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Abstract. Local quantum uncertainty captures purely quantum correlations excluding their classical coun-
terpart. This measure is quantum discord type, however with the advantage that there is no need to carry
out the complicated optimization procedure over measurements. This measure is initially defined for bipar-
tite quantum systems and a closed formula exists only for 2⊗d systems. We extend the idea of local quantum
uncertainty to multi-qubit systems and provide the similar closed formula to compute this measure. We
explicitly calculate local quantum uncertainty for various quantum states of three and four qubits, like
GHZ state, W state, Dicke state, Cluster state, Singlet state, and Chi state all mixed with white noise.
We compute this measure for some other well known three qubit quantum states as well. We show that
for all such symmetric states, it is sufficient to apply measurements on any single qubit to compute this
measure, whereas in general one has to apply measurements on all parties as local quantum uncertainties
for each bipartition can be different for an arbitrary quantum state.

Quantum states are fundamentally different than classi-
cal states in such a way that any local measurements on
one part of either bipartite or multipartite states necessar-
ily give rise to uncertainty in results. This randomness is
not a fault of measuring device but an integral nature of
quantum states. Quantum entanglement, quantum non-
locality, and quantum discord are few quantitative man-
ifestation of this randomness. The only states which are
invariant under such local measurements are those states
which can be described by classical probability distribu-
tion. Such states have zero quantum discord [1–4]. Quan-
tum states for two or more parties may be entangled,
however entanglement is not the only quantum correla-
tion present among quantum states. There are quantum
states which are separable, nevertheless quantum corre-
lated (nonzero quantum discord). Quantum discord may
be defined as the difference between quantum mutual
information and classical correlations [1–8]. Due to com-
plicated minimization process, the computation of quan-
tum discord is not an easy task and analytical results are
known only for some restricted families of states [9,10]. For
2⊗d quantum systems, analytical results for quantum dis-
cord are known for a specific family of states [9] and the
general procedure to calculate discord is also worked out
[10,11]. Some authors have proposed quantum discord for
multipartite systems [12–21]. Some other measures of such
non-classical correlations include quantum work deficit
[22–24], quantum deficit [25,26], measurement-induced
non-locality [27], etc (see Ref. in [28]). The quantum cor-
relations have utilization in potential applications, includ-
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ing remote state preparation [29], entanglement distribu-
tion [30,31], transmission of correlations [32], and quan-
tum metrology [33] to name a few. It is in general a hard
task to characterize and quantify quantum correlations.
Several authors have proposed different techniques to com-
pute quantum correlations. The theory of quantum corre-
lations has attracted lot of interest and considerable efforts
have been devoted to it [34–36].

Recently, a discord-like measure has been proposed,
known as local quantum uncertainty [37]. This measure
is quantified via skew information which is achievable on
a single local measurement [38–40]. This measure has a
closed formula calculated for 2⊗d bipartite quantum sys-
tems. Later on, some authors tried to study local quantum
uncertainty for orthogonally invariant class of states [41].
This measure was also studied for quantum phase tran-
sitions [42,43]. The relationship between local quantum
uncertainty and quantum Fisher information under non-
Markovian environment was also discussed [44]. Recently,
some authors have studied local quantum uncertainty
under various decoherence models and also worked out
some preliminary results for three qubits [45–48]. We
extend local quantum uncertainty for multi-qubit quan-
tum system. As there are several bipartition for multi-
qubit system, we can define local quantum uncertainty
for each bipartition. After calculating all such local quan-
tum uncertainties, we suggest an arithmetic mean to cal-
culate the average local quantum uncertainty for a given
multi-qubit state. Nevertheless, we find that for all specific
quantum states which we study here, each local quantum
uncertainty for every bipartition is exactly same due to
symmetry of these quantum states. However, by taking a
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random state, we explicitly demonstrate that local quan-
tum uncertainty can have a different value for each biparti-
tion, so the average value gives local quantum uncertainty
for given quantum state. We calculate this measure for
various well known families of quantum states for three
and four qubits and obtain analytical results. The benefit
of this measure and its extension to multi-qubit has the
advantage that we do not need any complicated maximiza-
tion or minimization over parameters related with mea-
surements as one has to do to calculate quantum discord.
Interestingly, for four qubits, we find that except W -states
mixed with white noise, all other specific quantum states
have same expressions for local quantum uncertainty.

Local quantum uncertainty is a measure of quantum
correlations which captures purely quantum part in a
given quantum state by applying local measurements on
one part of quantum state. This measure has been defined
recently for 2 ⊗ d quantum systems [37]. It is a quan-
tum discord-type measure and for certain quantum states,
quantum discord and local quantum uncertainty captures
precisely same correlations and are equal to each other,
whereas for some other states, they are different measures.
The advantage of local quantum uncertainty over quan-
tum discord is the fact that to compute local quantum
uncertainty we only need to find the maximum eigenvalue
of a symmetric 3× 3 matrix. This is quite an easy task as
compared with complicated minimization procedure over
parameters related with measurements. Local quantum
uncertainty is defined as the minimum skew information
which is obtained via local measurement on qubit part
only, that is,

Q(ρ) ≡ min
KA

I(ρ,KA ⊗ IB) , (1)

where KA is a hermitian operator (local observable) on
subsystem A, and I is the skew information [38–40] of the
density operator ρ, defined as

I(ρ,KA ⊗ IB) = −1
2

Tr( [
√
ρ, KA ⊗ IB ]2 ) . (2)

The skew information is nonnegative, and non-increasing
under classical mixing. It has been shown [37] that for 2⊗d
quantum systems, the compact formula for local quantum
uncertainty is given as

Q(ρ) = 1−max {λ1 , λ2 , λ3 } , (3)

where λi are the eigenvalues of 3 × 3 symmetric matrix
M. The matrix elements of symmetric matrix M are cal-
culated by the relationship

mij ≡ Tr
{√

ρ (σi ⊗ IB)
√
ρ (σj ⊗ IB)

}
, (4)

where i, j = 1, 2, 3 and σi are the standard Pauli matrices.
We generalize this definition of local quantum uncer-

tainty for multi-qubit quantum systems as follows. First,
we observe that the definition of local quantum uncer-
tainty for 2 ⊗ d systems can be applied to multi-qubit
systems without any technical consequences because we
can always regard multi-qubit system as 2 ⊗ d systems,
where d = 2 ⊗ 2 ⊗ . . . ⊗ 2 may represent the remaining

N − 1 qubits as d dimensional quantum system. However,
we note that multi-qubit systems have richer structure
as compared with bipartite quantum systems. It might be
the case that some bipartition are quantum correlated and
some may be classically correlated. So we need to apply
the local measurements across each bipartition in order
to capture quantum correlations. To this aim, let ρ be an
arbitrary density matrix for N qubits. We can apply the
local measurements on each qubit A, B, . . ., N . When we
apply measurements on qubit A, we regard all rest of the
qubits as d-dimensional system. Thus we obtain N sym-
metric matrices. For each bipartition, the matrix elements
belonging to these N symmetric matrices are calculated
according to relations

m̃A
ij = Tr {√ρ (σi ⊗ I2 ⊗ . . .⊗ I2)

×√ρ (σj ⊗ I2 ⊗ . . .⊗ I2) } ,

m̃B
ij = Tr {√ρ (I2 ⊗ σi ⊗ . . .⊗ I2)

×√ρ (I2 ⊗ σj ⊗ . . .⊗ I2) } ,
...
...

m̃N
ij = Tr {√ρ (I2 ⊗ I2 . . .⊗ σi)

×√ρ (I2 ⊗ I2 ⊗ . . .⊗ σj)} . (5)

The corresponding eigenvalues of such 3 × 3 symmetric
matrices M̃i can be determined easily. The local quantum
uncertainties related with each bipartition are defined as
follows

QA/BC...N (ρ) = 1−max {Spectrum of M̃A }
QB/AC...N (ρ) = 1−max {Spectrum of M̃B }

...

...
QN/ABC...N−1(ρ) = 1−max {Spectrum of M̃N } . (6)

Finally we propose the mean value of local quantum uncer-
tainty for a given N -qubits quantum state to be calculated
as

Q(ρN ) =
∑N
i=A Qi/Ni

N
, (7)

where Ni are the remaining N − 1 qubits except i. (After
the submission of this work, I have further refined the cal-
culation of local quantum uncertainty with an alternative
definition, which gives the same results for all quantum
states discussed in this work [61].)

As a concrete example, let us consider the case of three
qubits. Following the procedure mentioned above, we can
find M̃A for bipartition A/BC, M̃B for bipartition B/CA,
and M̃C for bipartition C/AB. The respective matrix ele-
ments are calculated using relations

m̃A
ij = Tr {√ρABC (σi⊗I2⊗I2)

√
ρABC (σj⊗I2⊗I2) } , (8)

m̃B
ij = Tr {√ρABC (I2⊗σi⊗I2)

√
ρABC (I2⊗σj⊗I2) } , (9)
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m̃C
ij = Tr {√ρABC (I2⊗I2⊗σi)

√
ρABC (I2⊗I2⊗σj)} , (10)

where m̃A
ij 6= m̃B

ij 6= m̃C
ij in general, however they may

be equal to each other for some special cases. We men-
tion here that the number of these symmetric matrices are
same as the number of qubits. The local quantum uncer-
tainty in this situation would be defined as

Q(ρABC) =

(
QA/BC + QB/CA + QC/AB

)
3

, (11)

where
QA/BC = 1−max

{
{M̃A}

}
, (12)

QB/CA = 1−max
{
{M̃B}

}
, (13)

QC/AB = 1−max
{
{M̃C}

}
, (14)

where {M̃i} denote the spectrum (eigenvalues) of the cor-
responding 3 × 3 matrix M̃i. For the special case when
all three matrices have the same set of eigenvalues then
QA/BC = QB/CA = QC/AB and Q(ρABC) = QA/BC . In
this case measurements need to be applied to any qubit.

We will now present some examples computing local
quantum uncertainty for various families of three qubits
and four qubits quantum states. An important family of
quantum states is GHZ states [54] mixed with white noise.
The states for three qubits are defined as

ρGHZ3 = (1− α) |GHZ3〉〈GHZ3|+
α

8
I8 , (15)

where 0 ≤ α ≤ 1, I8/8 is maximally mixed state, and
maximally entangled pure state is given as

|GHZ3〉 =
1√
2

( |000〉+ |111〉 ) . (16)

Entanglement properties of these states equation (15) are
well known [49–53]. It is known that these states are fully
separable for 0.8 ≤ α ≤ 1, bi-separable for 0.571 ≤ α <
0.8, and genuine entangled for 0 ≤ α < 0.571 [49–53].
We have calculated all three symmetric matrices M̃i for
measurements on qubit A, B, and C. It turns out that all
three matrices are same and therefore have the same set
of three eigenvalues. In addition, all three eigenvalues are
also same, so the problem to pick the maximum eigenvalue
is even trivial. The maximum eigenvalue is given as

λ =
3α+

√
α(8−7α)
4

. (17)

Therefore, local quantum uncertainty for states equa-
tion (15) is simply

Q(ρGHZ3) = 1−
3α+

√
α(8−7α)
4

. (18)

We observe that for α = 0, Q(ρGHZ3) = 1 which is
expected as pure maximally entangled state has max-
imum correlations. We note that for α = 1, we have

Q(ρGHZ3) = 0, which is also expected result because max-
imally mixed state is classically correlated and has no
quantum correlations in it. For other values of α < 1,
local quantum uncertainty Q(ρGHZ3) > 0. We have seen
that local quantum uncertainty precisely captures quan-
tum correlations just like quantum discord.

Second important class of states for three qubits is W
state [55] mixed with while noise. These states are defined
as

ρW3 = (1− β) |W3 〉〈W3 |+
β

8
I8 , (19)

where 0 ≤ β ≤ 1 and W3 state is given as

|W3 〉 =
1√
3

( |001〉+ |010〉+ |100〉 ) . (20)

The entanglement properties of equation (19) are also well
known. These states are fully separable or bi-separable
for 0.521 ≤ β ≤ 1, whereas genuine tripartite entangled
for 0 ≤ β < 0.521 [49–53]. We now carry out the same
procedure as mentioned earlier to compute local quantum
uncertainty. We calculated all three symmetric matrices
and found them to be exactly equal to each other as it
was the case for ρGHZ3 states. Therefore, we get same set
of three eigenvalues for all three bipartition. Two of the
eigenvalues are equal to each other, whereas third eigen-
value is different. These eigenvalues are given as

w1 = w2 =
3β +

√
β(8− 7β)
4

,

w3 =
1 + 6β + 2

√
β(8− 7β)

9
. (21)

It is not difficult to check that w3 > w1, for all values
of parameter β. The local quantum uncertainty for states
equation (19) is simply given as

Q(ρW3) =
8− 6β − 2

√
β(8− 7β)

9
. (22)

We can readily check that for β = 0, we get Q(ρW3) = 8/9.
This means that for pure W3 state, local quantum uncer-
tainty does not have a maximum value of 1. The genuine
negativity for W3 state is also not maximum, whereas
GHZ state is regarded as maximally entangled as mea-
sured by genuine negativity [49–53]. We can also check
that for β = 1, we have Q(ρW3) = 0 as it should be.

Let us take another example of three qubits quantum
states defined as

ρAK =
1

8 + 8 γ



4 + γ 0 0 0 0 0 0 2
0 γ 0 0 0 0 2 0
0 0 γ 0 0 −2 0 0
0 0 0 γ 2 0 0 0
0 0 0 2 γ 0 0 0
0 0 −2 0 0 γ 0 0
0 2 0 0 0 0 γ 0
2 0 0 0 0 0 0 4 + γ


. (23)
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Fig. 1. Local quantum uncertainty is plotted again single
parameter for ρGHZ3 , ρW3 , ρAK , ρη, and ρW4 states. See text
for explanations.

This matrix is a valid quantum state for γ ≥ 2. This
family of states may be called Kay states as they were
introduced by Kay [56]. The states have positive par-
tial transpose (PPT) with respect of all bipartition. It is
known that for 2 ≤ γ < 2

√
2, this density matrix is bound

entangled and for γ ≥ 2
√

2, the state is separable. We
calculate all three symmetric matrices M̃i for this state
and find that once again, they are equal to each other.
There are two eigenvalues which are same whereas the
third eigenvalue is different. These eigenvalues are given
as

k1 = k2 =
1
4

√
γ + 2
γ + 1

(
3
√
−2 + γ

1 + γ
+
√

6 + γ

1 + γ

)
,

k3 =
3 γ + 2 +

√
(γ − 2)(6 + γ)

4(γ + 1)
. (24)

It is not difficult to find that k3 > k1, therefore local
quantum uncertainty for Kay-states is given as

Q(ρAK) =
2 + γ −

√
(γ − 2)(6 + γ)

4(1 + γ)
. (25)

This expression is not real for γ < 2, so local quantum
uncertainty also reflects this restriction on parameter in
quantum states.

Figure 1 shows local quantum uncertainty Q(ρ) plot-
ted against corresponding single parameter for equa-
tions (15), (19), (23), and similar states for GHZ and W
states of four qubits equation (29). Quantum uncertainty
for ρη equation (31) turns out to be highest. Quantum
uncertainty for W3 mixed with white noise is higher ini-
tially but as single parameter increases from 0 to 1, it
becomes smaller. In all cases as mixing increases, LQU
decrease and finally become zero for maximally mixed
state. For Kay-states the quantum correlations are largest
for γ = 2, which is a bound entangled state. As we increase
the value of parameter, quantum states move towards sep-
arable states and quantum correlations are smaller than
the bound entangled state. We have checked local quan-
tum uncertainty even for very large values of parameter γ

and found local quantum uncertainty still strictly greater
than zero.

In all above examples, we have seen that local quan-
tum uncertainty for each bipartition turns out to be same.
However, it is not true for the set of all quantum states
as there exist other states for which each bipartition may
have different local quantum uncertainty. We demonstrate
this difference simply by taking a random state and calcu-
lating local quantum uncertainty for each bipartition. To
this aim, first we generate a random pure state and then
mix it with white noise such that white noise fraction is
0.2 and random state fraction is 0.8. The corresponding
symmetric matrix with measurements on qubit A is given
as

M̃A ≈

(0.65 0.014 0.115
0.014 0.594 −0.015
0.115 −0.015 0.757

)
, (26)

with the eigenvalues ( 0.83, 0.61, 0.56 ). For measurements
on qubit B, we get

M̃B ≈

(0.59 0.01 −0.05
0.01 0.651 0.107
−0.05 0.107 0.687

)
, (27)

with eigenvalues ( 0.78, 0.61, 0.53 ), and finally for qubit
C, we have

M̃C ≈

(0.63 −0.112 −0.032
−0.112 0.83 0.12
−0.032 0.12 0.711

)
, (28)

with eigenvalues ( 0.94, 0.65, 0.57 ). The respective local
quantum uncertainties are Q(ρA/BC) ≈ 0.17, Q(ρB/CA) ≈
0.22, and Q(ρC/AB) ≈ 0.06. The average value is Q(ρ) ≈
0.15.

Let us consider few examples of four qubit quantum
states. Two important quantum states for four qubits are
the GHZ state and W state given as

|GHZ4〉 =
1√
2

(|0000〉+ |1111〉),

|W4〉 =
1
2

(|0001〉+ |0010〉+ |0100〉+ |1000〉). (29)

For the GHZ state, the entanglement monotone has a
value of E(|GHZ4〉〈GHZ4|) = 1, while for the W state,
its value is E(|W3〉〈W3|) ≈ 0.886 and E(|W4〉〈W4|)
≈ 0.732.

Several other four qubit quantum states are interesting
and have been discussed in the literature. These states
are the Dicke state |D2,4〉 [57], the four-qubit singlet state
|ΨS,4〉 [58], the cluster state |CL〉 [59] and the so-called
χ-state |χ4〉 [60]. These quantum states are explicitly given
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as

|D2,4〉 =
1√
6

[
|0011〉+ |1100〉+ |0101〉+ |0110〉

+ |1001〉+ |1010〉
]
,

|ΨS,4〉 =
1√
3

[
|0011〉+ |1100〉 − 1

2
{ |0101〉+ |0110〉

+ |1001〉+ |1010〉}
]
,

|CL〉 =
1
2
[
|0000〉+ |0011〉+ |1100〉 − |1111〉

]
,

|χ4〉 =
1√
6

{√
2 |1111〉+ |0001〉+ |0010〉+ |0100〉

+ |1000〉
}
. (30)

Note that all of these states have the maximum value
of entanglement E(|D2,4〉〈D2,4|) = E(|ΨS,4〉〈ΨS,4|) =
E(|CL〉〈CL|) = E(|χ4〉〈χ4|) = 1. Further entanglement
properties of these states are reviewed in reference [35].

To find local quantum uncertainty, we first mix all of
these states with white noise as follows

ρη = (1− η) |ψ〉〈ψ|+ η

16
I16 , (31)

where 0 ≤ η ≤ 1, and |ψ〉 is any of the above defined
four qubit pure states. Next we calculate the four sym-
metric matrices for each one of these states and find
out that they are all equal for every bipartition, that is,
M̃A = M̃B = M̃C = M̃D. This implies that local quantum
uncertainty for each bipartition is same. Another inter-
esting observation is that except W4 state mixed with
white noise, all other remaining five mixtures have exactly
the same eigenvalues and consequently exactly the same
expressions for local quantum uncertainty as well, that is,

Q(ρGHZ4) = Q(ρD2,4) = Q(ρΨS,4)
= Q(ρCL) = Q(ρχ4) = Q(ρη) , (32)

where local quantum uncertainty for any of such states
equation (31) is given as

Q(ρη) = 1−
7 η +

√
η(16− 15 η)

8
. (33)

We note that Q(ρη) = 1 for η = 0, which means that GHZ
state, Dicke State, Singlet state, Cluster state and Chi
state all have maximum amount of quantum correlations.
We also note that Q(ρη) = 0 for η = 1. For W4 state mixed
with white noise, local quantum uncertainty is given as

Q(ρW4) = 1−
8 + 21 η + 3

√
η(16− 15 η)

32
. (34)

This value is 3/4 = 0.75 for η = 0 and zero for η = 1. We
have seen that for both W3 and W4 state, the numerical
value of local quantum uncertainty is slightly larger than
numerical value of genuine entanglement.

We can easily demonstrate by generating a random
state of four qubits that in general Q(ρA/BCD) 6=

Q(ρB/CDA) 6= Q(ρC/DBA) 6= Q(ρD/ABC) as we have seen
for three qubits.

In summary, we have extended the idea of local quan-
tum uncertainty for multi-qubit quantum systems. We
have analytically calculated this measure for several
important families of quantum states of three and four
qubits mixed with white noise. We find that all specific
quantum states mixtures are symmetric as they all give
the same value of local quantum uncertainty for measure-
ments on each bipartition. Therefore for such states, mea-
surements on any single qubit is sufficient to compute local
quantum uncertainty. We have explicitly shown by taking
a random state of three qubits that symmetric matrices
resulting from measurements on each partition are not the
same and hence the corresponding eigenvalues and local
quantum uncertainties are also not equal to each other.
Hence we get a different numerical value of local quantum
uncertainty for each bipartition. Similar matrices should
also be different for an arbitrary quantum state of four or
higher number of qubits. This method is applicable to any
arbitrary initial quantum state of N qubits.
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