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Abstract. We propose a scheme to realize stable linear and nonlinear propagation of symmetric and anti-
symmetric surface plasmon polaritons (SPPs) solitons by doping ladder-type three-level quantum emitters
into the middle layer of a metal-dielectric-metal (MDM) waveguide. In linear propagation regime, we
show that both symmetric and antisymmetric SPPs can acquire a gain from electromagnetically induced
transparency (EIT) effect with an incoherent pumping. The EIT can be used not only to completely com-
pensate the Ohmic loss in the metal but also to acquire a subluminal group velocity for the SPPs. We
also show that in nonlinear propagation regime a huge enhancement of Kerr nonlinearity of the symmetric
and antisymmetric SPPs can be obtained but with different incoherent pumping intensities. As a result,
gain-assisted (1+1)-dimensional symmetric and antisymmetric subluminal surface polaritonic solitons may
be produced based on the strong confinement of electric field in the MDM waveguide. Our study may have
promising applications in light information processing and transmission at nanoscale level based on MDM
waveguides.

1 Introduction

Surface plasmon polaritons (SPPs) are electromagnetic
excitations formed by the coupling of an optical field to
collective electron oscillations propagating at a metal-
medium interface. The electric-field intensity of SPPs
decays exponentially in the direction normal to the metal
surface [1]. On the nanoscale, SPPs can overcome the
diffraction limit, giving them a strong potential to guide
and manipulate light [2]. Thus, SPPs have many poten-
tial applications, such as all-optical logic gates [3], super-
resolution imaging [4], photovoltaic power generation [5,6],
biosensors [7,8], nanomaterials [9], and lithography [10].

Recently, the coherent control of SPPs strongly interact-
ing with systems with multiple energy levels has attracted
significant interest, especially for the study of quantum
interference and the nonlinear properties of SPPs. Quan-
tum interference can be used to regulate the optical prop-
erties of a medium, which produces a series of important
optical phenomena, such as electromagnetically induced
transparency (EIT) [11–14], active Raman gain [15–17],
coherent population trapping [18], and so on. By exploit-
ing these effects, linear and nonlinear propagation of SPPs
has been realized, such as polariton frequency combs and
breather propagation [19], surface-polariton rogue waves
[12], and solitons [20], the latter of which have become of
paramount importance due to their potential applications
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to SPPs soliton storage [21], compact photonic chips [19],
all-optical communication [22], and more.

When the size of conventional optical circuits is reduced
to the nanometer scale, the propagation of light becomes
limited by diffraction. However, SPPs offer an avenue for
constructing such nanoscale photonics and devices [23].
Plasmonic waveguides can confine and manipulate SPPs
on the nanoscale and support the propagation of SPPs
at their metal-dielectric interface. They can thus be used
to guide light into subwavelength structures beyond the
diffraction limitation [24]. Therefore, plasmonic waveg-
uides are considered to be an ideal optical instrument to
control propagating SPPs [25,26].

To date, various plasmonic waveguides have been stud-
ied, such as planar waveguides [27], single-layer waveg-
uides [28], multi-layer waveguides, cylindrical waveguides
[13], and slot waveguides [29]. A popular waveguide is
the multi-layer waveguide, such as the dielectric-metal-
dielectric waveguide [30,31] or the metal-dielectric-metal
(MDM) waveguide [25,26,32]. It is found such multi-layer
structures generate a huge nonlinearity and support a sur-
face polaritons solitons [33–37], and even can control the
interaction of the solitons [38]. MDM waveguides are con-
sidered to be the most promising candidates for manipu-
lation and transmission of light [39] because they have the
advantages that they are easy to manufacture, offer deep-
subwavelength confinement of light, and have relatively
long propagation distances [25,40].

Although MDM waveguides have many advantages, they
inevitably suffer from Ohmic loss at optical frequencies
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because they are enclosed in metal [14,41], which reduces the
propagation distance of SPPs. To overcome Ohmic losses
in this work, we introduce an incoherent pumping which
produces a modulatable mechanism [42] that provides the
system with active gain and can change the linear and
nonlinear response of the system. Two types of propaga-
tion modes (symmetric mode and antisymmetric mode)
are possible when SPPs propagate in MDM waveguides
[43–45]. The results of this research show that, in the
linear propagation regime, both symmetric and antisym-
metric SPPs can extract gain from the waveguide under
EIT generated by incoherent pumping. EIT can be used
not only to completely compensate for Ohmic losses in
the metal but also to endow the SPPs with a subluminal
group velocity. In the nonlinear propagation regime, the
Kerr nonlinearity is strongly enhanced by the EIT effect
together with the confinement of the MDM waveguide.
Consequently, gain-assisted (1+1)-dimensional symmetric
and antisymmetric subluminal surface plasmon polariton
solitons may be produced in the MDM waveguide, and
propagate to a long distance (up to several centimeters
for symmetric mode, and several millimeters for antisym-
metric mode). The results predicted by this work may
have applications in the study of light transmission at the
nanoscale.

This paper is arranged as follows: Section 2 introduces
the theoretical model used to describe SPPs, Section 3
discusses the linear propagation characteristics of the two
modes, and Section 4 investigates the nonlinear char-
acteristics of the two modes and derives the nonlinear
Schrödinger equation (NLSE). At the same time, the pos-
sibility of forming solitons in the two modes is discussed,
and the propagation of solitons is numerically simulated.
Finally, Section 5 summarizes the article.

2 Model

Figure 1 shows the theoretical model we study in this
work. The system consists of a three-layer waveguide
structure composed of a central dielectric layer sand-
wiched between two metal layers, i.e., MDM waveguide.
The thickness of the dielectric layer is d. The central
dielectric layer fills the space (|x| < d/2), and its per-
mittivity and permeability are ε1 and µ1, respectively.
The upper and lower layers are metal, and can be treated
as extending infinitely to both sides of the dielectric
layer, (|x| ≥ d/2). The permittivity and permeability of
the metal are ε2(ω) and µ2(ω), respectively.

Such a MDM waveguide can support both transverse
electric (TE) and transverse magnetic (TM) modes. How-
ever, TE SPPs are known to be ineffective in this sys-
tem [46], thus we consider only the TM mode. We assume
that the SPPs propagate in the positive x direction.

The TM modes we consider here have a specific sym-
metry of the magnetic field intensity H. Note that when
we discuss symmetry in this paper, we are referring the
symmetry of magnetic field profile with respect to the
center plain of the dielectric layer in MDM configuration.
We solve the Maxwell equations for the TM mode and
obtain the following expressions for the electric field of

the two propagation modes (the detail discussion about
Maxwell equations and boundary conditions are given in
Appendix A):

Electric field for symmetric propagation mode:

E(r, t) =





(kez − ikx2ex) ε1
kε2

cosh(kx1
d
2
)e−kx2(x− d

2 )+i(kz−ωqt), x > d
2[

cosh(kx1x)ez + ikx1
k

sinh(kx1x)ex
]
ei(kz−ωqt), − d

2
< x < d

2

(kez + ikx2ex) ε1
kε2

cosh(kx1
d
2
)ekx2(x+ d

2 )+i(kz−ωqt), x < − d
2
.

(1)

Electric field for antisymmetric propagation mode:

E(r, t) =





(kez − ikx2ex) ε1
kε2

sinh(kx1
d
2
)e−kx2(x− d

2 )+i(kz−ωqt), x > d
2[

sinh(kx1x)ez + ikx1
k

cosh(kx1x)ex
]
ei(kz−ωqt), − d

2
< x < d

2

−(kez + ikx2ex) ε1
kε2

sinh(kx1
d
2
)ekx2(x+d2 )+i(kz−ωqt), x < − d

2
·

(2)

In equations (1) and (2), el(l = x, y, z) is a unit vec-
tor along the l direction, and the wave number k2

xl =
k2 − (ωq/c)2εl, where l = 1 corresponds to the dielec-
tric and l = 2 corresponds to the metal. The propa-
gation constants of the SPPs and their dispersion rela-
tion are obtained by using the boundary conditions. The
dispersion relationship for the symmetric mode satisfies
ε1kx2 + ε2kx1 tanh(kx1

d
2 ) = 0, and the dispersion rela-

tionship for the antisymmetric mode satisfies ε1kx2 +
ε2kx1 coth(kx1

d
2 ) = 0.

The ladder-type quantum emitter dopes the intermedi-
ate dielectric layer, which is typically composed of atoms,
quantum dots, rare-earth ions, semiconductor quantum
wells, etc. The ladder-type quantum emitter couples the
weak probe field to the strong control field. Figure 1b
shows a diagram of the energy-level structure and exci-
tation configuration of the ladder-type quantum emitter.
The upper state |3〉 is an excited state, and the state |3〉
(|2〉) is considered to decay spontaneously to state |2〉 (|1〉)
with decay rate Γ23 (Γ12). The angular frequency and the
half Rabi frequency of the weak probe field are ωp and Ωp,
respectively, and the weak probe field couples states |2〉 to
|1〉. The angular frequency and the half Rabi frequency of
the strong control field are ωc and Ωc, respectively, and
the strong probe field couples states |3〉 to |2〉. In order to
realize lossless SPPs, we introduce an incoherent pump-
ing in this system to provide active gain [47], driving the
|1〉 → |3〉 transition at the rate Γ31.

The main purpose of this work is to study the resonant
coupling of symmetric and antisymmetric TM SPPs in
MDM waveguide with quantum emitters doped into the
dielectric layer. The interaction occurs only in the dielec-
tric, thus we can express the electric field as

E(r, t) =
∑
q=p,c

Eq(z, t)uq(z)ei(kqz−ωqt) + c.c., (3)

where uq(x) = cosh(kx1x)ez + (ikx1/k) sinh(kx1x)ex (for
symmetric TM mode) or uq(x) = sinh(kx1x)ez +
(ikx1/k) cosh(kx1x)ex (for antisymmetric TM mode) is
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Fig. 1. Excitation and propagation of SPPs in MDM structures. (a) MDM three-layer waveguide structure. The two curves
represent the Hy field of SPPs for the symmetric and antisymmetric modes, respectively, and all fields propagate along the
positive z axis. (b) Diagram showing the energy levels and excitation configuration of a ladder-type quantum emitter. The
state |3〉 (|2〉) is considered to decay spontaneously to state |2〉 (|1〉) with decay constant Γ23 (Γ12), the transition |3〉 → |1〉 is
forbidden, Γ31 corresponds to incoherent pumping, and ∆2 and ∆3 are the single- and two-photon detunings, respectively.

the constraint function of SPPs in the z direction, Ep
and Ec are envelope functions of the probe field and con-
trol field, respectively, kp and kc are the wave numbers
before the probe field or control field enters the dielectric,
respectively, and ωp and ωc are the center frequencies of
the probe and control fields, respectively. In the following,
as in references [36,37], for simplicity we take the linear
mode function for the electric field1 when the nonlinear
effect occurs in the system2.

Under the electric-dipole approximation and the slowly
varying envelope approximation, the Hamiltonian of the
system in the interaction picture is

Ĥint = − ~
3∑
j=1

∆j |j〉〈j| − ~[ζp(x)eiθpΩp|2〉〈1|

+ ζc(x)eiθcΩc|3〉〈2|+ h.c.], (4)

where ∆2 = ωp−(ω2−ω1) and ∆3 = ωp+ωc−(ω3−ω1) are
the single- and two-photon detunings of the optical field.
The eigenfrequency of energy level l is ωl (l = 1, 2, 3). In
equation (4), we define the half Rabi frequency as Ωjk =
Ejk|pjk|/~, where Ωp = E21|p21|/~ and Ωc = E32|p32|/~

1 Such approach is similar to the averaging method used in refer-
ences [36,37]. A more rigorous approach should account for nonlin-
ear terms in boundary conditions and nontransverse character of the
electric field. In this way, the mode function in high-order approxi-
mations will be a little different. However, as shown by Marini and
Skryabin [49], the difference between the two approaches is not sig-
nificant if the wavelength of the excitation is not too short.

2 Because both the probe and control fields used are weak and
far from material resonances, both the dielectric and the metal can
be safely taken as linear optical materials. The nonlinear optical
effect in our system comes from the resonance between the quantum
emitters and the probe and control fields.

are the half Rabi frequency of the probe field and con-
trol field, respectively, Ejk is the amplitude of the cor-
responding optical field, pjk is the electric-dipole matrix
element representing the energy-level transition from |j〉
to |k〉 along the ejk direction. ζc(x) = e23 · uc(x), ζp(x) =
e12 · up(x), and the mode function ζp,c(x) is a rapidly
varying function with respect to x.

The Bloch equations describing the dynamic evolution
of this system are expressed as

i

(
∂

∂t
+ Γ31

)
σ11 − iΓ12σ22 + ζ∗p (x)Ω∗pσ21e

−iθ∗p

− ζp(x)Ωpσ∗21e
iθp = 0,

i

(
∂

∂t
+ Γ12

)
σ22 − iΓ23σ33 + ζp(x)Ωpσ∗21e

iθp

+ ζ∗c (x)Ω∗cσ32e
−iθ∗c − ζ∗p (x)Ω∗pσ

∗
21e
−iθ∗p

− ζc(x)Ωcσ∗32e
iθc = 0,

i

(
∂

∂t
+ Γ23

)
σ33 − iΓ31σ11 + ζc(x)Ωcσ∗32e

iθc

− ζ∗c (x)Ω∗cσ
∗
32e
−iθ∗c = 0, (5)(

i
∂

∂t
+ d21

)
σ21 + ζ∗c (x)Ω∗cσ31e

−iθ∗c

+ ζp(x)Ωpeiθp(σ11 − σ22) = 0,(
i
∂

∂t
+ d31

)
σ31 − ζp(x)Ωpσ32e

iθp

+ ζc(x)Ωcσ21e
iθc = 0,(

i
∂

∂t
+ d32

)
σ32 − ζ∗p (x)Ω∗pσ31e

−iθ∗p

+ ζc(x)Ωceiθc(σ22 − σ33) = 0,
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where d21 = ∆2 + iγ21, d31 = ∆3 + iγ31, and d32 = ∆3 −
∆2 + iγ32, γjl = (Γj + Γl)/2 and θp,c = (kp,c+k2,3−k1,2) ·
z the phase mismatch caused by the eigen dispersion of
SPPs.

The propagation of the electric field in the system sat-
isfies the classical Maxwell equation ∇2E− (1/c2)
(∂2E/∂t2) = (1/ε0c2)(∂2P/∂t2), and the sys-
tem’s polarization is given by P(r, t) =Napljσjl
ei[(kj−ki)z−[(ωj−ωk)+(∆j−∆k)]t] + c.c., where Na is the
number density of quantum emitter dopants (the doped
layer is in the range |z| < d/2). Under the slowly varying
envelope approximation, the Maxwell equation can be
written as

i

(
∂

∂z
+

1
c

n2
1

neff

∂

∂t

)
Ωpeiθp + κ12〈σ21〉 = 0, (6)

where κ12 = Naωq|p12|2/2~ε0cneff is the coupling
constant of the interaction between the SPPs and the
quantum emitters, and neff ≡ ck21/ω21 is the effec-
tive refractive index. To derive equation (6), we ignore
the evolution of the control field, the diffraction of probe
field in y direction, and define the spatial averaging as
〈Ψ(x)〉 ≡

∫ +∞
−∞ dxζ∗p (x)Ψ(x)/

∫ +∞
−∞ dx|ζp(x)|2, where Ψ is

an arbitrary function.

3 Linear properties of SPPs

3.1 Base state

We first study the linear excitation of SPPs in symmet-
ric and antisymmetric modes, thus we need to know the
base state of the system (i.e., the state with no input
probe field, only the control field irradiates the system
to prepare the dressed state). In this state Ωp = 0.
We solve the Maxwell–Bloch(MB) equations (5) and (6)
by using the multiscale method [48] and making use of
asymptotic expansions σij =

∑
q ε
qσ

(q)
ij (q= 0, 1, 2, 3), and

Ωp =
∑
q ε
qΩ(q) (q = 1, 2, 3), where ε is a small dimension-

less physical parameter and the various quantities on the
right-hand side of the equal sign are functions of multiscale
variables zq = εqz (q = 0, 1, 2), and tq = εqt (q = 0, 1). We
get the initial steady-state of the system, i.e., the zeroth-
order solution of the MB equations

See equations (7a)−(7d) next page.

and σ
(0)
21 = σ

(0)
31 = 0. With no incoherent pumping (i.e.,

Γ31 = 0), the system adheres to conservation of particle
number,

∑3
j=1 σjj = 1, and the initial state of the system

reduces to σ(0)
11 = 1, σ(0)

22 = σ
(0)
33 = σ

(0)
32 = σ

(0)
21 = σ

(0)
31 = 0.

This indicates that, when only the control field is present,
the particles only populate on the ground state |1〉. With
the addition of incoherent pumping, σ(0)

22 6= 0, which
means that the particles are pumped to the |2〉 state, and
the system can provide gain for the probe field, thereby
suppressing the absorption of the probe field.

Fig. 2. Time evolution of population on each states.

We also study how the state population evolves over
time. As shown in Figure 2, the red, blue, and green
lines represent σ11, σ22, and σ33, respectively. The popu-
lation of each energy level stabilizes after a few microsec-
onds, and σ22 does not disappear, which means that the
system provides gain for the probe field. The numeri-
cal calculation uses the following physical parameters:
Γ12 = Γ = 6 × 106 s−1, Γ23 = 1 × 103 s−1, Ωc = Γ [47],
κ12 = 1 × 1010 cm−1 s−1, the incoherent pumping
Γ31 = 0.5Γ, the wavelength is 780 nm, the dielectric thick-
ness d = 200 nm, ε1 = 4, µ1 = 1, ε2 = −29.25 + 0.57i,
µ2 = 1 (selected from metallic silver at λ = 780 nm),
|p12| = 2.6× 10−30 C · cm.

3.2 Linear dispersion relation of SPPs

Continuing our solution of the MB equations with the
multiscale method, we can get the first-order solution:

Ω(1)
p = Feiθ, (8a)

σ
(1)
21 =

D1

D
ζp(x)Ω(1)

p eiθp , (8b)

σ
(1)
31 =

D2

D
ζp(x)Ω(1)

p eiθp , (8c)

with θ = K(ω)x0 − ωt0, D = (ω + d21)(ω + d31) − |ζc(x)
Ωceiθc |2, D1 = (ω + d31)(σ(0)

22 − σ
(0)
11 )− ζ∗c (x)Ω∗cσ

(0)
32 e
−iθ∗c ,

D2 = (ω + d21)σ(0)
32 − (σ(0)

22 − σ
(0)
11 )ζc(x)Ωceiθc , where ω is

the frequency deviation with respect to the center frequency
ωp, and F is the evolution function of the slow variables z1,
z2, and t1, andK(ω) is the linear dispersion relation for the
SPPs:

K(ω) =
ω

c

n2
1

neff
+ κ12

〈
D1

D
ζp(x)

〉
. (9)

The real part of the linear dispersion relation K(ω)
characterizes the dispersion, and the imaginary part of
the linear dispersion relation K(ω) characterizes the lin-
ear absorption generally.
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σ
(0)
11

=
iΓ12Γ23|d32|2 + |ζc(x)Ωce

iθc |2(d32 − d∗32)Γ12

i(Γ12Γ23 + Γ23Γ31 + Γ12Γ31)|d32|2 + |ζc(x)Ωceiθc |2(d32 − d∗32)(Γ12 + 2Γ31)
, (7a)

σ
(0)
22 =

Γ31

Γ12
σ

(0)
11 , (7b)

σ
(0)
33 = 1− (σ

(0)
11 + σ

(0)
22 ), (7c)

σ
(0)
32 =

ζc(x)Ωc
d32

(σ
(0)
33 − σ

(0)
22 )eiθc , (7d)

Fig. 3. The linear absorption Im(K) as function of the frequency ω/Γ for (a) the symmetric mode and (b) the antisymmetric
mode. The blue dashed line shows the absorption of the system with Ωc = 0, and the red solid line shows the absorption of the
system with Ωc = Γ. The values for the blue dashed lines are multiplied by 500.

Figures 3a and 3b shows the linear absorption Im(K) as
function of the frequency ω/Γ in the symmetric (antisym-
metric) mode. The blue dashed line shows the absorption
of the system with Ωc = 0, and the red solid line shows
the absorption of the system with Ωc = Γ. The results
indicate that, with no control field, the absorption of the
probe field peaks at the center frequency (ω = 0) is large,
which means that the probe field is strongly absorbed.

To facilitate observation and comparison, the absorp-
tion curves when the control field is zero are multiplied by
500. With the control field present, the absorption peak of
the probe field changes to an absorption dip at the center
frequency, which means that the absorption of the probe
field is strongly suppressed; in other words, a transparent
window is created. In addition, incoherent pumping allows
the probe field to extract gain from the system. Note that
Im(K) < 0, which corresponds to gain. In addition, the
transparent window in the symmetric mode is wider than
in the antisymmetric mode, which indicates that EIT is
stronger for the symmetric mode.

The gain of the system depends on Γ31. To select the
appropriate incoherent pumping, we study the relation-
ship between the incoherent pumping Γ31/Γ and the gain
−Im(K)|ω=0. The red (blue) line in Figure 4a shows
the relationship between Γ31/Γ and −Im(K)|ω=0 in the
symmetric (antisymmetric) mode. Upon increasing Γ31/Γ,
−Im(K)|ω=0 in the symmetric mode increases, indicat-
ing that the system gain increases. In the antisymmetric

mode, −Im(K)|ω=0 increases initially, and then levels off,
indicating that the gain saturates.

Figure 4b shows the group velocity Ṽg = [∂Re(K)/
∂ω]−1 as a function of the frequency ω/Γ. The results show
that one implements fast light and the other implements
slow light. But with different parameters, the group veloc-
ity for both symmetric and antisymmetric mode could be
Ṽg > 0, which leads to slow light in the system. The phys-
ical reason explaining the appearance of the subluminal
propagation speed is that the system is saturated. The
system parameters are the same as those used before.

4 Symmetric and antisymmetric SPPs
solitons

We next discuss nonlinear surface-polarization activation
in the symmetric and antisymmetric modes of this sys-
tem. We first need to obtain a nonlinear envelope function
to control the evolution of the probe light. We use the
multiscale method to solve the MB equations and retain
the second-order solutions of σjj and σij (see appendix
for detailed expressions). To prevent the divergence of the
solution of Ω(2)

p , the following condition must be satisfied:

i

(
∂F

∂z1
+

1
Vg

∂F

∂t1

)
= 0. (10)

https://www.epjd.epj.org


Page 6 of 11 Eur. Phys. J. D (2020) 74: 78

Fig. 4. (a) The gain −Im(K)|ω=0 as a function of Γ31/Γ at the center frequency. The red (blue) line shows the symmetric

(antisymmetric) mode. (b) Ṽg/c as a function of the frequency ω with Ωc = Γ. The red solid line shows the symmetric mode,
and the blue dashed line shows the antisymmetric mode.

The propagation equation (10) is satisfied by the envelope
function F of the probe field. In equation (10), the group
velocity is

Vg =
[

1
c

n2
1

neff
+ κ12

D2ζ
∗
cΩ∗ce

−iθ∗c − (ω + d31)D1

D2

]−1

·

(11)
For the solution of Ω(3)

p to converge, the following con-
dition must be satisfied:

i
∂

∂z2
F − 1

2
∂2K(ω)
∂ω2

∂2F

∂t21
−W |F |2Fe−2ᾱz2 = 0. (12)

Equation (12) is a nonlinear propagation equation for the
third-order probe optical envelope function F , where ᾱ =
α/ε2 and α = Im(K + k). The nonlinear coefficient W
describing the probe-field self-phase modulation is given
by

W = κ12

〈
(ω + d31)(a(2)

11 − a
(2)
22 ) + ζ∗c (x)Ω∗ce

−iθ∗c a
(2)
32

D

× ζp(x)|ζp(x)eiθp |2
〉
. (13)

The third-order (Kerr) nonlinear polarizability is pro-
portional to the self-phase modulation nonlinear coeffi-
cient, and the relationship is as follows:

χ(3)
pp =

2c
ωp

|p12|2

~2
W. (14)

Figure 5 shows the third-order nonlinearity as functions
of the frequency ω for both symmetric and antisymmet-
ric SPPs. The red solid (blue dashed) line shows the real
(imaginary) part of χ(3)

pp . The results show that the system
is pumped incoherently (we choose incoherent pumping
with Γ31 = 0.17 Γ). We can find that the Kerr effect in
the system is very large. And also, in the symmetric and

antisymmetric modes, when ∆2 < 0, the real part is much
greater than the imaginary part, which plays a crucial role
in the formation and stable propagation of SPPs solitons
in the system. Here, in order to facilitate observation and
comparison, the imaginary part are multiplied by 10 and
5, respectively.

Simultaneous equations (10) and (12) give the follow-
ing nonlinear envelope equation describing the nonlinear
propagation of the probe light in the waveguide:

i

(
∂

∂z
+ α

)
U − K2

2
∂2

∂τ2
U −W |U |2U = 0, (15)

where τ = t− z/Vg,U = εF exp (−iαz), andK2≡ ∂2K(ω)/
∂ω2 is the group velocity dispersion, which is given by

K2 = 2iκ12

〈
(ω + d31)a(2)

21 ζc(x)− Ω∗ca
(2)
31 |ζc(x)|2e−iθ∗c

D

〉
,

(16)
where the coefficients a

(2)
21 and a

(2)
31 are given in

Appendix B. Note that we have omitted the higher-
order dispersion in equation (15). This approximation is
valid when the pulse duration is large enough such that
the higher-order dispersion do not take significant effect
[50,51].

The coefficients of the equation (15) are all complex,
i.e., it is a Ginzberg–Landau equation, and the complex-
coefficient equation is usually nonintegrable, which does
not allow stable soliton solution in general. In general,
the formation and propagation of surface polaritons in an
optical system are possible if two conditions are satisfied:
(1) the absorption of the probe light in the system must
be sufficiently small, and (2) the dispersion and nonlinear
effect of light in the system must be balanced. Therefore,
if the real part of the coefficient of the equation (15) is
much greater than the imaginary part, the soliton solution
will be very stable and the soliton can propagate a long
distance with the waveform unchanged. Fortunately, we
can find a reasonable set of physical parameters under the
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Fig. 5. The third-order nonlinearity for (a) symmetric mode and (b) antisymmetric mode. The red solid (blue dashed) line

shows the real (imaginary) part of χ
(3)
pp . The values of the blue dashed lines in panel (a) and (b) are multiplied by 10 and 5,

respectively.

EIT condition, so the real part of the coefficients in the
equation (15) are much greater than the imaginary parts.

Ignoring the imaginary parts, and choosing ω = 0, we
can obtain the dimensionless form of the above formula,
which gives

i
∂u

∂s
+
∂2u

∂σ2
+ 2|u|2u− 2τ2

0u

K̃2

α = 0, (17)

where s = −z/2LD, σ = τ/τ0, u = U/U0, τ0 is the dura-
tion of the pulse (which can be called the pulse width),
LD = τ2

0 /K̃2 is the characteristic dispersion length of

the system, U0 = (1/τ0)
√
K̃2/W̃ is the characteristic half

Rabi frequency of the system, and K̃2 and W̃ are the real
parts of K2 and W , respectively.

We will show later that we can choose a set of physi-
cal system parameters to make α ≈ 0, thus we ignore it
in later analyze. In fact, when propagation length is far
less than the absorption length (as the case we discussed),
ignoring the absorption is a well approximation [41,46].
This leads to a standard nonlinear Schrödinger equation
(NLSE), which is fully integrable:

i
∂u

∂s
+
∂2u

∂σ2
+ 2|u|2u = 0. (18)

We get various soliton solutions from this dimensionless
NLSE. The single-soliton solution can be simplified to the
form u = sech(σ) exp(is), which can be expressed with
the half Rabi frequency as follows:

Ωp(z, t) =
1

τ0

√
K̃2

W̃
sech

[
1

τ0
(τ − z

Ṽg
)

]
exp

[
iK̃0x+ i

z

2LD

]
.

(19)
This equation describes a bright soliton, where K̃0 =

Re(K)|ω=0, and Ṽg = Re(∂K/∂ω)|ω=0 is the group veloc-
ity at which a bright SPPs soliton propagates.

We now present the physical parameters required for
the formation and propagation of a set of symmetric
and antisymmetric SPPs. For symmetric SPPs, we use

Γ31 = 0.17 Γ, ∆2 = 2.07 Γ, ∆3 = −0.4 Γ, and τ0 =
6 × 10−7 s, and we calculate Im(K + k) = −0.01 cm−1.
In addition, we get LD = 3.59 cm,K2 = (8.34 + 1.69) ×
10−14 cm−1 s2, W = (−2.22 + 0.013)×10−15 cm−1 s2. The
characteristic absorption length LA = 1/|α| = 73 cm.
The results show that the real parts of K2 and W are
much greater than the imaginary parts, and that LA
is also an order of magnitude greater than LD, so we
can ignore absorption of the probe light by the surface-
polarization exciton during the formation process. Sim-
ilarly, for antisymmetric SPPs, we use Γ31 = 0.017 Γ,
∆2 = 2.33 Γ, ∆3 = −0.04 Γ, and τ0 = 6 × 10−6 s, and
we calculate Im(K + k) = 0.0037 cm−1. In addition, we
get LD = 0.3 cm, K2 = (1.04 + 0.18) × 10−10 cm−1 s2,
W = (−1.15− 0.00021)× 10−15 cm−1 s2. The characteris-
tic absorption length LA = 1/|α| = 274 cm. As with the
symmetric mode, LA � LD for the antisymmetric mode,
so absorption of the probe light by the system is negligible.
In addition, by selecting a suitable incoherent pumping,
both the symmetric and antisymmetric mode can form
SPPs solitons capable of stable propagation in the MDM
waveguide.

We numerically simulate the propagation of SPPs soli-
tons and analyze their stability by using MB equations (5)
and (6). Figure 6 shows a schematic diagram of electric
field intensity distribution of |Ep(x, z, t)| and wave shape
of |Ωp(z, t)/U0| during propagation of antisymmetric and
symmetric SPPs. Note that we together show the spatial
profile of the electric field in seven different moments, thus
the seven peaks in z direction is not the field oscillations
but the field in seven different moment. The initial condi-
tion for the numerical solution is Ωp(0, t) = U0sech(t/τ0)
(thus Ep(x, 0, t) = (~U0/|p12|)× up(x)sech(t/τ0)). When
plotting |Ep|, we have normalized the initial peak value
of |Ep| to 1. Figure 6a shows a schematic diagram of the
intensity distribution |Ep| of antisymmetric-mode SPPs
for a relatively weak nonlinearity. As shown in the figure,
with propagation distance increasing, the intensity of the
SPPs in the antisymmetric mode weakens and the width
of the distributed region of SPPs widens, which reflects a
clear dispersion of SPPs that cannot be balanced by the
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Fig. 6. The time dynamic of electric field intensity distribution of |Ep| and wave shape of |Ωp/U0| during propagation of
antisymmetric and symmetric SPPs: (a), (d), (g) are electric field intensity distribution |Ep| of SPPs in antisymmetric mode as
a function of z/LD and x/d. (b), (e), (h) are electric field intensity distribution |Ep| of SPPs in symmetric mode as a function
of z/LD and x/d. (c), (f), (i) are wave shape of |Ωp/U0| as a function of z/LD and t/τ0. Different rows correspond to different
nonlinearity levels (from top to the end correspond for weak, medium and strong nonlinearity respectively). Note that we
together show the spatial profile of the electric field in seven different moments, thus the seven peaks in z direction are not the
field oscillations but the field in seven different moments.

nonlinearity, so that the SPPs cannot maintain its shape
during propagation.

Figure 6b shows a schematic diagram of the intensity
distribution |Ep| of symmetric-mode SPPs for relatively
weak nonlinearity. Similar to the case of the antisymmet-
ric mode, SPPs cannot maintain their shape as they prop-
agate in symmetric mode. Figure 6c shows a more clear
physical picture of this effect for both antisymmetric-mode
and symmetric-mode SPPs. With weak nonlinearity, as
the propagation distance increasing, the pulse broaden
seriously in time dimension, thus the intensity of the SPPs
weakens.

Figure 6d shows, for moderate nonlinearity, the prop-
agation of antisymmetric-mode SPPs. We find a set of
suitable system parameters for which, with increasing
propagation distance, the strength of the antisymmetric-
mode SPPs remains basically constant, as does the SPPs
distribution width. This result is attributed to the non-
linearity just balancing the dispersion, so that a stable
propagating SPPs soliton is formed. We also find a set
of suitable parameters to balance the dispersion and the
nonlinearity, thereby forming the symmetric-mode SPPs
soliton shown in Figure 6e. In the moderate nonlinearity
case, the pulse width keeps almost the same during the
propagation of SPPs as illustrated in Figure 6f. Figure 6g

shows the situation when the nonlinearity is too strong
for the propagation of antisymmetric-mode SPPs. This
result shows that, with increasing propagation distance,
the intensity of the SPPs becomes stronger first and then
weakens, and the width of the SPPs distribution region
first narrows and then broadens. Therefore, SPPs solitons
cannot form when the nonlinearity is too strong. The same
result is obtained for symmetric-mode SPPs, as shown in
Figure 6h. Due to the strong nonlinearity, the wave shape
|Ωp/U0| can not maintain and changes a lot, as shown in
Figure 6i.

5 Summary

In this work, we study in detail the propagation of sym-
metric and antisymmetric SPPs solitons generated in an
MDM waveguide structure interacting with a ladder-type
EIT system. In the linear propagation regime, we first
study the relationship between incoherent pumping rate
Γ31 and the active gain −Im(K) and find that the gain
for both modes increases with increasing Γ31, and that
the gain does not increase once the absorption saturates
for antisymmetric mode. By calculating the group veloc-
ity, we find that both modes can propagate as slow light.
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In the nonlinear propagation regime, the results indicate
that the Kerr nonlinearity can be strongly enhanced by
the symmetric and antisymmetric SPPs, although the dif-
ferent modes are generated by different incoherent pump-
ing intensities. Finally, the numerical simulation indicates
that gain-assisted (1+1)-dimensional symmetric and anti-
symmetric subluminal SPPs solitons may be produced
by exploiting the strong confinement of the electric field
in the MDM waveguide. These results should help guide
future studies of SPPs soliton propagation3.
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Appendix A: The TM electromagnetic field
mode in MDM waveguide

In this article we consider only the TM polarized mode of
electromagnetic(EM) field. The coordinate system is set
as illusted in Figure 1a. From Maxwell equations without
charge and current source, we obtain(

∇2 − εrµr
c2

∂2

∂t2

)
H = 0, (A.1a)

∂

∂t
E =

1
ε0εr
∇×H, (A.1b)

where E and H are electric field and magnetic field, c is
the speed of light in vacuum, µr is relative permeability,
εr is relative permittivity, ε0 is permittivity in vacuum.
We assume the EM field propagetes in the positive z with
harmonic frequency ωl, for TM polarized mode, E and H
can be written as

H = eyHy(x)ei(kz−ωlt), (A.2a)

E = (exEx(x) + ezEz(x)) ei(kz−ωlt). (A.2b)

3 Such approach is similar to the averaging method used in refer-
ences [36,37]. A more rigorous approach should account for nonlin-
ear terms in boundary conditions and nontransverse character of the
electric field. In this way, the mode function in high-order approxi-
mations will be a little different. However, as shown by Marini and
Skryabin [49], the difference between the two approaches is not sig-
nificant if the wavelength of the excitation is not too short.

Here eα(α = x, y, z) is unit vector of α axis, k is propaga-
tion constant. Then equation (A.1) reads

d

dx
Hy(x)− k2

xlHy(x) = 0, (A.3a)

Ex(x) =
k

εrωl
Hy(x), Ez(x) = − i

εrωl
Hy(x), (A.3b)

with k2
xl = k2 − εlµlk

2
0 (l = 1 for dielectric, l = 2 for

metal). We divide the space into three region according to
x coordinate:region one, x > d/2; region two, |x| < d/2;
region three, x ≤ −d/2. The physical picture of DMD
waveguide is that the H field will mainly confined in
region two (dieletric layer), thus H will exponential decay
beyond region two. Then the physical solution of equation
(A.3a) is

Hy(x) =

A · cosh(kxlx+ ψ), |x| < d
2

B · e−kxlx, x ≥ d
2

C · ekxlx, x ≤ −d2
(A.4)

with A,B,C are constant to be determined, ψ = miπ/2
(m = 0 for symmetric mode, m = 1 for antisymmetric
mode). Then E can be determined via equation (A.3b).
The boundary conditions alone two metal-dielectric inter-
face reads ex × (H2 − H1) = 0, ex × (E2 − E1) = 0,
which means Hy(x) and Ez(x) should be continuous at
x = ±d/2. The boundary conditions yield

A · cosh
(
dkx1

2
+ ψ

)
= B · e− d2 kx2 , (A.5a)

A · cosh
(
dkx1

2
− ψ

)
= C · e− d2 kx2 , (A.5b)

−
iA · kx1 sinh

(
dkx1

2 + ψ
)

ωlεd
=
iB · kx2e

− d2 kx2

ωε2
, (A.5c)

iA · kx1 sinh
(
dkx1

2 − ψ
)

ωlε1
= − iC · kx2e

− d2 kx2

ωε2
, (A.5d)

thus we get B = A · cosh (dkx1/2 + ψ) · exp(dkx2/2),
C = A · cosh (dkx1/2− ψ) · exp(dkx2/2). Then from equa-
tion (A.5c) or (A.5d), we obtain the dispersion relation

kx2

ε2
+
kx1

ε1
tanh

(
d · kx1

2
+ ψ

)
= 0. (A.6)

Now we can write down the mode field

E =





A
ωε1

[exk cosh(kx1x+ ψ)− iezkx1 sinh(kx1x+ ψ)]

ei(kz−ωlt), |x| < d
2

A
ωε2

(exk + iezkx2)

· cosh
(
dkx1

2
+ ψ

)
· e−kx2(x− d

2 )ei(kz−ωlt), x ≥ d
2

A
ωε2

(exk − iezkx2)

· cosh
(
dkx1

2
− ψ

)
· ekx2(x+ d

2 )ei(kz−ωlt), x ≤ − d
2

(A.7a)
H =





A · cosh(kx1x+ ψ)ei(kz−ωlt), |x| < d
2

A · cosh
(
dkx1

2
+ ψ

)
· e−kx2(x− d

2 )ei(kz−ωlt), x ≥ d
2

A · cosh
(
dkx1

2
− ψ

)
· ekx2(x+ d

2 )ei(kz−ωlt), x ≤ − d
2
·

(A.7b)
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Appendix B: Second order solutions of

equations σ
(2)
ij

σ
(2)
11 =

[−iΓ23 + 2|ζc(x)Ωce
iθc |2( 1

d32
− 1

d∗32
)](

D∗1
D∗ −

D1
D

) + iΓ12Ωc(
ζ∗c (x)e−iθ

∗
c

d32

D2
D
− ζc(x)e−iθc

d∗32

D∗2
D∗ )

(Γ23Γ12 + Γ23Γ31 + Γ31Γ12) + i(Γ12 + 2Γ31)|ζc(x)Ωceiθc |2( 1
d32
− 1

d∗32
)

× |ζp(x)eiθp |2|F |2e−2ᾱz2

= a
(2)
11 |ζp(x)eiθp |2|F |2e−2ᾱz2 ,

σ
(2)
22 =

Γ31a
(2)
11 + i(

D∗1
D∗ −

D1
D

)

Γ12
× |ζp(x)eiθp |2|F |2e−2ᾱz2

= a
(2)
22 |ζp(x)eiθp |2|F |2e−2ᾱz2 ,

σ
(2)
32 =

[D2
D
− ζc(x)Ωc(2a

(2)
22 + a

(2)
11 )]

d32
× |ζp(x)eiθp |2|F |2e−2ᾱz2

= a
(2)
32 |ζp(x)eiθp |2|F |2e−2ᾱz2 ,

σ
(2)
21 = i

D2ζ
∗
c (x)Ω∗

ce
−iθ∗c −D1(ω + d31)

D2
ζp(x)

∂F

∂t1
eiθeiθp

= a
(2)
21 ζp(x)

∂F

∂t1
eiθeiθp,

σ
(2)
31 = − 1

ζ∗c (x)Ω∗
c(z)e

−iθ∗c
[i
D1

D
+ (ω + d21)a

(2)
21 ]ζp(x)

∂F

∂t1
eiθeiθp

= a
(2)
31 ζp(x)

∂F

∂t1
eiθeiθp ,

where ᾱ = ε−2Im[K(ω)], θ = K(ω)x0 − ωt0.
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