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Abstract. We study the non-linear Breit–Wheeler process ~γ′ + ~L→ e+ + e− in the interaction of linearly
polarized probe photons (~γ′) with a linearly polarized laser beam (~L). In particular, we consider the
asymmetry of the total cross section and the azimuthal electron distributions when the polarizations of the
photon and laser beams in the initial state are mutually perpendicular or parallel. Considering intense laser
beams and the strong field asymptotic we explore essentially the multi-photon dynamics. The asymmetry
exhibits some non-monotonic behavior depending on initial kinematic conditions; it depends sensitively on
the laser pulse duration. Our results provide additional knowledge for studying non-linear multi-photon
effects in quantum electrodynamics and may be used in planning experiments in upcoming laser facilities.

1 Introduction

The study of elementary photon–electron interaction pro-
cesses in strong electromagnetic fields in the laboratory
is enabled, to a large extent, by facilities which provide
intense and ultra-intense laser beams. Existing installa-
tions and forthcoming high-power laser projects allow
testing quantum electrodynamics (QED) as a pillar of the
Standard Model in the non-linear regime. Besides XFEL
beams, the optical lasers play a key role. Among the latter
ones, the ELI-Beam Lines [1] and ELI-Nuclear Physics [2]
facilities are widely discussed now, to be seen in the con-
text of many other projects, cf. [3]. For a review on most
known upcoming petawatt and exawatt laser projects,
see [4] for instance.

When speaking on “elementary QED interaction
processes” we have in mind Schwinger pair production,
Breit–Wheeler and trident (triple) pair production, and
Compton scattering. While ranging from elusive to not
much probed to fairly well known, these fundamental
phenomena can be considered as corner stones of QED
which deserve in-depth investigations in their own right,
in particular in the strong-field regime. In the present
work we focus on some details of polarization effects in
the non-linear Breit–Wheeler (BW) process. Within the
Furry picture, the non-linear BW process refers to the
decay of a linearly polarized probe photon ~γ′ with four-
momentum k′(ω′,k′) into an electron-positron (e+e−) pair
while traversing a linearly polarized laser pulse (character-
ized by the central frequency ω, wave four-vector k and
polarization four-vector ε with ε · k = 0, where the dot
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stands for the scalar product), symbolically ~γ′ → e−L +e+
L .

Here, the label “L” points to the laser-dressed e± states.
Alternatively, one can characterize the reaction under con-
sideration by ~γ′+~L→ e++e−. Facilities of the probe pho-
ton beam polarization for the multi-photon BW process
are discussed in [5–7], for instance. Polarized multi-GeV
photon beams are in operation worldwide, cf. [8,9].

Various laser polarizations can be accomplished custom-
arily. In the plane-wave approximation, one can further
distinguish monochromatic laser beams, formally with an
infinitely long duration (that is the infinite-pulse approx-
imation [IPA]), or a pulse of finite duration (that is
the finite-pulse approximation [FPA]). In the latter case,
the bandwidth effects cause a distribution of frequencies
around the central one, as evidenced by the power spec-
trum of the pulse. The IPA case has been analyzed in
depth by Reiss [10] and the Ritus group [11] some time
ago, and summarized in a well-known review paper [12].
For completeness, we mention the review papers [13–15],
and also recent publications [16–19].

The weak-field BW pair production γ′+γ → e+ +e− is
a threshold process requiring s > 4m2 (where s and m are
the square of the total energy in the center of mass system
(c.m.s.) and the electron mass, respectively), therefore, for
its analysis it is natural to use two dimensionless relativis-
tic and invariant variables. One is the reduced field inten-
sity ξ related to the intensity of background field potential
a, and electron charge e, ξ = ea/m [20], and the threshold
variable ζ ≡ 4m2/s [21] instead of the Mandelstam vari-
able s. The region ζ > 1 automatically selects the sub-
threshold multi-photon regime, where the simultaneous
participation of a multitude of photons in the laser beam
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via γ′+nγ → e++e− enables the pair production. Instead
of ζ, one can equally well use the quantum-nonlinearity
parameter κ (known as a Ritus variable), related to ζ by
κ = 2ξ/ζ.

The SLAC experiment E-144 [22,23] has tested the sub-
threshold multi-photon regime with n > 3 at ξ ≤ 0.35 by
the trident process e−+L→ e−+e+ +e− which combines
the sub-processes of non-linear Compton back-scattering
e−+L→ e−+γ′ and non-linear BW pair production. The
envisaged LUXE experiment [24,25] will probe the non-
linear BW and trident processes at ξ > 1 at the precision
level. For further prospects, see [3], in particular w.r.t.
FACET-II [26].

Given the present and future experimental research
opportunities, the theoretical basis must be developed in
more detail. In early works [10–12], it was found that
the probability of electron-positron BW pair production
depends on the mutual polarization of the probe pho-
ton and the laser background field. For example, different
probabilities (W ) (or cross sections (σ)) have been calcu-
lated for the non-linear BW process for mutual polariza-
tions being either perpendicular (⊥) or parallel (‖). In
the case of a monochromatic background field and for
asymptotically large values ξ � 1, reference [12] predicts
a ratio of σ⊥/σ‖ equal to 2 and 3/2 for κ� 1 and κ� 1,
respectively.

Some definite peculiarities in the differential distribu-
tions of positrons depending on the mutually linear polar-
izations of the laser pulse and probe photon beam at finite
values of ξ were considered in [27]. The non-linear BW
pair production in short laser pulses was studied in [28]
in a wide region of ξ and κ by employing a polarization-
operator approach. An exponential decrease of the prob-
ability of e+e− pair creation with decreasing values of κ
was found in the asymptotic region of ξ � 1, κ � 1.
The observed decrease is even stronger than predicted for
the constant-cross field, while maintaining the same ratio
W⊥/W‖ as in [12].

Another example of e+e− BW pair production at rela-
tively high field strengths corresponding to ξ = 1 . . . 5 and
the energy of the probe photon ω′ = 13 GeV was analyzed
in [29] within a semi-classical approach to BW e+e− pair
production. It was found that, at ξ = 2 and κ = 0.3 . . . 0.4,
the relative probabilities of e+e− pair production with dif-
ferent photon polarizations are W⊥ = 2.04 . . . 2.05.

The difference between σ⊥ and σ‖ leads to a finite asym-
metry A = (σ⊥ − σ‖)/(σ⊥ + σ‖), which has not yet been
subject of an independent research in itself. For example,
the asymptotic prediction of [12] at ξ � 1 leads to varia-
tion of the asymmetry in the interval A = 1/3 to 1/5 for
κ� 1 and κ� 1, respectively.

In present work we analyze the asymmetry A in two
regions: (i) at medium-strong (ξ ≤ 1) and (ii) ultra-strong
(ξ � 1) laser fields, respectively.

In the case of ξ < 1, the beam duration (or the num-
ber of e.m. field oscillations in the pulse) is important
[18,19,28]. Therefore, we analyze the asymmetry as a func-
tion of ξ and ζ for different pulse legths, using our formu-
lation developed in [18]. We show that, in this region, the
asymmetry may vary within the interval from A ' 0 to

A ' 1 where the cross section can acquire values from
σ‖ ' σ⊥ to σ‖ � σ⊥.

In the case of a strong laser field characterized by ξ � 1,
the dominant contribution to the probability of e+e− pair
production comes from the central part of the pulse enve-
lope [30]. Therefore, if the number of e.m. field oscillations
exceeds unity, the pulse duration becomes insignificant
and one can use the constant-crossed field approximation
in a wide region of ζ (κ) which excludes the appearance
of new parameters and assumptions. In both cases, we
analyze the dependence of A on the threshold parame-
ter ζ and on the azimuthal angle of the outgoing electron
(positron).

Our paper is organized as follows. In Section 2, for com-
pleteness, we recall the laser field model. The deployed
basic formulations of the cases ξ ≤ 1 and ξ � 1 are
presented in Sections 3 and 5. The respective numerical
results are discussed in Sections 4 and 6. Our summary is
given in Section 7.

2 The background field model

We suppose the external, linearly polarized background
(laser pulse) field is determined by the electromagnetic
(e.m.) four-potential in the axial gauge A = (0,A) as E =
−∂A/∂t:

A(φ) = f(φ) [a cos(φ)] . (1)

The quantity φ = k · x is the invariant phase with four-
wave vector k = (ω,k), obeying the null field property
k2 = k · k = 0 implying ω = |k|, a ≡ a(x); |a|2 = a2;
transversality means ka = 0 in the present gauge. For the
sake of definiteness, the envelope function f(φ) is chosen
as hyperbolic secant:

f(φ) =
1

cosh φ
∆

· (2)

The dimensionless quantity ∆ is related to the pulse dura-
tion 2∆ = 2πN , where N has the meaning of the number
of cycles in the laser pulse. It is related to the time dura-
tion of the pulse τ = 2N/ω. N < 1 means sub-cycle pulses
(for the dependence of some observables on the envelope
shape, see, e.g. [21]).

For an illustration, Figure 1 exhibits the e.m. potential
A of the pulse as a function of invariant phase φ for dif-
ferent values of the parameter N = 0.5, 1 and 5 shown
by solid, dashed and the dash-dotted curves, respectively.
These values of N are used in further analysis. The case
of N = 0.5 corresponds to the sub-cycle pulse.

The cross section of e+e−-pair production includes a
normalization factor N0 which is related to the average
square of the e.m. strength and is expressed through the
envelope functions as

N0 =
1

2π

∞∫
−∞

dφ
(
f2(φ) + f ′

2(φ)
)

cos2 φ (3)

with the asymptotic value N0 ≈ ∆/2π at ∆/π � 1. We
use natural units with c = ~ = 1, e2/4π = α ≈ 1/137.036.
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Fig. 1. The electromagnetic potential as a function of invariant
phase φ = k · x for different values of the pulse duration, N =
1/2 (blue solid curve), 1 (dashed red curve) and 5 (black dash-
dotted curve).

3 Basics of cross section and asymmetry,
ξ ≤ 1

As mentioned above, we consider essentially multi-photon
events, where a finite number of laser photons is involved
simultaneously in the e+e− pair production. This allows
for sub-threshold e+e− pair production at s < sthr or
ζ > 1. In this section we analyze the dependence of cross
sections on ζ and on the e.m. field intensity which is
described by the reduced field intensity parameter ξ2 for
different mutual polarizations of the incident photon and
the laser beam.

The differential cross sections read

dσi
dφe

=
2α2

m2ξκN0

∞∫
ζ

d` v(`)

1∫
−1

d cos θe wi(`), (4)

where i =⊥, ‖, ` is an auxiliary continuous variable, wi(`)
denotes the partial probability of the process process. The
azimuthal angle of the outgoing electron, φe, is defined as
cosφe = axpe/a|pe|. It is related to the azimuthal angle of
the positron by φe+ = φe+π. Furthermore, θe is the polar
angle of the outgoing electron, v is the electron (positron)
velocity in the center of mass system (c.m.s.).

The lower limit of the integral over the variable ` is the
threshold parameter ζ.

The region of ζ < 1 corresponds to the above-threshold
e+e− pair production, while the region of ζ > 1 is for the
sub-threshold pair production enabled by multi-photon
and bandwidth effects. We keep our notation in [18] and
denote by k(ω,k), k′(ω′,k′), p(E,p) and p′(E′,p′) the
four-momenta of the background (laser) field, the incom-
ing probe photon, the outgoing positron and the outgoing
electron, respectively. The important variables s, v and
u are determined by s = 2k · k′ = 2(ω′ω − k′k) (with
k′k = −ω′ω for head-on geometry), v2 = (`s − 4m2)/`s,
u ≡ (k′ · k)2/ (4(k · p)(k · p′)) = 1/(1 − v2 cos2 θe). The
Ritus variable κ = ξ(k·k′)/m2, is related to ζ by κ = 2ξ/ζ.
Note the identity

v(`)

1∫
−1

d cos θe =

u`∫
1

du

u
√
u(u− 1)

(5)

with u` = `/ζ. The normalization factor N0 is given by
equation (3).

In cases, where the incident probe photon polarization
plane is parallel (‖) or perpendicular (⊥) to the laser beam
polarization, the partial probabilities wi(`) have the fol-
lowing form:

w‖(`) = ξ2(u− 1)
(
|Ã1(`)|2 − Re[Ã0(`)Ã∗2(`)

)
+ (1 + τ2)|Ã0(`)|2,

w⊥(`) = ξ2 u
(
Ã1(`)|2 − Re[Ã0(`)Ã∗2(`)

)
− τ2|Ã0(`)|2,

(6)

where τ2 = (u/u` − 1) sin2 φe. The basic functions Ãm
introduced in [18] are analogs of the well known IPA basis
functions Am(n) in [12]:

Ãm(`) =
1

2π

∞∫
−∞

dφ fm(φ) cosm(φ+ φ̃) ei`φ−iP
(Lin)(φ) (7)

with

P(lin)(φ) = α̃(φ)− β̃(φ), (8)

α̃(φ) = α

φ∫
−∞

dφ′f(φ′) cosφ′, (9)

β̃(φ) = 4β

φ∫
−∞

dφ′f2(φ′) cos2 φ′,

α = z cosφe, β =
ξ3u

2κ
, z =

4ξ2u

κ

√
u`
u
− 1. (10)

The integrand of the function Ã0(`) in equation (7) does
not contain the envelope function f(φ) and is, therefore,
divergent. It is regularized using the prescription of [31,32]
which leads to identity

`Ã0(`) = αÃ1(`)− 4βÃ2(`). (11)

The definitions in equation (6) resemble corresponding
IPA expressions, i.e. for a monochromatic background field
one has [12]

w‖n = ξ2(u− 1) (A2
1 −A0A2) + (1 + τ2)A2

0,

w⊥n = ξ2 u (A2
1 −A0A2)− τ2A2

0, (12)

which can be obtained by replacing the basis functions
Ãm(`)→ Am ≡ Am(nαβ) determined as

Am(nαβ) =
1

2π

π∫
−π

dφ cosm(φ) einφ−iα sinφ+iβ sin 2φ (13)

with z2 → z2(1+ξ2/2), τ2 → τ2(1+ξ2/2), ζ → ζ(1+ξ2/2),
and with obvious substitutions ` → n in (4). Thus, the
corresponding differential cross sections read

dσIPAi

dφe
=

2α2

m2ξκN0

∞∫
1

du

u3/2
√
u− 1

∞∑
n=nmin

win, (14)
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Fig. 2. Results for a monochromatic laser beam, i.e. an
infinitely long pulse (IPA). Left panel: cross sections σ⊥ (solid
curves) and σ‖ (dashed curves) as a function of the threshold

parameter ζ for ξ2 = 100, 10−1, 10−2 and 10−4. Right panel:
asymmetry as a function of ζ.

with N0 = 1/2. The limit nmin is determined as through
integer part (Int) of nmin = Int

(
(4m2(1 + ξ2/2))/s

)
+ 1,

see [12,18] for details.
The cross section for an unpolarized incoming probe

photon is given by equation (4) with

w(`) =
1
2

(w⊥(`) + w‖(`)). (15)

The difference in w⊥ and w‖ allows to introduce the
asymmetry for the total cross section, integrated over φe,
by

A =
σ⊥ − σ‖
σ⊥ + σ‖

, (16)

as a function of ζ, as well as the asymmetry of a function
of φe at fixed ζ by

A(φe) =
dσ⊥/dφe − dσ‖/dφe
dσ⊥/dφe + dσ‖/dφe

· (17)

4 Numerical results, ξ ≤ 1

Below we present our numerical results for the cross sec-
tions and asymmetries for the the monochromatic laser
beam (IPA) and for short and ultra-short (sub-cycle)
pulses (FPA).

4.1 Infinite pulse (IPA)

The cross sections as a function of the threshold param-
eter ζ are exhibited in the left panel of Figure 2 for
ξ2 = 100, 10−1, 10−2 and 10−4. The cross sections σ⊥ and
σ‖ are depicted by solid and dashed curves, respectively.

One can see a step-like behavior of the cross sections,
where each new step with ζ close to its integer value nζ
corresponds to opening a new channel with the number of
simultaneously participating photons exceeding nζ . The
step height is proportional to ξ−2. At ξ2 = 1, the step-
wise behavior practically disappears, and the cross sec-
tions show an almost smooth decrease with increasing ζ.

The asymmetry defined in equation (16) as a function
of the threshold parameter ζ is exhibited in Figure 2, right
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Fig. 3. The asymmetry and combinations of Am as a function
of φe for an infinitely long pulse (IPA) for ξ2 = 10−2. The
upper and top panels are for asymmetries A and functions f1 =
ξ2(A2

1 − A1A2) and f2 = A2
0, respectively; the left and right

panels correspond to ζ = 2 and 3, respectively. The functions
f1 and f2 are shown by solid and dashed curves, respectively.

panel. For a weak field strength, ξ2 � 1, the asymmetry
exhibits sharp peaks and dips in the vicinity ζ ' 2m+1−ε
and ζ ' 2m − ε with m = 0, 1, 2 . . . and ε � 1, respec-
tively. The height of the peaks (the depth of the dips)
reaches a value of A ' 1 (0) at ξ2 ≤ 10−4 and decreases
(increases) with increasing values of ξ2.

Sharp peak or dip positions correspond to the cases
where σ⊥ � σ‖ or σ⊥ ' σ‖, respectively, and reflect the
properties of the basic functions Am(n). Note that the
non-monotonic ζ dependence of asymmetry is determined
by the numerator in the expression (16).

In the here considered case of IPA one has

A(φe) ∝
∞∑

n=nmin

1∫
−1

vd cos θe

×
(
ξ2 (A2

1 −A0A2)− (1 + 2τ2)A2
0

)
∼ ξ2 (A2

1 −A0A2)− A2
0 |n=nmin,θ=π/2,τ=0, (18)

neglecting a small, slowly varying variable τ2, and taken
integrand at cos θ = 0, n = nmin where the integral reaches
its maximum value.

For an illustration, Figure 3 exhibits the asymme-
try A(φe) and the combination of the functions f1 =
ξ2(A2

1 − A0A2) and f2 = A2
0, which are depicted in the

top and bottom panels, respectively. The dependence on
the azimuthal angle in the vicinity of ζ = 2 and 3, is shown
in the left and right panels, respectively. When ζ = 2− ε,
then f1 ' f2, which leads to a small asymmetry and man-
ifests itself in a dip in the right panel of Figure 2. For
ζ = 3− ε, one gets f1 � f2 and, as a result, the asymme-
try exhibits a sharp peak in the right panel of Figure 2.

Finally, we conclude that in the region under considera-
tion, ξ2 ≤ 1 and ζ ≤ 5, the asymmetry shows sharp peaks
and dips in such a way that for ξ2 ≤ 10−4 the asymmetry
varies in the range 0 . A . 1. With increasing values of

https://www.epjd.epj.org
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Fig. 4. Left panels: total cross sections of the non-linear BW
e+e− pair production as a function of the threshold parameter
ζ for finite pulses with N = 0.5, 1 and 5. The results for ξ2 =
10−4, 10−2, 10−1, and 100 are displayed sequentially from the
top to bottom panels. The solid and dashed curves are for σ⊥
and σ‖, respectively. Right panels: asymmetry as a function of

ζ for different values of ξ2 and N . The dashed, dot-dashed and
solid curves are for N = 0.5, 1 and 5, respectively. Crosses are
for the infinite pulse (IPA) prediction.

ξ2, the range of the variation decreases significantly. At
ξ2 = 1, the asymmetry varies in the range 0.2 . . . 0.4 with
average value ≈ 0.33.

4.2 Finite pulse (FPA)

Our results for non-linear Breit–Wheeler e+e− pair pro-
duction as a function of the threshold parameter ζ for
finite pulses (FPA) with different pulse lengths (character-
ized by N) and field intensity ξ2 are exhibited in Figure 4.

The total cross sections σ⊥ and σ‖ as a function of ζ for
ξ2 = 10−4, 10−2, 10−1, and 100 are displayed sequentially
from the top to bottom panels in Figure 4 (left). The solid
and dashed curves are for σ⊥ and σ‖, respectively.
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Fig. 5. The asymmetry as a function of φe for finite pulses
characterized by N = 0.5, 1 (left panel) and N = 5 (right
panel) at ζ = 2.5 and ξ2 = 10−2. The crosses in the right
panel are for the IPA case.

In the case of N = 5 and ξ2 . 10−1, the cross sec-
tions exhibit a step-like structure with steps near the
integer values of ζ, similar to the IPA prediction shown
in Figure 2. The height of the steps ∝ ξ−2. At ξ2 = 1,
the step-wise structure of the cross sections goes into an
almost monotonic decrease with increasing ζ. The cross
sections for N = 1 and 5 are close to each other, i.e. the
result becomes insensitive to the pulse duration.

In the cases of short (N = 1) and very short (sub-cycle,
N = 0.5) pulses, the cross sections exhibit a monotonic
exponential decrease with increasing ζ.

The difference between σ⊥ and σ‖ leads to a finite asym-
metry, displayed in the right panels of Figure 4. For conve-
nience, the prediction for the IPA case is shown by crosses.
Consider first the case of a weak field, i.e. an intensity
referring to ξ2 . 10−1. At a relatively large pulse width
with N ≥ 5, the asymmetry resembles qualitatively IPA
result (cf. Fig. 2, right) with some peaks and dips. Their
positions are close to that of the IPA case.

At sub-cycle and short pulses with N = 0.5 and
1, respectively, the asymmetries exhibit smooth non-
monotonic behavior without sharp peaks and dips.

Let us analyze the asymmetry as a function of the
azimuthal angle φe. First, we consider the case of ζ being
in the interval between the two nearest integer values,
i.e. away from the values for which IPA predicts sharp
peaks/dips.

Our result for ζ = 2.5 and ξ2 = 10−2 is depicted in
Figure 5. Predictions for very short pulses with N ≤ 1
and short pulses with N ≥ 5 are different, therefore, they
are shown separately.

For pulse with N = 0.5, the asymmetry is quite a large
at φe = 0 (A(0) ' 0.8), increases toward a local maximum
at φ ' π/4, and then decreases toward a minimum at
φe = π/2. (Note that the asymmetry is symmetric under
the substitution φe → 2π − φe.) For the short pulse with
N = 1, the asymmetry has a maximum at φe = 0, then it
decreases up to zero at φe/π ' 0.44 and has a maximum
at φe = π.

In case of a pulse with N = 5, the asymmetry exhibits
local maxima at φe = 0π/2, π and minima at π/4, 3π/4.
The result for the finite pulse coincides practically with
the prediction for the IPA case, shown by crosses.

For completeness, in Figure 6 we also present results for
the asymmetry in the vicinity of integer values of ζ = 2.
The asymmetries for N = 0.5, 1 and N = 5 are shown in
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Fig. 6. The asymmetry as a function of φe for finite pulses
with N = 0.5, 1 (left panels) and N = 5 (right panels) and
ζ = 1.9, 2, 2.1 at ξ2 = 10−2.

the left and right panels, respectively. In our calculations,
we choose ζ = 1.9, 2, and 2.1 at ξ2 = 10−2. In the case of
short pulses withN ≤ 1, the result is similar to that shown
in Figure 6 (left panel) and, within the chosen interval,
is practically independent of ζ. For N ≥ 5, the model
predicts clear maxima at φe = 0, π. An additional bump
occurs at φe = π/2 and ζ = 2.1, but its height is much
smaller than that predicted for ζ = 2.5 (cf. Fig. 5 (right
panel)).

5 Cross sections and asymmetry in
ultra-intense fields, ξ � 1

At large values of ξ � 1, the main contribution to the
e+e− pair production comes from the central part of enve-
lope, the final result is not sensitive to the envelope struc-
ture [30], and for calculation of the partial probabilities
one can use the IPA formalism with replacing the sum-
mation

∑
n

in equation (14) by the integration
∫
d`. The

total cross section reads

dσi
dφe

=
2α2

m2ξκN0

2π∫
0

dφ

∞∫
1

du

u3/2
√
u− 1

∞∫
`min

d`wi`, (19)

where φ = φe and `min = 4m2(1+ξ2/2)u/s, andN0 = 1/2.
The corresponding formalism was developed by Nikishov
and Ritus [11,12]. For completeness and easy reference, we
provide in this section the most important expressions of
their approach, necessary for the subsequent analysis.

The continuous variable ` is expressed in terms of the
auxiliary variables ρ and τ via

` =
2ξ2u

κ

(
ρ2 +

τ2

ξ2

)
+ `min, (20)

where

ρ2 =
1
ξ2

(
1 +

1
2
ξ2

)(u`
u
− 1
)

cos2 φ,

τ2 =
(

1 +
1
2
ξ2

)(u`
u
− 1
)

sin2 φ, (21)

with `min ≡ `0 = 2m2(1 + 1
2ξ

2)/(k · k′) = 2ξ(1 + ξ2/2)/κ
and u` = `/`0. The variables ρ, τ and φ allow to perform

a useful transformation

2π∫
0

dφ

∞∫
`min

d` =
4ξ2u

κ

∞∫
−∞

dρ

∞∫
−∞

dτ. (22)

Further, for large ` the arguments α and β in the basic
functions Am(`αβ) in equation (13) are also large and,
therefore, the bi-linear combinations of A2

0 and A2
1−A0A2

in (12) can be replaced by asymptotic expressions:

A2
0 =

2σ
π2ξ2y sin2 ψ

Φ2(y)(1 + cos 2η)

A2
1 −A0A2 =

2σ2

π2ξ4y2 sin2 ψ

(
yΦ2(y) + Φ′2(y) (23)

+ (yΦ2(y) + Φ′2(y)) cos 2η
)
, (24)

where Φ(y) and Φ′(y) denote the Airy function and its
derivative, respectively. The variables ψ, σ, and η are asso-
ciated with the variables `, u, ρ, and τ as

cosψ = ρ, σ = 1 + τ2, y = σ

(
2u

κ sinψ

) 2
3

,

η = `

(
ψ − sin 2ψ

2(1 + 2 cos2 ψ)

)
· (25)

By making use of equations (23)–(25) and discarding
highly-oscillating terms proportional to cos 2η, one can
obtain the final expressions for σi (i = ⊥, ‖)

σi∞ =
32α2

π2 ξκm2

π∫
0

dψ

∞∫
0

dt

(t2 + 1)
3
2

∞∫
−∞

dτwi (26)

with t =
√
u− 1 and

w⊥∞ = a
(
uF1 − τ2F2

)
,

w‖∞ = a
(
(u− 1)F1 + (1 + τ2)F2

)
, (27)

F1 = b (yΦ2(y) + Φ(y)′2), F2 = Φ2(y),

a = a
1
3
0 , b = a

− 2
3

0 , a0 =
2u

κ sinψ
· (28)

The difference between σ⊥ and σ‖ in equations (26), (27)
leads to the asymmetry

A∞ =
σ⊥∞ − σ‖∞
σ⊥∞ + σ‖∞

· (29)

In the limit of extremely large values of ζ � 2ξ (small
values of κ� 1) and small values of ζ � 2ξ (large values
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Fig. 7. The left and right panels are for the total cross section
σ⊥∞ and asymmetry A∞ as a function of ζ. The dashed and
dot-dashed curves are for the asymptotic expressions equa-
tions (30) and (31), respectively. The top and bottom panels
are for ξ = 5 and 50, respectively.

of κ� 1), the cross sections take the asymptotic forms

ζ � 2ξ, or κ� 1

σ⊥∞ = Cζ ζ
− 1

2 e−
4
3
ζ
ξ = Cκ κ

1
2 e−

8
3κ , σ‖∞ =

1
2
σ⊥∞,

Cζ = 3
√
π

ξ

α2

m2
, Cκ = 3

√
π

2
α2

m2ξ
, (30)

ζ � 2ξ or κ� 1,

σ⊥∞ = Dζ ζ
1
3 , = Dκ κ

− 1
3 , σ‖∞ =

2
3
σ⊥∞,

Dζ =
3

14
3 Γ 7( 3

2 )α2

7π3ξ
4
3m2

, Dκ =
2

1
3 3

14
3 Γ 7( 3

2 )α2

7π3ξm2
· (31)

This leads to the asymptotic expressions for the asym-
metry

A ζ�2ξ =
1
3
, A ζ�2ξ =

1
5
· (32)

6 Numerical results, ξ � 1

The total cross sections σ⊥∞ and the asymmetry A∞
are exhibited in Figure 7 in the left and right panels,
respectively. Results for ξ = 5 and 50 are displayed in the
top and bottom panels, respectively. The dashed and dot-
dashed curves are for the asymptotic expressions equa-
tions (30) and (31), respectively. At small values of ζ, the
cross sections increase slightly from their asymptotic val-
ues and then rapidly decrease with increasing ζ, being
nevertheless finite, even at very large values of ζ � 1.

The asymmetry monotonically increases with increasing
values of ζ, being in the range of its asymptotic values

0.2 ≥ A∞ ≥
1
3
· (33)
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Fig. 8. The left and right panels are for the differential cross
sections dσ⊥∞/dφe and the asymmetry A∞(φe) as a function
of the azimuthal angle φe for different values of ζ (κ). The top
and bottom panels are for ξ = 5 and 50, respectively.

Using the identity

cosψ =
τ

ξ
cotφ, (34)

one can find expressions for the azimuthal angle-
differential cross section

dσi∞
dφ

=
32α2

π2 ξ2κm2 sin2 φ

∞∫
0

dt

(t2 + 1)
3
2

∞∫
−∞

τdτ

sinψ
wi, (35)

and the azimuthal angle asymmetry

A∞(φ) =
dσ⊥∞/dφ− dσ‖∞/dφ
dσ⊥∞/dφ+ dσ‖∞/dφ

· (36)

The differential cross sections dσ⊥∞/dφe and asym-
metry A∞(φe) as a function of the azimuthal angle φe
for different values of ζ (κ) are depicted in Figure 8 in
the left and right panels, respectively. The cross sections
exhibit a deep minimum at φe = π/2 and sharp maxima
at φe = 0, π, respectively. The cross sections decrease with
increasing values of ζ.

The asymmetry has sharp peaks at φe = 0, π. The
height of the peaks increases with decreasing ζ. The value
of asymmetry in the region 0 < φe < π is consistent with
asymptotic prediction equation (32).

7 Summary

In summary we have performed an analysis of the asym-
metry of e+e− pair production by the non-linear BW pro-
cess for different mutual orientations of the polarization
vectors of a linearly polarized initial probe photon and
the linearly polarized laser pulse for low (ξ ≤ 1) and high
(ξ � 1) laser field intensities. In particular, we examined
the asymmetry caused by the difference of σ⊥ and σ‖. We
have analyzed the asymmetry for both the total cross sec-
tions as a function of the threshold parameter ζ and the
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differential cross sections as a function of the azimuthal
electron angle φe for fixed values of ζ. Our results can be
summarized as follows.

(1) Weak field intensity with ξ ≤ 1:
(i) the cross sections σ⊥ and σ‖ decrease fast with

increasing threshold variable ζ. The cross sections
are sensitive to the pulse duration. Thus, at rel-
atively large laser pulse duration, N ≥ 5, σ⊥,‖
exhibit a step-like behavior, similar to the predic-
tion for an infinite pulse. The height of steps is
∝ ξ−2. In case of short and sub-cycle pulses with
N ≤ 1, the cross sections decrease monotonically
with increasing ζ. At ξ = 1 we found a weak depen-
dence on the pulse duration for N ≥ 1.

(ii) The difference between σ⊥ and σ‖ generates a
specific asymmetry, both for monochromatic laser
beams (IPA) and pulses of finite duration (FPA). In
IPA it has sharp peaks and dips at integer odd and
even values of ζ, respectively. That is a consequence
of properties of the corresponding basic functions
Am. In FPA and for pulses with N ≥ 5, the asym-
metry also exhibits a non-monotonic behavior with
pronounced peaks and dips. Their positions resem-
ble that of IPA. At small values of N , N ≤ 1, the
asymmetry is a smooth monotonic function of ζ.

(iii) The azimuthal angle dependence of the asymme-
tries displays smooth non-monotonic distributions
with specific maxima and minima which are deter-
mined by the pulse duration and the threshold
parameter ζ.

(2) High laser field intensity with ξ � 1:
(i) the cross sections decrease monotonically with

increasing values of ζ (or decreasing κ). At asymp-
totically small and large ζ they coincide with the
asymptotic prediction of [12].

(ii) The asymmetry increases smoothly with increasing
ζ from 1/5 to 1/3 for ζ � 1 and ζ � 1, respectively.

(iii) The azimuthal angle distribution exhibits sharp
peaks at φe = 0, π. The height of the peaks
increases with decreasing values of ζ.

Our theoretical predictions in a wide region of field
intensities may be used as a unique and powerful
input for the design of forthcoming experiments in the
near future and corresponding high-precision experi-
mental studies of the various aspects of multi-photon
dynamics in non-linear QED processes.
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