. (16) we can deduce the following dynam-
ical system:

⎧⎪⎨
⎪⎩

dψ

dζ
= z,

dz

dζ
=

V

R
ψ − P

2R
ψ2 − Q

R
ψ3.

(17)

The system (17) has the following equilibrium points:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E0(0, 0),

E1

(
−P−

√
P 2+16QV

4Q , 0
)

,

E2

(
−P+

√
P 2+16QV

4Q , 0
)

.

The Jacobian matrix JEi
of the system (17) at an arbi-

trary equilibrium point Ei(ψ∗, 0), i = 0, 1, 2, is:

JEi
=

[
0 1

V

R
− P

R
ψ∗ − 3Q

R
ψ∗2 0

]
.

Now, determinant of this Jacobian matrix at Ei(ψ∗, 0)
is

det(JEi
) = −V

R
+

P

R
ψ∗ +

3Q

R
ψ∗2.

Therefore, determinant of this Jacobian matrix at
E0, E1 and E2 is as follows:

det(JE0) = −V

R
,

det(JE1) = −V

R
+

P

R

(−P −
√

P 2 + 16QV

4Q

)

+
3Q

R

(−P −
√

P 2 + 16QV

4Q

)2

,

det(JE2) = −V

R
+

P

R

(−P +
√

P 2 + 16QV

4Q

)

+
3Q

R

(−P +
√

P 2 + 16QV

4Q

)2

.

The equilibrium point Ei(ψ∗, 0) is a centre if det(JEi
) >

0 and a saddle if det(JEi
) < 0, for i = 0, 1 and 2 [62].

Figure 1 represents a phase plot of the PDS (17) for
σ = 0.5, μ = 0.77, H = 1.4, γ = 3, V = 0.1, α = −1/3
and q = 0.35 depicting three equilibrium points E0, E1

and E2 where equilibrium points E1 and E2 are centres
and E0 is a saddle. For Fig. 1, we have chosen parame-
ter values depending on physical condition and proper-
ties under restriction of phase plane analysis for Fig. 1
(values of the JEi

). Here equilibrium points E0 and E2

are enclosed by a family of nonlinear periodic trajec-
tories (NPT1,0) for QEAWs. On the other hand, from
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the equilibrium point E1, a pair of nonlinear homo-
clinic trajectories (NHT1,0) for QEAWs begin and ter-
minate. A family of supernonlinear periodic trajecto-
ries (SNPT2,1) for QEAWs enclosing equilibrium points
E0, E1 and E2 are also portrayed in Fig. 1. For the two
families of periodic trajectories for QEAWs surround-
ing E0 and E2, we get periodic wave solutions and for
the family of supernonlinear periodic trajectories for
QEAWs we get supernonlinear periodic wave solutions.

The periodic and superperiodic wave solutions corre-
sponding to NPT enclosing equilibrium point E2 and
SNPT shown in Fig. 1 are presented by bold green
and red curves on left and right sides of Fig. 2. By
keeping values of other parameters same as in Fig. 1,
we show effect of one parameter on quantum electron-
acoustic (QEA) periodic wave (left) and QEA superpe-
riodic wave (right). For example, in Fig. 2a, b, keeping
other parametric values same as Fig. 1, temperature
ratio (σ) is increased from 0.5 to 0.53 and the wave solu-
tions are depicted by dashed black curves and impact
of enhancement of temperature ratio on periodic and
superperiodic wave solutions are shown. Proceeding in
the similar manner, effects of number density ratio (μ),
velocity of the moving frame (V ) and nonextensivity
parameter (q) are shown in Fig. 2c–h, respectively.

From Fig. 2a, b, we observe that an increase in
temperature ratio of cold and hot electrons shortens
amplitudes of both QEA superperiodic and periodic
wave solutions. On the other hand, it elevates width of
QEA superperiodic wave solution and decreases width
of QEA periodic wave solution. Similar effects can be
observed in Fig. 2c–f when values of number density
ratio of unperturbed cold and hot electrons and nonex-
tensivity parameter are enhanced. Finally, enhance-
ment of velocity of the moving frame V causes widths
of both periodic and superperiodic wave solutions for
QEAWs to shorten and their amplitudes to elevate.
From all these figures, one can deduce that QEA peri-
odic and superperiodic wave solutions depend on tem-
perature ration (σ), number density ratio (μ), nonex-

−0.5 0 0.5 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

ψ

z

SNPT2,1
NPT1,0

NHT1,0

E0E1 E2

Fig. 1 Phase plot of PDS (17) for σ = 0.5, μ = 0.77, H =
1.4, γ = 3, V = 0.1, α = −1/3 and q = 0.35

tensivity parameter (q) and velocity of moving frame
(V ).

Figure 2b indicates that the amplitude of the super-
periodic wave depends inversely to the ratio between
cold and hot electron temperature (σ). In this regard it
is worth noting that in plasmas, particle disperse due
to convection. The tendency toward rarefield regions
from compressed regions is persuaded due to the ther-
mal motions of the ions. Figure 2d shows that the ampli-
tude of the superperiodic wave is inversely proportional
to the ratio of number densities between unperturbed
hot and cold electrons (μ). This is because by choosing
of a high ratio parameter means that more ions need
to bunch in order to prepare the Debye sheath which is
actually impossible since the ions are much less mobile
compared to electrons. Hence, for sustaining the struc-
ture, their amplitude must be inversely proportional to
the ratio parameter. From Fig. 2h, we found that the
amplitude of the superperiodic wave is inversely pro-
portional to the nonextensive parameter (q). This is
true, because by picking up high value of this parame-
ter means that we move further away from Boltzmann’s
distribution, i.e., we have chosen the very fast hot elec-
trons. Thus the ions should move fast and is impossible
because for ion’s mass.

5 Coexistence of trajectories

We employ an exterior force f0cos(ωζ) to the PDS
(17) in order to show coexistence of trajectories of
QEAWs. The consequent perturbed dynamical system
thus obtained is as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dψ

dζ
= z,

dz

dζ
=

V

R
ψ − P

2R
ψ2 − Q

R
ψ3 + f0cos(W ),

dW

dζ
= ω,

(18)

where f0 is the strength and ω is the frequency of exte-
rior force.

Nonlinear dynamical systems may have more than
one simultaneous solution for a fixed parameter set and
different initial states. This phenomenon is termed as
coexistence of trajectories or multistability. To show
coexisting features of QEAWs in our plasma system
we will plot phase spaces of system (17) for a partic-
ular set of parameters and different initial states. To
establish the phenomenon of coexistence of trajectories
for QEAWs, we fix parameter values at σ = 0.05, μ =

0.78, H = 1.4, γ = 3, V = 0.1, q = 0.9, α = −1
3
, f0 =

0.014 and ω = 0.09. We have chosen fixed values of the
parameters depending on physical conditions and prop-
erties at different initial conditions to show multistabil-
ity behaviour of electron-acoustic waves. Initial condi-
tions are varied from (ψ, z,W ) = (−0.32, 0.005, 0)
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Fig. 2 Variation of electron-acoustic periodic wave solutions (left) and superperiodic wave solutions (right) for different
values of a, b ratio between cold and hot electron temperatures σ, c, d ratio of number densities between unperturbed
hot and cold electrons μ, e, f velocity of the moving frame V and g, h nonextensivity parameter q with other values of
parameters same as figure 1
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Fig. 3 a Coexistence of quasiperiodic trajectories for QEAWs initiated by (−0.32, 0.005, 0) (blue) and (0.299, 0.005, 0)
(black) with chaotic trajectory initiated by (−0.03, 0.005, 0) (red) with σ = 0.05, μ = 0.78, H = 1.4, γ = 3, V = 0.1, q =

0.9, α = −1

3
, f0 = 0.014 and ω = 0.09, b enlarged view of quasiperiodic trajectory, c–e time series plots of a and f

Lyapunov exponent spectrum w.r.t. f0 initiated by (−0.03, 0.005, 0) with other parameters same as a

(blue) to (−0.03, 0.005, 0) (red) to (0.299, 0.005, 0)
(black) and we observe a corresponding change in phase
plot from quasiperiodic to chaotic to quasiperiodic phe-
nomena. This coexistence of two kinds of quasiperi-
odic trajectories and one type of chaotic trajectory
for QEAWs is portrayed in Fig. 3a. Enlarged view
of quasiperiodic orbit initiated by (0.299, 0.005, 0)
(black) is depicted in Fig. 3b.

From this coexisting phase space (Fig. 3a), one
can deduce that electrostatic potential (ψ) in our

plasma system is sensitive to initial conditions. For
the above parameter values, electrostatic potential
shows quasiperiodic behaviours at initial states (0.299,
0.005, 0) and (−0.32, 0.005, 0) and chaotic behaviour
at (−0.03, 0.005, 0). Figure 3c–e shows time series
plots for initial values (0.299, 0.005, 0) (black), (−0.03,
0.005, 0) (red) and (−0.32, 0.005, 0) (blue), respec-
tively, with other parameter values same as Fig. 3a.
From time series plots (Fig. 3c, e), irregular periodic
nature of the two quasiperiodic trajectories (black and
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Fig. 4 a Enlarged view of quasiperiodic trajectories initiated by (−0.11, 0, 0) (green), b coexistence of superperiodic tra-
jectory initiated by (−0.2, 0.02, 0) (black) and quasiperiodic trajectories initiated by (−0.11, 0, 0) (green) and (0.372, 0, 0)

(blue) for QEAWs with σ = 0.05, μ = 0.78, H = 1.4, γ = 3, V = 0.1, q = 0.9, α = −1

3
, f0 = 0.001 and ω = 0.003, c

enlarged view of quasiperiodic trajectories initiated by (0.372, 0, 0) (blue), d–f time series plots of b

blue) shown in Fig. 3a can be clearly seen. Also aperi-
odic behaviour of the chaotic trajectory (red) shown in
Fig. 3a can be clearly observed from corresponding time
series plot shown in Fig. 3d. The chaotic phenomenon
is further verified by one positive Lyapunov exponent
(LE) in the LE spectrum (Fig. 3f). This LE spectrum is
obtained numerically for the fixed parameter set with
initial value (−0.03, 0.005, 0).

Coexistence of superperiodic trajectory that is initi-
ated by (−0.2, 0.02, 0) (black) and quasiperiodic tra-
jectories that are initiated by (−0.11, 0, 0) (green) and
(0.372, 0, 0) (blue) for QEAWs are shown in Fig. 4b.
Here parameters are fixed at σ = 0.05, μ = 0.78, H =

1.4, γ = 3, V = 0.1, q = 0.9, α = −1
3
, f0 = 0.001 and

ω = 0.003. It is remarkable to note that electrostatic
potential shows sensitive dependence on initial condi-
tions. For the above-mentioned parameter values, elec-
trostatic potential shows superperiodic phenomenon at
initial state (−0.2, 0.02, 0) and quasiperiodic phenom-

ena at (−0.11, 0, 0) and (0.372, 0, 0). Enlarged views
of quasiperiodic trajectories for QEAWs initiated by
(−0.11, 0, 0) (green) and (0.372, 0, 0) (blue) are shown
in Fig. 4a, c, respectively. The time series plots ini-
tiated by (−0.2, 0.02, 0) (black), (0.372, 0, 0) (blue)
and (−0.11, 0, 0) (green) with other parameters same
as Fig. 4b are given in Fig. 4d, e, respectively. Super-
periodic behaviour of the black trajectory for QEAWs
shown in Fig. 4b is clearly obvious from the time series
given by Fig. 4d. Also, irregular periodic phenomena of
the blue and green trajectories for QEAWs shown in
Fig. 4b are evident from Fig. 4e, f, respectively.

In Fig. 5, we have parameters fixed at σ = 0.05, μ =
0.78, H = 1.4, γ = 3, V = 0.1, q = 0.9, α =

−1
3
, f0 = 0.01 and ω = 0.002. We observe three

types of trajectories for QEAWs coexisting together
in Fig. 5b, viz. superperiodic trajectory initiated by
(0.65, 0.005, 0) (black), quasiperiodic trajectories ini-
tiated by (0.38, 0.005, 0) (blue) and (0.54, 0.005, 0)
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Fig. 5 a Enlarged view of chaotic trajectory initiated by (0.27, 0.005, 0), b coexistence of superperiodic trajectory initiated
by (0.65, 0.005, 0) (black), quasiperiodic trajectories initiated by (0.38, 0.005, 0) (blue) and (0.54, 0.005, 0) (cyan) and
chaotic trajectory initiated by (0.27, 0.005, 0) (red) for QEAWs with σ = 0.05, μ = 0.77, H = 1.4, γ = 3, V = 0.1, q =

0.9, α = −1

3
, f0 = 0.01 and ω = 0.002, c enlarged view of quasiperiodic trajectory initiated by (0.38, 0.005, 0) (blue), d–g

time series plot of b, h Lyapunov exponent spectrum initiated by (0.27, 0.005, 0) w.r.t. f0 with other parameter values
same as b
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(cyan) and chaotic trajectory initiated by (0.27, 0.005, 0)
(red). Sensitive dependence on initial states can be
clearly observed from the coexisting phase space. Elec-
trostatic potential in our plasma system shows super-
periodic behaviour at (0.65, 0.005, 0), quasiperiodic
behaviour at (0.38, 0.005, 0) and (0.54, 0.005, 0) and
chaotic behaviour at (0.27, 0.005, 0). Enlarged views
of chaotic trajectory and quasiperiodic trajectory initi-
ated by (0.27, 0.005, 0) (red) and (0.38, 0.005, 0) (blue),
respectively, are shown in Fig. 5a, c, respectively. We
show time series plots of different trajectories contained
in Fig. 5b in Fig. 5d–g, with colours indicating the cor-
responding initial points. The superperiodic, quasiperi-
odic and chaotic natures of trajectories shown in Fig. 5b
are supported by their corresponding time series plots.
The LE spectrum w.r.t. the parameter f0 initiated by
(0.27, 0.005, 0) with other parameters same as Fig. 5b
is shown in 5 (h). The existence of one positive LE
throughout the graph (Fig. 5d) justifies chaotic nature
of the red trajectory shown in Fig. 5b.

6 Conclusion

An adiabatic quantum plasma with stationary ions,
degenerate cold electrons and nonextensively distributed
hot electrons has been considered. The modified KdV
equation has been derived with dual power nonlin-
earity for highly nonlinear QEAWs using RPT. The
modified KdV equation has been reduced to a pla-
nar dynamical system with three equilibrium points
employing Galilean transformation. A phase plot con-
sisting of three equilibrium points, two families of non-
linear periodic trajectories, a pair of homoclinic trajec-
tories and a family of supernonlinear periodic trajec-
tories for QEAWs has been portrayed. Effects of dif-
ferent parameters on periodic and superperiodic wave
solutions for QEAWs have been presented by employ-
ing numerical computations. It has been observed that
increase in parameters like temperature ratio σ, num-
ber density ratio μ and nonextensivity parameter q
shortened amplitudes of electron-acoustic superperiodic
waves and expanded its widths. On the other hand,
enhancement of velocity of the moving frame V elevated
amplitude of electron-acoustic superperiodic wave and
contracted its width. It has been found that the ampli-
tude of the nonlinear structures is indirectly propor-
tional to the ratio of number densities (μ), the cold
to hot electron temperature ratio (σ) and the nonex-
tensivity parameter (q), we have explained physically
that confronts our results. Coexistence of quasiperiodic
and chaotic trajectories, superperiodic and quasiperi-
odic trajectories and superperiodic, quasiperiodic and
chaotic trajectories for QEAWs were observed in this
plasma system using tools such as phase plots and time
series plots. Such tools have been efficient in showing
repetitive phenomena of periodic trajectories, aperiodic
natures of chaotic trajectories and irregular periodic
properties of quasiperiodic trajectories for QEAWs. LEs
in a LE spectrum quantify the rate of convergence

or divergence of close trajectories in a phase space.
One principal criteria of chaos in a system is the exis-
tence of a positive LE in the LE spectrum. The chaotic
behaviours of QEAWs in our system have been further
verified by a positive LE in the LE spectrum. Lastly,
electrostatic potential of our quantum adiabatic plasma
system has been found to depend sensitively on ini-
tial conditions and a variety of qualitatively different
phenomena were observed for fixed values of physical
parameters.
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