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Abstract. We calculate various differential and double differential characteristics of ionization by a single
photon for H−, He and for the two-electron ions with Z = 3, 4, 5 in the region of the so-called quasi-free
mechanism (QFM) domination. We employ highly accurate wave functions at the electron-electron coales-
cence line where coordinates of both ionized electrons coincide. We trace the Z dependence of the double
differential distributions. For all considered targets we discuss the dependence of the photoelectron energy
distribution on the photon energy. Our calculation demonstrated the rapid decrease of QFM contribution
with increase of the difference in energy of two outgoing electrons, and with decrease of the angle between
two outgoing momenta. As a general feature, we observe the decrease of QFM contribution with nuclear
charge growth.

1 Introduction

By “high energy photoionization” we mean absorption of
photons with energies ω much exceeding the single elec-
tron binding energies I, i.e. ω � I. If only one photoelec-
tron is emitted, the momentum transferred to the nucleus
that is called the recoil momentum q, is estimated as q ≈ p
with p being the momentum in high energy photoion-
ization of photoelectrons. Thus, the recoil momentum
strongly exceeds the characteristic binding momentum of
the ionized object µ = (2mI)1/2 with m being the elec-
tron mass (we employ the relativistic system of units with
~ = c = 1), i.e. q � µ. This is because photoionization
with only one electron knocked out cannot take place on
a free electron.

Similar situation takes place for the double photoion-
ization, in emission of two electrons by a single photon,
if the photon energy ω is not too large. The sharing of
energy is strongly unequal and q ≈ p1 ≈ (2mω)1/2 with p1

standing for momentum of the faster photoelectron, while
the second electron is emitted with momentum p2 ∼ µ.
However, with the increase of ω the role of so-called quasi-
free mechanism (QFM) suggested in [1] becomes more and
more important. In the frame of QFM momenta of pho-
toelectrons p1,2 and that of the photon k compose such
configuration that the recoil momentum

q = k− p1 − p2, (1)
a e-mail: liverts@phys.huji.ac.il

becomes as small as the binding momentum µ, i.e.

q ∼ µ. (2)

Since each act of transfer of large momentum q � µ to the
nucleus leads to the small factor 1/q2 in the amplitude,
the QFM provides surplus in differential characteristics
and in the total cross section of double ionization.

Most of the publications on QFM touched the theory of
the mechanism for the case of two-electron (helium-like)
atomic systems. In the first calculation of the QFM contri-
bution to the total double photoionization cross section [2]
it was shown to become the main mechanism of the process
at the energies of hundreds keV for He. The nuclear charge
dependence of QFM contribution to the cross section was
traced in [3]. It was emphasized in [4] that the description
of the QFM requires employing the two-electron bound
state wave function ψ(r1, r2) with the proper analytical
behavior on the electron-electron coalescence line r1 = r2.
The relation between the precise two-electron wave func-
tion and its coordinate derivative at the line of zero inter-
electron distance is known as the second Kato’s cusp con-
dition [5]. The fulfillment of this condition in calculations
usually employed to approximate wave functions is nec-
essary for proper description of QFM since it accounts
for the singularity of the Coulomb interelectron interac-
tion. For more details and references see Chapter 9 of the
book [6].

It follows from the works mentioned above that for
helium the QFM provides a noticeable contribution to the
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spectrum of photoelectrons starting from the photon ener-
gies of about 2 keV. The QFM corrections to the total
cross section become noticeable at the photon energies
of dozens keV. For heavier two-electron ions the corre-
sponding photon energies become larger. As it stands now,
experimental data for such energies are not available.

Although the QFM was discussed in literature during
many years, to detect it experimentally remained a chal-
lenge until this was done by the group of Dörner [7]. Note
that this discovery was made 38 years after its predic-
tion [1] and became possible only after invention of a new
experimental technique which enables investigation into
the double electron photoionization as a function of recoil
momentum q. However, the obtained clear manifestation
of the QFM has been detected at a much smaller value of
the photon energy ω = 800 eV than expected. It was found
in [7] that the distribution in momenta q transferred to the
final state doubly charged ions in double photoionization
of helium has a surplus at small q of about 1−2 atomic
units. It was impossible, however, to compare experiment
with theory since reference [7] did not contain absolute
measured values.

Note that the QFM can not take place in dipole approx-
imation. It requires inclusion of the quadrupole inter-
action. Theoretical investigation into the contribution
of quadrupole effects was continued, e.g. by the papers
[8–10]. The development of experimental technique [11],
[12] enabled to separate the dipole and quadrupole contri-
butions in the experiments on the double photoionization
[13]. This demonstrates that investigation into the dou-
ble electron ionization by a single photon as a function
of recoil momentum becomes an important tool in stud-
ies of short-range interelectron correlations in atoms and
in perspective, in molecules as well as even more complex
compounds.

An important move mainly in experimental investiga-
tion and not only of helium atom but of hydrogen molecule
also has been made by the quite recent publication [14].
In [14] the double differential distributions d2σ/dτdβ with
τ = p1p2/p1p2 and

β =
|ε1 − ε2|

E
, (3)

(ε1,2 are the energies of the photoelectrons, E = ε1 +ε2 =
ω − I++, where I++ is the two-electron ionization poten-
tial) have been measured for He atom and H2 molecule.
Quite a powerful QFM peak at τ = −1, β = 0 has been
observed in both objects. Also the peak in the energy
distribution

dσ

dβ
=
∫ (p1+p2)

2

(p1−p2)2

(
d2σ

dq2dβ

)
d(q2) (4)

has been seen for the same targets attributed to QFM.
These results prompt theoretical investigation into

QFM for other, not yet investigated two-electron systems
that can become the objects of photoionization studies
soon. Note that the results of [7] stimulated us to cal-
culate the differential distributions of the process for He
atom at q ∼ µ and photon energies ω ≈ 1 keV [15]. In [15]

we employed approximate bound state wave functions at
the electron-electron coalescence line obtained in the work
[16]. This enabled us to carry out analytical calculations.

Since then the ability to calculate improved consider-
ably. So, in the present paper, we employ much more
sophisticated bound state wave functions [17,18] having
in mind the impressive increase in experimental accuracy
achieved in [14]. We also extend our calculations to include
all the lightest two-electron positive ions (Z ≤ 5) and
the negative hydrogen ion H−. For He atom we trace the
dependence of the double differential distributions on the
photon energy ω. Including several two-electron ions, we
trace the Z dependence of the double differential contri-
butions for photon energies around 1 keV.

While we consider the photon energies corresponding
to nonrelativistic photoelectrons, i.e. ω � m, the QFM
is possible only in the vicinity of the center of the energy
distribution, where the relative difference of the electron
energies β is small, β � 1. The actual value of ε1 − ε2
where the QFM is possible depends on the ratio k/µ of
the photon momentum k = ω and of the characteristic
momentum of the bound state µ [1]. We consider the case
ω � µ. For helium this means ω � 6 keV. In this case
p1 − p2 ≤ q and the QFM is at work if

β ≤
√

q2

mE
· (5)

Condition (2) requires also that the photoelectrons
move in approximately opposite directions since τ =
p1p2/p1p2 = (q2 − p2

1 − p2
2)/(2p1p2) ≈ −1.

An important feature of the QFM is that its amplitude
F can be expressed in terms of the amplitude F0 that rep-
resents moving to continuum due to the photon absorp-
tion by two free electrons at rest (see below and [6]). This
explains the name “quasifree”- the two-electron system
cam move almost without noticing the nucleus. However
to do this the motion of the electrons should be strongly
correlated.

One can see that the QFM is impossible in the dipole
approximation where we must put k = 0. In this
case the photoelectrons move exactly bach-to-back with
p1 + p2 = 0. The incoming photon carries spin S = 1
while the two-electron system in spin singlet state can not
carry angular momentum J = 1. Thus, we must include
the quadrupole terms of interaction between the photon
and electrons.

Presenting ε2 = (p1−q)2/2m we find for the differential
cross section corresponding to the QFM

dσ = 2πδ
(
E−2ε1−

p1qz
m
− q2

2m

)
|F |2 d

3p1

(2π)3
dq2dqz

4π
· (6)

Here F is the amplitude describing the QFM mechanism;
the averaging over photon polarizations should be carried
out. Also, z is the direction of momentum p1−k, and we
put p1−k ' p1 in the argument of the delta-function.
Using the delta-function for integration over qz we obtain
for the double differential distribution

d2σ

dq2dβ
=

m2E

2

∫
|F |2 dt
(2π)3

; t = p1k/p1k. (7)

https://www.epjd.epj.org


Eur. Phys. J. D (2020) 74: 173 Page 3 of 8

Another double differential distribution of interest is

d2σ

dτdβ
= 2p1p2

d2σ

dq2dβ
= m2E3

∫
|F |2

(2π)3
dt. (8)

Employing these expressions, one can obtain other differ-
ential distributions, e.g.

dσ

dq2
=

1
2

∫ q/p

0

dβ
d2σ

dq2dβ
; p = (mE)1/2. (9)

2 The QFM amplitude

We introduce

R = (r1 + r2)/2; ρ = r1 − r2, (10)

with r1,2 denoting the positions of the two electrons in
the rest frame of the nucleus. We present the ground state
wave function in terms of these variables

Ψ(r1, r2) = Ψ̂(R,ρ) . (11)

It is instructive to start with the QFM amplitude F (0)

in which the photoelectrons are described by the plane
waves. Thus, the wave function of the photoelectrons is

Ψph(r1, r2) =
1√
2

(
ψp1(r1)ψp2(r2) + ψp1(r2)ψp2(r1)

)
,

(12)
with ψpj

(r) = e−ipjr. Analysis that employs such a wave
function contains all essential physics.

Introducing κ = (p1 − p2)/2 ≈ p1 we write

F (0) =
√

2N(ω)
∫
d3Rd3ρe−iqR+i(κ−k/2)·ρ

( ie · ∇ρ
m

− ie · ∇R
2m

)
Ψ̂(R,ρ) + (p1 ↔ p2), (13)

with N(ω) =
√

4πα/2ω the normalization factor of the
photon wave function. Integrating by parts we find that
since κ = |κ| � q, the first term in the parenthesis on the
right hand side dominates, providing

F (0) =
√

2N(ω)
eκ

m

∫
d3Rd3ρeiqR+i(κ−k/2)·ρ

Ψ̂(R,ρ) + (p1 ↔ p2). (14)

The integral is determined by R ∼ 1/q ∼ 1/µ i.e. the
characteristic R are of the order of the size of the bound
state. The important values of ρ are much smaller being
of the order 1/κ� 1/µ. To pick the quadrupole terms we
present the wave function as

Ψ̂(R,ρ) = Ψ̂(R, 0, 0) + ζΨ̂′(R, ζ, 0)|ζ=0 + ρΨ̂′(R, 0, ρ)|ρ=0 + 0(ρ2),

(15)
with ζ = R·ρ. Substituting this expansion into the integral
over ρ in equation (13)

J(a, R) =
∫
d3ρeiaρΨ̂(R,ρ), (16)

with

a =
p1 − p2 − k

2
(17)

we see that only the third term on the right hand side of
equation (15) contributes, providing

J(a, R) = −8πΨ̂′(R, 0, ρ)|ρ=0

a4
= −4πmα

a4
Ψ̂(R, 0). (18)

The second equality is due to the second Kato cusp con-
dition [5]

∂Ψ̂(R,ρ)
∂ρ

|ρ=0 = mαΨ̂(R,ρ = 0)/2.

Thus, the amplitude

F (0) =
√

2N(ω)
eκ

m

∫
d3R eiqRJ(a, R) +

(
p1 ↔ p2

)
(19)

can be written as

F (0) = F0S(q). (20)

Here

S(q) =
∫
d3reiqrΨ(r, r) =

∫
d3f

(2π)3
Ψ̃(q− f , f) (21)

describes transfer of momentum q from the nucleus to
the bound electrons. In the lowest order of expansion in
powers of I++/ω we put E = ω, and as a result have

F0 = −4π
√

2αN(ω)
eκ

a4
+
(
p1 ↔ p2

)
, (22)

the amplitude of the process in which one photon moves
the system consisting of two free electrons in spin-singlet
state to continuum.

In the lowest (dipole) approximation we must put k = 0
in the factor 1/a4 with a defined by equation (17). This
leads to F0 = 0 and F (0) = 0 in agreement with the
analysis presented above. The leading nonvanishing con-
tribution is provided by next to leading term of expansion
of the factor

1
a4

=
1

m2E2

(
1 +

2p1k
mE

)
· (23)

Here we neglected the terms of the order β2. Inclusion of
such terms would require higher order terms of expansion
of the right hand side of equation (15) in powers of ρ. Thus
the amplitude of the process on free electrons is

F0 = −16π
√

2αN(ω)
(ep1)(p1k)
m3E3

, (24)

where we must put E = ω, while the amplitude for the
process on the bound electrons is given by equation (20).

Now we describe the photoelectrons by nonrelativistic
Coulomb functions. Note that we do not employ expansion
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in powers of I++/ω. The two-electron wave function is
presented by equation (12) with

ψpj (r) = e−ipjrXpj (r); Xpj (r) = N(ξj)1F1(iξj , 1, ipjr − ipjr),

(25)
where 1F1(b, 1, z) is the confluent hypergeometric func-
tion of the first kind, ξj = mαZ/pj , N(ξj) =
[2πξj/(1− e−2πξj )]1/2 = ψpj

(r = 0). Evaluation similar
to that carried out for the case when the photoelectrons
are described by plane waves [15], [6], provides in the limit
E = ω

F = F0S1(q, β) . (26)

Here F0 is given by equation (24) while

S1(q, β) =
∫
d3ReiqRXp1(R)Xp2(R)Ψ̃(R, 0), (27)

see equations (20) and (21). The corrected analytical
representation for the integral S1(q) is presented in the
Appendix.

3 Differential distributions and the QFM
cross section

Combining equations (7), (26) and (27) we find the QFM
double differential distribution. It can be presented as

d2σ

dq2dβ
=

1
κ

d2σ1

dq2dβ
;

d2σ1

dq2dβ
=

26

15
α3 |S1(q)|2

m2ω2
, (28)

with the kinematical factor

κ =
E3

ω3
=
(ω − I++

ω

)3

·

Such presentation is convenient for description of the pro-
cess with various targets at fixed values of ω. All effects
of interactions are contained in the factor S1(q, β). Recall
that E = ω− I++ is the energy carried by two photoelec-
trons. Here I++ is the total binding energy of the system
containing two bound electrons.

In Figures 1–4 we present the result for helium at
ω = 800 eV, changing ω for the other targets, i.e. for the
negative ion H− and for the two-electron ions with Z =
3, 4, 5, proportionally to the total binding energies I++.
Thus, the factor κ is the same for all these objects. The
binding energies of the two-electron atomic systems are
well-known and approximately equal to 14.4 eV, 78.9 eV,
198 eV, 453 eV and 599 eV for Z = 1, 2, 3, 4 and 5, respec-
tively. In atomic units they are 0.528, 2.903, 7.28, 13.66,
and 22.03 (see, e.g., [16–18]).

In Figure 1 we trace the Z dependence of the distribu-
tion d2σ/dq2dβ at the point of equal sharing β = 0. We
present the results for He as well as for H− and for the
two-electron ions of the nuclei with Z = 3, 4, 5. These dis-
tributions were studied in [7] for He only. In Figure 1b we
show the distribution for helium for the most studied case
ω = 800 eV [9]. To have a feeling of dependence of these
distributions on the photon energy ω we present them also

for ω = 1000 eV. In the latter case the quadrupole effects
were studied in [13].

One can see that the distributions rapidly drop with
Z. This can be understood by analyzing equation (27).
For Z ≥ 2 the factor S1(q, β) contains the wave func-
tion Ψ(r, r) integrated over r in the region of r where
the electron density reaches its largest value. This region
r ∼ 1/Z is the same for the two K shell electrons. Here
Ψ(r, r) ∼ Z3. Hence |S1(q, β)|2 is only smoothly depen-
dent on Z. The same does the right hand side of equa-
tion (27) for fixed value of ω. For the chosen intervals of ω
the Z dependence is contained in the factor ω/E3 ∼ 1/Z4.
The ion H− is a special case since the densities of the two
bound electrons reaches largest values at different values
of r. This manifests itself in additional quenching of the
wave function Ψ(r, r) and thus of the factor S1(q, β).

The energy distribution of the angular correlation
dσ/(dτdβ) is given by equation (7). Its value at the point
of equal sharing β = 0 is shown in Figure 3. For the case
of helium we include also the result of calculation with
the two-exponential approximate functions for the bound
state suggested in [16] and employed in [15]. One can see
the difference to be small. In Figure 4 we present the angu-
lar correlation dσ/dτ . The Z dependence of distributions
shown in Figures 3 and 4 is smaller than that of the dis-
tributions in q2. They drop as Z−2 for Z ≥ 2 due to the
factor p1p2 of the first equality on the right hand side of
equation (7). The distributions still drop monotonously
with Z if we include the case Z = 1. As expected, they
peak at τ = −1.

In Figure 5 we present the photoelectron energy dis-
tributions dσ/dβ at β = 0 for ω ≥ 6000 eV when the
QFM is valid for all the objects under discussion: the ion
H− and the heliumlike ions with 2 ≤ Z ≤ 5. Follow-
ing (27) the distributions drop as ω−2. The kinematical
factor κ changes from 1.37 at ω = 6000 eV till 1.31 at
ω = 7000 eV for Z = 5. It varies from 1.09 to 1.07 for H−

in the same energy interval. The main Z dependence is
caused by integration of the distribution (27) in q2 ∼ Z2.
Thus, Z dependence of distributions Z−2dσ/dβ displayed
in Figure 5 is caused by that of the factor S1(q, β). The
distribution exhibits slow decrease at Z ≥ 2. However, for
Z = 1 it is noticeably smaller than for Z = 2. As we dis-
cussed earlier, it is due to a smaller probability for the two
bound electrons to be at the same space point in the case
of H−.

This can be useful for extension of the analysis carried
out in [14] for other values of the photon energies and for
other targets.

Now we compare our results with those obtained by
other authors for helium at ω = 800 eV. The authors
of [14] present the differential distribution dσ/dβdτ . In
Figure 2 of [14] they show the energy distribution for
0 ≤ β ≤ 1/2 integrated over the interval π/6 around the
angle π between the photoelectron momenta. As noted
in [14] they can not obtain the absolute values of dis-
tribution and normalize the theoretical and experimen-
tal results at β = 0. The theoretical results are obtained
by performing numerical computations using the external
complex scaling method in the prolate spheroidal coordi-
nates (PSECS) [19]. The scale of Figure 2 of [14] does not

https://www.epjd.epj.org
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Fig. 1. Distribution d2σ/d(q2)dβ in 10−10a4
0 is presented as a function of q2 in a−2

0 , where a0 is the Bohr radius, and β = 0.
The solid lines correspond to the photon energies ω = 145, 800, 2000, 3750, 6100 eV, whereas the dashed lines correspond to the
photon energies ω = 180, 1000, 2500, 4700, 7600 eV for H−, He and helium-like ions with Z = 3; 4; 5, respectively.

make a detailed analysis possible. Anyway we can esti-
mate the result of [7] as f(β = 0)/f(β = 1/2) ≈ 2 for the
distribution

f(β) =
1
2

∫ −√3/2

−1

(
d2σ

dτdβ

)
dτ.

In our approach all dependence on β inside the QFM peak
is contained in the wave function of the photoelectrons (see
Appendix) and thus in the factor S1(q2, β). Our result is
f(β = 0)/f(β = 1/2) ≈ 1.5. Thus the energy distribution
drops somewhat slower than that found in [14].

The integral σQFM =
∫ 1/2

0
dβf(β) can be identified as

the QFM cross section determined by the conditions of
experiment [14]. We find σQFM = 0.222 barn. Since we
neglected the terms of the order β2 our result is rather
σQFM = 0.22 ± 0.05 barns. This is close to the result
σQFM = 0.20 barn extracted from the paper [9] as pre-
sented in Table 1 of [14] being at least 3 times larger than
that obtained in [14]. The result of [9] was obtained by
employing the Time Dependent Close Coupling method
[20]. Note that it was found earlier (see Ch. 9 of [6] for
references) that σQFM depends strongly on the shape of
the wave function of the bound state at somewhat larger

https://www.epjd.epj.org
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Fig. 2. Distribution dσ/d(q2) in 10−10a4
0 is presented as a function of q2 in a−2

0 , where a0 is the Bohr radius. The solid lines
correspond to the photon energies ω = 145, 800, 2000, 3750, 6100 eV, whereas the dashed lines correspond to the photon energies
ω = 180, 1000, 2500, 4700, 7600 eV for the helium-like atoms with Z = 1; 2; 3; 4; 5, respectively.

energies ω ≥ 6 keV. It is reasonable to expect such depen-
dence to take place for smaller values of ω. It was noted
also [10] that σQFM depends strongly on the shape of the
final state wave function.

4 Summary

As it was mentioned above, the QFM predicted 45
years ago [1] was beyond the possibilities of experimental

investigations for a long time. The work [7] provided
experimental evidence of the existence of QFM. Recent
publication [14] presents concrete data on the double and
single differential distributions for He atom and for H2

molecule. This enables us to hope that studies of QFM
for other targets will take place transforming a couple
of experiments into a whole domain of research that will
present data on short range inter-electron correlations in
a whole variety of systems of which He, H− and other
helium-like ions form only a small region.

https://www.epjd.epj.org


Eur. Phys. J. D (2020) 74: 173 Page 7 of 8

Fig. 3. Distribution d2σ/dτdβ in barns is presented as a function of τ = (p1 · p2)/(p1p2) for β = 0. The curves on the plot
(a) correspond to the photon energies ω = 145, 800, 2000, 3750, 6100 eV, whereas the curves on the plot (b) correspond to the
photon energies ω = 180, 1000, 2500, 4700, 7600 eV for H−, He and two-electron ions with Z = 3; 4; 5, respectively. All curves
correspond to the Pekeris-like wave functions [18]. Exception is the case of Z = 2 which is additionally presented by the dotted
curve (blue online) calculated on the base of the two-exponential ansatz [16].

Fig. 4. Distribution dσ/dτ in barns is presented as a function of τ . The curves on the plot (a) correspond to the pho-
ton energies ω = 145, 800, 2000, 3750, 6100 eV, whereas the curves on the plot (b) correspond to the photon energies
ω = 180, 1000, 2500, 4700, 7600 eV for H−, He and two-electron ions with Z = 3; 4; 5, respectively.

Fig. 5. Distribution (dσ/dβ)/Z2 (see Eq. (4)) in 10−4 barns
is shown as a function of the photon energy ω (in eV) for the
helium-like isoelectronic sequence with 1 ≤ Z ≤ 5 (a0 is the
Bohr radius).

The QFM is interesting from several points of view. It
probes the wave function between the bound electrons at
small distances and provides a good test for the wave func-
tions at the electron-electron coalescence line. The QFM
depends on the proper inclusion of correlations of the bound
state electrons. It can not be reproduced by uncorrelated
bound state functions [6]. The QFM is the only mechanism
of ionization which requires going beyond the dipole approx-
imation since it takes place only if the quadrupole terms in
photon-electron interaction are included.

This stimulated us to calculate various characteristics
of the double photoionization for the negative ion H−, He
atom and for two-electron ions Li+,Be++ and B+3 with
Z = 3, 4, 5, respectively in the region of QFM domina-
tion at the photon energies I � ω � µ. We trace the
Z dependence for the double differential distribution. For
He we traced the dependence of the photoelectron energy
distribution on the photon energy. Since the interest to

https://www.epjd.epj.org
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the QFM renewed recently[14], [21] we hope these data to
be useful.
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Appendix A

In this Appendix we present the refined formula for cal-
culation of the three-dimensional integral S1(q, β) defined
by equation (27).

Inserting representations (25) into the RHS of equa-
tion (27), we obtain

S1(q, β) = N(ξ1)N(ξ2)

∫
d3R eiqR

1F1(iξ1, 1, ip1R− ip1R)

1F1(iξ2, 1, ip2R− ip2R)Ψ̃(R, 0), (A.1)

where Ψ̃(R, 0) represents the two-electron wave function
(in the ground state) at the electron-electron coalescence
line. The integral (A.1) can be easily calculated for Ψ̃(R, 0)
presented in the form

Ψ̃(R, 0) =
n∑
j=1

Cj exp(−λjR). (A.2)

The Pekeris-like wave functions which we applied [17,18]
do not have the form (A.2) at the electron-electron coa-
lescence line. However, fortunately, it is sufficient to
include five separate exponential terms (n = 5) to obtain
extremely accurate wave function Ψ̃(R, 0) of the form
(A.2) by fitting the Pekeris-like wave functions with the
number of shells Ω = 25 [18].

It follows from equations (A.1) and (A.2) that calcula-
tions of the integral (A.1) reduce to computation of the
integral

I(q, β;λ, s) =
∫
eiqR−λR

1F1(iξ1, 1, ip1R− ip1R)

1F1(iξ2, 1, ip2R− ip2R)Rsd3R. (A.3)

It is clear that the analytic form for the latter integral with
s = 0 can be obtain by differentiation of the integral (A.3)
with s = −1, in respect to parameter λ. The analytic form
of the integral I(q, λ,−1) was derived in reference [22].
Now we employ this result and take into account that
integral (A.1) depends, in fact, only on q2. The evalua-
tion mentioned above provides the required integral in the

form

I(q, β;λ, 0) = −4π
(
λ2 + q2

)i(ξ1+ξ2)−1
(p2 − p1 − iλ)−iξ1

(p1 − p2 − iλ)−iξ2(p1 + p2 + iλ)−i(ξ1+ξ2)

×

{

1F 1 [iξ1 + 1, iξ2 + 1; 2;h(q, β, λ)]

2λξ1ξ2h(q, β, λ)

(p1 − p2)2 + λ2
+ 1F1 [iξ1, iξ2; 1;h(q, β, λ)]×

(
ξ1 + ξ2

p1 + p2 + iλ
+

ξ1
p1 − p2 + iλ

+
ξ2

p2 − p1 + iλ

+
2λ[i(ξ1 + ξ2)− 1]

λ2 + q2

)}

, (A.4)

where

h(q, β, λ) = 1− λ2 + q2

(p1 − p2)2 + λ2
, (A.5)

and p1 =
√
mE(1 + β), p2 =

√
mE(1− β).
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